Proyecto mtbe indonesia

Download Proyecto mtbe indonesia

Post on 13-Sep-2014




1 download

Embed Size (px)




<ul><li><p> PRODUCTION OF 300,000 METRIC TON OF MTBE PER YEAR</p><p>MEMBER OF GROUP AND SUPERVISORS</p><p>1</p></li><li><p> PRODUCTION OF 300,000 METRIC TON OF MTBE PER YEAR</p><p>ACKNOWLEDGEMENT</p><p>First and foremost, thank you to Allah S.W.T for giving us the strength to finish up this </p><p>project report. Without Your Willingness we would not be able to complete this project. </p><p>It would be impossible to acknowledge adequately all the people who have been </p><p>influential, directly or indirectly in forming this project.</p><p>We would like to take this opportunity to express our deepest gratitude to our </p><p>supervisors, Encik Mohd Imran Bin Zainuddin and Puan Sunita Binti Jobli who has </p><p>given us his constant encouragement constructive advises and his patient in </p><p>monitoring our progress in this project.</p><p>Our appreciation and special thanks goes, Puan Hasnora Binti Jafri, Puan Junaidah </p><p>Binti Jai, Encik Aziz Bin Ishak for supplying the valuable information and guidance for </p><p>this project.</p><p>We greatly indebted to Encik Napis Bin Sudin for his cooperation and willingness to be </p><p>interviewed and for provide us with invaluable information and for his resourcefulness </p><p>in gathering material.</p><p>Special thanks owe to Puan Masni Bt Ahmad for her willingness to be interviewed and </p><p>for the painstaking care she has shown in assisting us throughout the project.</p><p>We also would like to express our appreciation to the Malaysia Industrial Development </p><p>Authority (MIDA), Pusat Informasi Sirim Berhad, Petronas Resource Center, Jabatan </p><p>Perangkaan Malaysia and Tiram Kimia Sdn.Bhd. (Kuala Lumpur) for their generous </p><p>supply of relevant documents and material needed research.</p><p>Last but not least to all my lecturers, family, friends and collegues for their </p><p>encouragement and kind support when we need it most.</p><p>2</p></li><li><p> PRODUCTION OF 300,000 METRIC TON OF MTBE PER YEAR</p><p>ABSTRACT</p><p>The purpose for this MTBE or Methyl tertiary Butyl Ether plant is to produce 300,000 </p><p>metric tonne/year. MTBE is the simplest and most cost effective oxygenate to produce, </p><p>transport and deliver to customers. The additive works by changing the oxygenate / </p><p>fuel ratio so that gasoline burns cleaner, reducing exhaust emissions of carbon </p><p>monoxide, hydrocarbons, oxides of nitrogen, fine particulates and toxic. Two units will </p><p>be considered which are the fluidizations, (Snamprogetti) Unit and the Etherification </p><p>Unit. The raw materials used are isobutane, methanol, and water as feedstock. In </p><p>addition, two types of catalysts are chromia alumina catalyzed compound in </p><p>Snamprogetti Unit, while sulphonic ion exchanged resin catalyzed is used in the MTBE </p><p>reactor. A good deal of catalyst has been devoted to improve the activity, selectivity, </p><p>and the lifetime of the catalysts.