mtbe remediation handbook - home - springer978-1-4615-0021-6/1.pdfthe mtbe remediation handbook is a...

35
MTBE Remediation Handbook

Upload: vudieu

Post on 27-Mar-2018

232 views

Category:

Documents


2 download

TRANSCRIPT

MTBE Remediation Handbook

MTBE Remediation Handbook

Edited by Ellen E. Moyer

Paul T. Kostecki

Amherst Scientific Publishers Amherst, Massachusetts

Distributor for North, Central and South America: Kluwer Academic Publishers 101 Philip Drive Assinippi Park Norwell, Massachusetts 02061 USA Telephone (781) 871-6600 Fax (781) 871-6528 E-Mail <[email protected]>

Distributor for all other countries: Kluwer Academic Publishers Group Post Office Box 322 3300 AH Dordrecht, THE NETHERLANDS Telephone 31 78 6576 000 Fax 31 78 6576 254 E-Ma~l [email protected]

ISBN 978-1-4613-4889-4 ISBN 978-1-4615-0021-6 (eBook) DOI 10.1007/978-1-4615-0021-6

Library of Congress Control Number: 2003100235

© 2003 by Amherst Scientific Publishers 150 Fearing Street Amherst, Massachusetts 011002 USA

This second printing published 2004 By Kluwer Academic Publishers

The material contained in this document was obtained from independent and highly respected sources. Every attempt has been made to insure accurate, reliable information, however, the publisher cannot be held responsible for the information or how the information is applied. Opinions expressed in this book are those of the authors and I or contributors and do not reflect those of the publisher

Authorization to photocopy items for intemal or personal use, or the intemal or personal use of specific clients, is granted by Amherst Scientific Publishers, provided that $.50 per page photocopied is paid directly to Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400, or at their website, www.cogyright.com

All rights reserved

Acknowledgment

Many, many thanks to Tracy J. Adamski of Tighe & Bond, Inc., and Betty A. Niedzwiecki of the Association for Environmental Health and Sciences for their many hours of assistance in development and coordination of the book.

v

Preface

The time has come for an MTBE Remediation Handbook. There are hundreds of thousands of spills of gasoline containing MTBE in the United States. More than a billion dollars are spent each year to clean up spills of gasoline and manage the risk from existing contamination. Staff of the appropriate regula­tory authorities within each state must make decisions to manage these spills on a site-by-site basis. Do they require active cleanup? How much cleanup is necessary? What is the most appropriate technology? What performance should be expected from the available technology? If the state regulators pro­vide good answers to these questions on a site-by-site basis, the money will be well spent.

This handbook is concerned with remediation of MTBE in existing spills. There are a number of myths about MTBE that act as impediments to effec­tive remediation and risk management for MTBE. These myths present MTBE as being qualitatively different from petroleum hydrocarbons. Many still think that benzene is biodegradable in ground water while MTBE is not, that risk management is appropriate for benzene and not appropriate for MTBE, and that drinking water can be treated to remove benzene but not to remove MTBE. These myths have made us reluctant to deal with existing MTBE contamination. As is documented in this MTBE Remediation Handbook, we have the technology to clean up MTBE in a rational and economic man­ner. In general, the same technologies that have worked well for fuel hydro­carbons will work for MTBE contamination.

Experience in the last decade has revealed that prompt source control is key to minimizing impacts and remediation costs. Experience has also shown that remediation of MTBE contamination is much like any other activity. Suc­cess depends on the selection of the appropriate technology, on a careful and adequate site characterization, and on sound engineering design and faithful implementation. The MTBE Remediation Handbook is a comprehensive and up-to-date compendium of our knowledge. It is my hope that the MTBE Re­mediation Handbook will improve the state of practice for remediation of MTBE.