</p><p>In the Design Project 2, we emphasize in the individual chemical and mechanical </p><p>designs for selected equipments in the plant. The chosen equipments are Catalytic </p><p>Cracking Reactor, Multitubular Fixed Bed Reactor, MTBE Distillation Column, Liquid-</p><p>Liquid Extraction Column and Heat Exchanger.</p><p>Design Project 2 also includes Process Control, Safety, Economic Evaluation, Process </p><p>Integration and as well as Waste Treatment, which are considered as group works.</p><p>3</p></li><li><p> PRODUCTION OF 300,000 METRIC TON OF MTBE PER YEAR</p><p>CONTENTS</p><p>TITLE PAGE</p><p>DECLARATION IICERTIFICATION IIIACKNOWLEDGEMENT VABSTRACT VILIST OF TABLESLIST OF FIGURESLIST OF NOMENCLATURES</p><p>REPORT 1</p><p>CHAPTER 1 PROCESS BACKGROUND AND INTRODUCTION</p><p>1.1 Introduction 11.2 Historical Review of MTBE Production Process 2</p><p>1.2.1 UOP Oleflex Process 31.2.2 Philips Star Process 31.2.3 ABB Lummus Catofin Process 31.2.4 Snmprogetti Yartsingtez FBD Process 4</p><p>CHAPTER 2 PROCESS SELECTION</p><p>2.1 Method Consioderation 52.2 Detailed Process Description 7</p><p>2.2.1 Snaprogetti Yarsingtez fbd Process 72.2.2 MTBE Unit 82.2.3 Distillation Column Unit 82.2.4 Liquid-Liquid Extraction Unit 9</p><p>CHAPTER 3 ECONOMIC SURVEY</p><p>3.1 Market Survey 103.1.1 World Market 10</p><p>3.2 Asia Market 113.3 Demand 113.4 Production Capacity 14</p><p>4</p></li><li><p> PRODUCTION OF 300,000 METRIC TON OF MTBE PER YEAR</p><p>3.5 Supply 143.6 Market Price 15</p><p>3.6.1 Methanol 153.6.2 Isobutane 163.6.3 Catalyst 163.6.4 Conclusion 16</p><p>3.7 Economic Analysis 173.7.1 Break Even Analysis 173.7.2 Data Calculation1 20</p><p>CHAPTER 4 PLANT LOCATIONS &amp; SITE SELECTION</p><p>4.1 Plant Location 244.2 General Consideration On the site Selection 24</p><p>4.2.1 Location with Respect To Marketing Area 254.2.2 Raw Material supply 254.2.3 Transport Facilities 254.2.4 Availability Of Labor 254.2.5 Availability Of Utilities 264.2.6 Environmental Impact and Effluent Disposal 264.2.7 Local Community Considerations 264.2.8 Land (Site Consideration) 264.2.9 Political and Strategic Consideration 27</p><p>4.3 Overview on Prospective Locations 274.3.1 Teluk Kalong 284.3.2 Tanjung Langsat 284.3.3 Bintulu 29</p><p>4.4 Conclusion 33</p><p>CHAPTER 5 ENVIRONMENTAL CONSIDERATION</p><p>5.1 Introduction 345.2 Stack gas 35</p><p>5.2.1 Gas Emission treatment 355.3 Wastewater Treatment 35</p><p>5.3.1 Wastewater characteristic 355.3.1a) Priority pollutants 365.3.1b) Organic 365.3.1c) Inorganic 375.3.1d) pH and Alkalinity 375.3.1e) Temperature 38</p><p>5.3.2 Liquid waste treatment 385.3.2a) Equalization treatment 385.3.2b) Solid waste treatment 39</p><p>5.3.3 Waste Minimization 41</p><p>5</p></li><li><p> PRODUCTION OF 300,000 METRIC TON OF MTBE PER YEAR</p><p>CHAPTER 6 SAFETY CONSIDERATION</p><p>6.1 Introduction 426.2 Material Safety Data Sheet 43</p><p>6.2.1 Isobutane 436.2.1.1 Product Information 43</p><p>Physical &amp; Chemical Properties 436.2.1.2 Immediate Health Effects 446.2.1.3 First Aid Measure 44</p><p>6.2.2 N-Butane 446.2.2.1 Handling and Storage 45</p><p>6.2.3 Methanol 456.2.4 MTBE 46</p><p> Physical State and Appearance466.2.4.2 Physical Dangers 466.2.4.3 Chemical Dangers 476.2.4.4 Inhalation Risks 47</p><p>6.2.5 TBA 476.2.5.1 Recognition 486.2.5.2 Evaluation 486.2.5.3 Controls 48</p><p>6.3 Hazard Identification &amp; Emergency Safety &amp; Health Risk 49</p><p>CHAPTER 7 MASS BALANCE</p><p>7.1 Snamprogetti -Yarsingtez FBD Unit 517.2 Separator 537.3 Mixer 537.4 MTBE Reactor 54</p><p>7.4.1 1st Reaction in rector 557.4.2 2nd Reaction in reactor 567.4.3 3rd Reaction in reactor 577.4.4 Overall reaction 58</p><p>7.5 Distillation Column 597.6 Liquid Extraction Column 607.7 Distillation Column 617.8 Overall reaction system; flow diagram 627.9 Scales Up Factor 63</p><p>CHAPTER 8 ENERGY BALANCES</p><p>8.1 Energy Equation 648.2 Energy balance: Sample of calculation 65</p><p>8.2.1 Pump 1 738.2.2 Cooler 1 758.2.3 Separator 768.2.4 MTBE Reactor 788.2.5 Pump 2 79</p><p>6</p></li><li><p> PRODUCTION OF 300,000 METRIC TON OF MTBE PER YEAR</p><p>8.2.6 Mixer 808.2.7 Expander 1 818.2.8 Cooler 1 828.2.9 Distillation Column 1 848.2.10 Cooler 2 868.2.11 Pump 3 878.2.12 Extraction Column 888.2.13 Pump 4 898.2.14 Pump 5 918.2.15 Distillation Column 2 928.2.16 Cooler 3 93</p><p>CHAPTER 9 HYSYS 95</p><p>APPENDICES</p><p>REPORT 2</p><p>CONTENTS</p><p> PAGE</p><p>CHAPTER 1 CHEMICAL DESIGN AND MECHANICAL DESIGN</p><p> SECTION 1 CATALYTIC CRACKING DESIGN </p><p>1.1 Introduction 11.2 Estimation of Cost Diameter of Reactor 31.3 Calculation of TDH Height 41.4 Minimum Fluidization Velocity 41.5 Calculation for Terminal Velocity 51.6 Find the Value Kih 81.7 Find the value Eo 91.8 Calculation of Solid Loading 101.9 Calculation for Holding Time 121.10 Calculation for Pressure Drop 141.11 Determine the Direction and Flowrate 151.12 Design of Cyclone 171.13 Calculation for Mechanical Design 21</p><p>2.2 Mechanical Design2.2.1 Introduction 582.2.2 Design stress 592.2.3 Welded Joint Efficiency 59</p><p>7</p></li><li><p> PRODUCTION OF 300,000 METRIC TON OF MTBE PER YEAR</p><p>2.2.4 Corrosion allowance 592.2.5 Minimum thickness of cylindrical section of shell 592.2.6 Minimum thickness of domed head 602.2.7 Loading stress 612.2.7.1 Dead weight load 61</p><p> Dead Weight of Vessel 611.2.7.2 Weight of the Tubes 621.2.7.3 Weight of Insulation 621.2.7.4 Weight of Catalyst 631.2.7.5 Total Weight 631.2.7.6 Wind Loading 631.2.7.7 Analysis of Stresses 64</p><p>2.2.8 Dead Weight Stress 652.2.9 Bending Stress 652.2.10 Radial Stress 662.2.11 Check Elastic Stability 672.2.12 Vessel Support 682.2.13 Skirt Thickness 682.2.14 Height of the Skirt 692.2.15 Bending Stress at Base of the Skirt 702.2.16 Bending Stress in the Skirt 702.2.17 Base Ring and Anchor Bolt Design 712.2.18 Compensation for Opening and Branches 732.2.19 Compensation for Other Nozzles 742.2.20 Bolted Flange Joint 74</p><p> Type of Flanges Selected 742.2.20.2 Gasket 75</p><p>2.2.21 Flange face 75</p><p>SECTION 3 MTBE DISTILLATION