John T. Wilson, Ph.D. Ada, Oklahoma

vii

Contents Acknowledgment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures ................................. xxv

List of Tables ................................. xxxv

SECTION I-MTBE HISTORY, PROPERTIES, OCCURRENCE, AND ASSESSMENT

1. Introduction Ellen E. Moyer . . . . . . 3

History of MTBE Use . 3 Tert Butyl Alcohol .. . 6 Gasoline Releases. . . . 6

Underground Storage Tank (UST) Leaks and Overfills . 6 Spills ....... . 7 Use in Watercraft. . 7 Volatilization . . 9

Summary. . . . . . .9 references . . . . . . . 9

2. Chemical and Physical Properties Ellen E. Moyer. . . . . . . 11

Introduction . . . . . . . . . . . . 11 Boiling Temperature ...... . 11 Specific Gravity 14 Water Solubility 14 Vapor Pressure 14 Vapor Density . 15 Adsorption. . . 15 Henry's Law Constant 16 Summary. . . . . . . . 16 References . . . . . . . 18

3. Fate and Transport of MTBE and Other Gasoline Components John T. Wilson. . . . . . . . . . . . . . . . . . . . 19

Transport and Fate of Vapors of MTBE in the Unsaturated Zone . . . . . . . . . . . . . . 20

Partitioning of MTBE from Gasoline Directly to Ground Water. . . . . . . . . . . . . . . 21

Separation of MTBE from BTEX Along a Flow Path . 25 Role of Dilution and Dispersion. . . . . . 28 Role of Biodegradation of MTBE . . . . . 31 Production and Biodegradation of TBA . 36

ix

x

False Attenuation: Missing the Plume with Monitoring Wells ..... .

Missing the Plume: Plume Diving Behavior in Uniform Sand Aquifers .,.

Two Possible Life Cycles of Plumes. . The Plume Comes to Steady State,

Then Recedes Back to the LNAPL The Plume Fails to Come to Steady State, and the Hot Spot

Moves Downgradient . . . . . . . . . . . . . . . . . Overview of Factors That Lead to Long MTBE Plumes Disclaimer References . . . . . . . . . . . . . . . . . . . . .

4. MTBE Occurrence in Surface and Ground Water James A. M. Thomson, James w. McKinley, Robert C. Harris, Alwyn J. Hart, Peter Hicks, David K. Ramsden, and Barbara Wilson ......... . . . . . . .

Introduction . . . . . . . . . . . . . . . . . . . . MTBE and the USGS NAWQA Program . . . . National MTBE Survey and the Northeastern

and Mid-Atlantic States Study ... Northeast States for Coordinated

Air Use Management (NESCAUM) Midwestern States Study. . . . . . . . . Individual State Studies . . . . . . . . . MTBE Occurence in England and Wales Plume Length Studies History in California Conclusions References . .

5. Site Assessment Nancy E. Milkey. . . . . . . . . .

Historical Assessment . . . . Identification of Receptors

Initial Subsurface Investigation Utility Clearance . . . Boring Advancement .... Well Development . . . . . . Ground Water Sample Collection. Determination of Ground Water Flow Direction

Methods of Soil and Ground Water Sample Collection . Drilling and Soil Sample Collection . . . . . Ground Water Sample Collection. . . . . . . Soil and Ground Water Analytical Methods. Geophysics . . . .

Detailed Assessment .............. .

39

45 47

49

50 56 57 57

63 63 63

64

65 65 66 66 66 67 68 70

73 73 74 74 74 74 76 77 77 77 78 80 82 84 85

Tracers .............................. . Aquifer Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . Evaluation of Soil Gas and Indoor Air Migration Pathways Carbon Isotope Analysis ....

Identifying Migration Pathways ............. . References . . . . . . . . . . . . . . . . . . . . . . . . . . .

6. Laboratory Analysis of Oxygenated Gasoline Constituents Robert J. Pirkle and Patrick W. McLoughlin . . . . . .

Introduction . . . . . . . . . . . . . . . . . . . . . Properties of Oxygenated Gasoline Components Sample Preservation Methods . . . . . . . . . . . Sample Preparation Methods ........... .

Separation of Volatiles from Aqueous Solution Concentration of Separated Volatiles . . . . . .

Measurement Methods . . . . . . . . . . . . . . . Optimum Methods for Analysis of Fuel Oxygenates

in Ground Water ...... . Conclusions .. References ..... .

7. Risk Assessment Pamela RD. Williams and Patrick J. Sheehan.

Introduction . . . . . . . . . . . . Evaluating Human Health Risks.

Hazard Identification . . . . Dose-Response Assessment Exposure Assessment. . . Risk Characterization ....

Evaluating Ecological Risks . European Risk Assessment of MTBE Risk Analysis Framework Summary. References ........ .

SECTION II-APPLICABLE REMEDIATION TECHNOLOGIES

8. Receptor Protection Jonathan Greene, Theodore R. Davis, and David K. Ramsden

Introduction and Major Phases. Receptors ...... . Receptor Threat . . . Receptor Protection .

Technologies ..... . General ....... . Vapor Management . Water Management . Soil Management . .

86 86 86 87 88 90

· 93 · 93 · 94 .95 100 100 102 103

105 115 119

121 121 123 123 128 132 138 148 150 151 152 154

171 171 173 174 174 174 174 176 177 185

xi

Conclusions References .

186 186

9. Source Control Theodore R. Davis, Jonathan Greene, and David K. Ramsden 189

Introduction 189 Sources . . . . . . . 189

Tankhold . . . . . 190 Unsaturated Soils 190 LNAPL. . . . . . 190 Saturated Soils. . 191

Remediation Technologies 191 Tankhold . . . . . 191 Unsaturated Soils 191 LNAPL. . . . . 191 Saturated Soils . 197

Conclusions ... 198 References .... 199

10. Soil Vapor Extraction, Bioventing, and Air Sparging

xii

Brian D. Symons and Jonathan Greene 201 Gas-Based Technologies 201

Soil Vapor Extraction . . 201 Air Sparging . . . . . . . 203 Bioventing/Biosparging . 203

Contaminant Considerations . . 208 Volatility . . . . . . 208 Biodegradability . 208

Soil Considerations . 209 Soil Permeability 209 Water Saturation . 209 NAPL Saturation . 210

Geologic Considerations . 210 Fine-Grained Lenses . 211 Diversion of Airflow Heterogeneous Soils

Airflow Considerations Maximizing Biodegradation . . . . Maximizing Volatilization . . . . .

Airflow and Pressure Relationships . Zone of Influence and Well Spacing. Modeling and Pilot Testing ..... .

Summary of Extraction System Effectiveness Summary of Injection System Effectiveness

Design Considerations Technology Selection Off-Gas Treatment .

........ 211

........ 211 · 212 · 212 · 212 · 213 · 213 · 216 · 216 · 217 · 217 · 217 · 217

Enhancements . . . . . . . . . . Pulsed Injection . . . . . . . . . Injecting Gases Other than Air Adding Heat (Thermal)

Conclusions References ....... .

11. In Situ Chemical Oxidation Kara L. Kelley, Michael C. Marley, and Kenneth L. Sperry .

Introduction . . . . . . . Hydrogen Peroxide . . . . . . . . . . . . . . .

Description of Process .. . . . . . . . . . . Proven Effectiveness in Field or Laboratory Practical Design Considerations.

Ozone ...................... . Description of Process . . . . . . . . . . . . Proven Effectiveness in Field or Laboratory Practical Design Considerations .

Permanganate . . . . . . . . . . . . . . . . . . Description of Process .... . . . . . . . . Proven Effectiveness in Field or Laboratory Practical Design Considerations.

Persulfate . . . . . . . . . . . . . . . . . . . . . Description of Process . . . . . . . . . . . . Proven Effectiveness in Field or Laboratory Practical Design Considerations.

Ultrasound . . . . . . . . . . . . . . . . . . . . Description of Process . . . . . . . . . . . . Proven Effectiveness in Field or Laboratory Ultrasound with Ozone ..... Practical Design Considerations.

ISCOCosts ...... . Hydrogen Peroxide . Ozone ..... Permanganate Per sulfate . Ultrasound .

References ..

12. Aerobic In Situ Bioremediation John T. Wilson . . . . . . . . . . . . . . . . . . .

Microbiology and Biochemistry of Aerobic MTBE Biodegradation . . . . . . . . . .

Kinetics of Metabolism . . . . . . . . . . . . Biodegradation of MTBE, Petroleum Hydrocarbons, and

218 218 219 219

.220 · 220

· 223 .223 · 224 .224 .226

227 228 228 229

· 231 · 231 .231

232 233 233 233 234

.234 234

· 234 · 235 .236 · 236

237 237 237 238 238 239 239

.243

244 246

Consumption of Oxygen ................ . 248

xiii

Prospects for Biodegradation of MTBE in the Field by Native Microorganisms . . . . . . .

Remedial Technology for Ground Water Disclaimer .... . . . . . . . . References ............ .