COLUMN</p><p>3.1 Introduction 783.2 Selection f Construction Material 793.3 Chemical Design 79</p><p>3.3.1 Determine the Number of Plate 813.3.2 Determination of Number of Plate 883.3.3 Physical Properties 893.3.4 Determination of Column Diameter 893.3.5 Liquid Flow Arrangements 903.3.7 Plate Layout 913.3.8 Entrainment Evaluation 913.3.9 Weeping Rate Evaluation 943.3.13 Number of Holes 953.3.14 Column size 96</p><p>3.4 Mechanical Design3.4.1 Material construction3.4.2 Vessel Thickness 983.4.3 Heads and closure 983.4.4 Total Column Weight 99</p><p>8</p></li><li><p> PRODUCTION OF 300,000 METRIC TON OF MTBE PER YEAR</p><p>3.4.5 Wind Loads 1003.4.6 Stiffness Ring 100</p><p>3.5 Vessel Support Design 100</p><p>SECTION 4 DESIGN OF LIQUID-LIQUID EXTRACTION COLUMN</p><p>4.1 Introduction 1034.2 Chemical Design 104</p><p>4.2.1 Choice of Solvent 1044.2.2 Estimation the Physical Properties 1044.2.3 Determination the Number of Stage 1054.2.4 Sizing of Sieve Tray 1074.2.5 Number of Holes 1074.2.6 Column Parameter 1074.2.7 Weeping Evaluation 108</p><p>4.3 Mechanical Design 1104.3.1 Material Construction 1114.3.2 Vessel Thickness 1114.3.3 Design of Domed Ends 1124.3.4 Column Weight 112</p><p> Dead Weight of Vessel 1134.3.4.2 Weight of Plate 1134.3.4.3 Weight of Insulation 1134.3.4.4 Total weight 1144.3.4.5 Wind Loading 114</p><p>4.3.5 Analysis of Stress 1154.3.5. 1 Longitudinal &amp; Circumferential Pressure Stress 1154.3.5.2 Dead weight 1154.3.5.3 Bending Stress 1154.3.5.4 Buckling 116</p><p>4.3.6 Vessel Support Design 1174.3.6.1 Skirt Support 1174.3.6.2 Base Ring and Anchor 119</p><p>4.3.7 Piping Sizing 122</p><p>SECTION 5 HEAT EXCHANGER DESIGN</p><p>5.1 Introduction 1275.1.1 Designing the heater 129</p><p>5.2 Chemical Design 1305.2.1 Physical Properties of the Stream 1305.2.2 The Calculation 1315.2.3 Number of Tubes Calculation 1335.2.4 Bundle and Shell Diameter 1345.2.5 Tube Side Coefficient 1355.2.6 Shell Side Coefficient 1375.2.7 Overall Heat Transfer Coefficient 1395.2.8 Tube Side Pressure Drop 1405.2.9 Shell Side pressure Drop 140</p><p>5.3 Mechanical Design 1425.3.1 Design Pressure 142</p><p>9</p></li><li><p> PRODUCTION OF 300,000 METRIC TON OF MTBE PER YEAR</p><p>5.3.2 Design Temperature 1425.3.3 Material of Construction 1425.3.4 Exchanger Type 1435.3.5 Minimum Thickness 1435.3.6 Longitudinal Stress 1445.3.7 Circumferential Stress 1445.3.8 Minimum Thickness of Tube wall 144 5.39 Minimum Thickness of Head and Closure 1455.3.10 Minimum Thickness of the Channel Cover 1465.3.11 Design Load 1475.3.12 Pipe Size Selection for the Nozzle 1505.3.13 Standard Flanges 1505.3.14 Design Of Saddles 1525.3.15 Baffles 152</p><p>CHAPTER 2 PROCESS CONTROL AND INSTRUMENTATION</p><p>2.1 Introduction 1542.2 Objective of control 1552.3 Control system design sheet 156</p><p>2.3.1 Heat Exchanger 1562.3.2 Catalytic cracking fluidized bed reactor 1572.3.3 Compressor 1582.3.4 Condenser 1592.3.5 Separator 1602.3.6 Fixed bed reactor 1612.3.7 Distillation Column 1622.3.8 Liquid -liquid extraction Column 1632.3.9 Distillation Column 