13. Anaerobic In Situ Bioremediation Kevin T. Finneran and Derek R. Lovley

Introduction . . . . . . . . . . . . Anaerobic Processes in Subsurface Sediment Anaerobic Bioremediation Strategies . . . . . Anaerobic MTBE Biodegradation with Different

Terminal Electron Acceptors Nitrate Reduction . Fe (III) Reduction .... . Sulfate Reduction .... . Methanogenic Conditions

Anaerobic TBA Biodegradation Implications for MTBE and TBA Bioremediation References ..................... .

14. Phytoremediation of MTBE-A Review of the State of the Technology Lee A. Newman and Charles W. Arnold .

Case Studies . . . . . . . . . University of Washington Kansas State University University of Iowa .... University of Colorado .. State of California Water Resources Control Board

Conclusions and Future Work ... . References ....................... .

15. Ground Water Recovery and Treatment

xiv

Tie Li, Raaj U. Patel, David K. Ramsden, and Jonathan Greene Perspective of Ground Water Recovery and Treatment. Relationship to Potable Water Ground Water Recovery

General .. Extraction . . . . . .

Design ......... . Design Components Well Array Design Capture Zone Analysis . Materials of Construction Typical Extraction Well Construction . Trench Construction Optimization ............. .

251 253 260 260

265 265 265 267

268 268 269 271 272 272 273 276

279 280 280 282 283 284 285 286 287

289 289 290 291 291 291 292 292 293 293 293 293 294 295

Reinjection/Infiltration . . . . . Specialized Extraction Systems MTBE Specific Issues . . . . . . Ground Water Treatment . . . .

Granular Activated Carbon (Liquid Phase) Interferences .

Iron .......... . Manganese ...... . Total Organic Carbon . Mineralization ..... Coagulants and Additives Turbidity ..... . Co-contaminants . Biological Growth . Costs ..... .

Resin Adsorption . . Air Stripping . . . . . Stripping Technologies

Packed Tower Stripper Low-Profile Air Stripper Diffused Aeration Stripper . Mechanical Stripper ... .

Off-Gas Treatment ...... . Thermal and Catalytic Thermal Oxidation. Granular Activated Carbon Biofilters ........ . Off-Gas Treatment Costs

Interferences for Stripping Iron ...... . Manganese .. . Mineralization. Temperature . .

MTBE Applications Bioreactors . . . . .

Activated Sludge Fixed-Film Reactors. Fluidized Bed Bioreactor .

Membrane Separation (Reverse Osmosis) Advanced Oxidation Processes Types of AOPS . . . .

Fenton's Reagent . . . Peroxide - Ozone .. Cavitation/ Sonication UV Driven Systems . Electron Beams . .

Limitations of AOPS. .

· 296 · 296 .297

298 299 303 303 304

· 304 · 304 · 305 .305

305 305 306 306 308 308 308

· 309 · 309 · 310 · 311 · 311

312 313 314 314 314 315 315 315 315 315 316 317 319 320 322 322 322 322 323 323 323 324

xv

Advantages of AOPS OtherAOPS .....

Permanganate . . . Costing Pump-and-Treat Systems References ............ .

· 325 · 325 · 325 · 325 · 327

16. Monitored Natural Attenuation of MTBE Bruce E. Rittmann . . . . . . . . . . . . . . · 329

Background on Monitored Natural Attenuation ..... The NRC Strategy for Evaluating Natural Attenuation . MTBE and the NRC Report. . . . . . . . . . . . . . . Recent Findings on MTBE and Natural Attenuation

Aerobic Biodegradation Field Experience. . . . . . . . . . . . . . . . . . . . SABReport ..................... . Evidence on Anaerobic Biodegradation of MTBE .

Updating the NRC guidance for Natural Attenuation of MTBE .

Scientific Understanding . Likelihood of Success . Footprints

Conclusions References .