1642.3.10 Mixer 1652.3.11 Expander 166</p><p>CHAPTER 3 SAFETY CONSIDERATION</p><p>3.1 Introduction 1673.2 Hazard and Operability Study 1683.3 Plant Start Up and Shut Down Procedure 170</p><p>3.3.1 Normal Start Up and Shut Down the Plant 1713.3.1.1 Operating Limits 1713.3.1.2 Transient Operating and Process Dynamic 1723.3.1.3 Added Materials 1723.3.1.4 Hot Standby 1723.3.1.5 Emergency Shut Down 172</p><p>3.3.2 Start up and Shut down Procedure for the main Equipment 1723.3.2.1 Reactor 1723.3.2.2 Distillation Column 1733.3.2.3 Liquid-Liquid Extraction Column 1743.3.2.4 Heat Exchanger 175</p><p>3.4 Emergency Response Plan (ERP) 175</p><p>10</p></li><li><p> PRODUCTION OF 300,000 METRIC TON OF MTBE PER YEAR</p><p>3.4.1 Emergency Response Procedures 1763.4.2 Evacuation Procedures 1763.4.3 Fires 1773.4.4 Explosion, Line Rupture or Serious Leak 1773.4.5 Other Emergencies 177</p><p>3.5 Plant Layout 178</p><p>CHAPTER 4 ECONOMIC EVALUATION</p><p>4.1 Introduction 1844.2 Cost Estimation 1874.3 Profitability Analysis 199</p><p>4.3.1 Discounted Cash flow 1994.3.2 Net Present Value 2024.3.3 Cumulative Cash flow Diagram 2034.3.4 Rate of Return 2044.3.5 Sensitivity Analysis 2054.3.6 Payback Period 206</p><p>4.4 Conclusion 208</p><p>CHAPTER 5 PROCESS INTEGRATION AND PINCH TECHNOLOGY</p><p>5.1 Introduction 2095.2 Pinch Technology 2095.3 The Problem Table Method 2105.4 The Heat Exchanger Network 2145.5 Minimum number of exchangers 216</p><p>CHAPTER 6 WASTE TREATMENT</p><p>6.1 Introduction 2206.2 Wastewater Treatment 2216.3 Wastewater Treatment Plant Design 2246.4 Sludge Treatment 2296.5 Waste Treatment Plant Layout 2306.6 Absorption tank using granular activated carbon 231</p><p>6.6.1 Analysis of the absorption process 2326.6.2 Breakthrough Absorption capacity 233</p><p>APPENDICES</p><p>11</p></li><li><p> PRODUCTION OF 300,000 METRIC TON OF MTBE PER YEAR</p><p>LIST OF TABLES OF DESIGN I</p><p>TABLE TITLE PAGE</p><p>1.1 The Physical and Chemical Properties of MTBE 2</p><p>2.1 The Comparison of the UOP Oleflex, Philips Star</p><p>SP-Isoether FBD Process 6</p><p>3.1 Trade Balance of MTBE in Asia and Pacific 12</p><p>3.2 MTBE Balances for Asia and Pacific 13</p><p>3.3 Production, Import, Export &amp; Consumption in Europe in </p><p>Year 2000 14</p><p>3.4 Supplies MTBE Plant in Asia &amp; Pacific 15</p><p>3.5 Standard Price for Isobutane 16</p><p>3.6 Cost of Producing MTBE 500000 tonne/year 18</p><p>3.7 Value in US Dollar Converted to RM 20</p><p>3.8 Value in US Dollar Converted to RM per tonne 20</p><p>3.9 Data Calculation by using Microsoft Excel in RM 23</p><p>4.1 The Comparison of the Potential Site Location 30</p><p>4.2 The Comparison of Location in term of Weightage Study 31</p><p>4.3 The Electricity Tariffs (Industrial Tariff) for Peninsular </p><p>Malaysia and Sarawak 33 </p><p>12</p></li><li><p> PRODUCTION OF 300,000 METRIC TON OF MTBE PER YEAR</p><p>LIST OF TABLES OF DESIGN II</p><p>TABLE TITLE PAGEChapter 1Section 11.1 Calculation for Terminal Velocity in Different Size of dp. 8</p><p>1...</p></li></ul>