· 329 · 330 · 331 .332 · 332 · 336 · 337 · 337

337 338 338 338 342 343

SECTION III-REMEDIATION CASE STUDIES

17. Remedial Costs for MTBE in Soil and Ground Water Barbara H. Wilson and John T. Wilson . 349

Introductio.fi . . . . . . . . . . . . . . . . . . . . . . . 349 Cost of Cleanup . . . . . . . . . . . . . . . . . . . . . 350 Cost Comparisons for MTBE and BTEX Remediations . 351 South Carolina Cost Data . . . . . . . . . . . . . . . . . . 353 Remedial Technologies Used at USTS in New York State. . 354 Efficiency of Remedial Technologies . 355 Summary . . . . . . 358 Disclaimer ... . . 359 Acknowledgment . 359 References .... . 360

18. Remediation Experiences in Finland Martti R. Suominen and Nancy E. Milkey . . . . . . . . . . 361

Background. . . . . . . . . . . . . . . . . . . . . . . . . 361 Legislation for Soil and Ground Water Protection

in Finland . . . . . . . . . . . . . . . . 361 Geology ........... . . . . . . . 361 Aquifers and Water Service in Finland . 362 Gasoline Usage . . . . . . . . . . . . . . 362

xvi

Fuel Handling at Retail Stations - Technology and Practices . . . . . . . . . . . . . . . . . 362

Practices in Soil and Ground Water Investigation and Risk Assessment at NESTE Sites . . . . . . . 363

Practices in Soil and Ground Water Remediation at NESTE Sites ....... . . . . . . . . . . 364

Cost of Remediation of Retail Sites in Finland . . 366 Case Studies . . . . . . . . . . . . . . . . . . . . . 368

Case 1 - Traditional Practices, High Hopes, and Not Enough Information ............. 368

Case 2 - Traditional Approach and Methods Applied Successfully to Remediate a Service Station Site and Natural Spring. . . . . . . . . . . . . . . . . 371

Case 3 - Emergency Remediation Operation . . . 373 Forensic Findings - The Reasons for the Releases 374 Lessons Learned. . . . . . . . . . . . . . . . . . . . . 375

19. USEPA Case Studies Database for MTBE Remediation David K. Ramsden and Tie Li . 377

Purpose of Database. . 377 Site Selection . . . . 388 Site Characteristics. . 390 Technology Variety . 390 Co-Contaminant Variety 390 Trends. . . 390 Summary . 391 References 394

20. Remediation of Realeases Containing MTBE at Gasoline Station Sites-ENSR International's Experience Robert M. Cataldo . . . . . . . . . . . . . . . . . . . . 395

Why MTBE Makes a Difference and How Do We Exploit Its Properties for Remediation. 396

Remediation Technologies . . . . . . . . 396 Recovery of MTBE in Soil . . . . . . 396 Recovery of MTBE in Ground Water . 397

Treatment of MTBE . . . . . . . . . . 397 Driving Forces to Site Remediation . . . 397 Technology Sequencing. . . . . . . . . 398 ENSR's Experience Remediating MTBE 398 Site-Specific Conditions . . . . 399 Remediation Selection Factors 403 Remediation Costs. . . . . . . . 404 Future Trends in Remediation . 404 Compliance, Early Detection, and Quick Response . 404 Conclusions ...................... . 405

xvii

21. Source Control and Point of Entry Treatment at a Massachusetts Site Christopher C. Mariano

Introduction . . Site Description .. Release History .. Site Hydrogeology.

Surficial Geology Bedrock Geology Hydrogeological Parameters

Nature and Extent of Contamination Soil ....... . Ground Water . .

Fate and Transport. Receptors ..

Ecological ... . Human ..... .

Exposure Potential. Ecological ... . Human ..... .

Required Cleanup Levels and Timeframes Soil ......... . Ground Water . . . . Cleanup Timeframe .

Remedial Actions . . . Source Removal . . . Point of Entry Treatment .

Costs ... Timeline References

22. Physical Treatment at a New Hampshire Site

xviii

David L. Espy . . . Introduction . . Site Description Release History Site Hydrogeology.

Surficial Geology Bedrock Geology Hydrogeological Parameters

Nature and Extent of Contamination Soil ....... . Ground Water . .

Fate and Transport Receptors ..... .

.407 · 407 · 407

408 408 408 408 410

· 410 · 410 .411 .411 .413

413 413 413 413 414 414 414

· 414 .415 · 415 · 415 · 415

416 416 417

419 419 419

.420

.420

.420

.420

.421 421 421 421 424 427

Required Cleanup Levels and Timeframes Ground Water Soil ......... . Indoor Air ..... . Cleanup Timeframe .

Remedial Actions . . . Immediate Response Actions Source Removal . . Physical Treatment . . . SVE System ...... . Ground Water Recovery Air Sparging System . . Monitoring and Enhanced Bioremediation

Costs .. . Timeline ................. . References ................ .

23. Physical Treatment at a Massachusetts Site Christopher G. Mariano

Introduction . . Site Description .. Release History .. Site Hydrogeology.

Surficial Geology Bedrock Geology Hydogeological Parameters

Nature and Extent of Contamination Soil ....... . Ground Water . .

Fate and Transport Receptors ..

Ecological ... . Human ..... .

Exposure Potential . Ecological ... . Human ..... .

Required Cleanup Levels and Timeframes Soil ......... . Ground Water . . . . Cleanup Timeframe .

Remedial Actions . . Source Removal . . Physical Treatment

Costs ... Timeline References

.428 428 428 428 429 429 429

.430 · 430 · 431

431 432 432 432

.433

.433

435 435 435 437 437

.437

.437 · 438 .438 .438

438 · 439 · 440 .440 .440

441 441 441 441 441

.442

.442 · 442 .442 · 442 · 443 .443 .443

xix

24. Strategic Pumping to Divert an MTBEjBTEX Plume from Municipal Water Supply Wells Evan T. Johnson, Tracy J. Adamski, and Michael Scherer . . 445

Introduction . . . 445 Site Description .. . 446 Release History .. . 446 Site Hydrogeology. . 448

Surficial Geology . 448 Bedrock Geology . 448 Hydrogeological Parameters . 448

Nature and Extent of Contamination . 450 Receptors. . . . . . 451 Remedial Actions . 452 Cleanup Levels. . 452 Costs ... . 453 Timeline . 453 References . 453

25. Ozone Microbubble Sparging at a California Site William B. Kerfoot and Paul LeCheminant . . . . . . . 455

Treatment Technology Overview - Ozone Oxidation and Microbubble Treatment. . . . 455

Theory. . . . . . . . . . . . . . . . . 457 Oxidation Chemical Mechanisms . . 457 Oxidant Application and Spread . 458

Site Description and Release History . 458 Previous Environmental Work . 459

Site Conditions . . . . . . . . . . . 462 Expected Oxidant Demand . . . . 464

Stoichiometric VOC Demand . 464 Oxidizable Metals Demand . 464 Soil Demand . . . . . . . 464 Other Organics ....... . 465 Total Ozone Demand . . . . . 465

Projected Time to Treat (Duration) Computation - Mass Basis . . 465

Monitoring The VOC Decay . 465 Field Results . . . . . . . . . . . . . 465 Site Cost Comparison . . . . . . . . 470 Conclusions and Recommendations. . 470 References ............... . 471

26. MTBE Cleanup Technology Evaluations at the Port Hueneme NETTS Ernest E. Lory . . . . . . . . . . . . . . . . . . . . . . 473

Ground Water Circulation Well Environmental Cleanup Systems . . . . . . . . . . . . . . . . 475

xx

In Situ Air Sparging System ............ . Extraction of MTBE by a Hollow Fiber Membrane High Energy Electron Injection. . . . HiPOx Advanced Oxidation for the

Remediation of MTBE . . . . . . In Situ Bioremediation of MTBE . . . Direct Injection of a Bacterial Culture to Biodegrade

MTBE-Impacted Ground Water ...... . Large-Scale Biobarrier Demonstration ..... . In Situ Remediation of MTBE Impacted Aquifer

Using Propane Biostimulation ...... . Natural Attenuation of MTBE in An Anaerobic

Ground Water Plume ........... . Natural Attenuation of MTBE in Ground Water Under

Methanogenic Conditions ..

27. Bioremediation at a New Jersey Site Using Propane-Oxidizing Bacteria Robert J. Steffan, Yassar H. Farhan, Charles W. Condee,

.477

.479

.482

· 485 · 487

· 489 · 492

· 495

· 498

· 499

and Scott Drew. . . 503 Introduction . . . . . . . 503 Methodology . . . . . . . 504

Site Characterization . 504 Microcosm Testing . . 506 Field-Scale System Implementation and Operation. . 507

Results ........ . 508 Microcosm Studies . . . . . . . 508 Field Evaluation. . . . . . . . . 508

In Situ Biotreatment Summary . . 515 Technology Costs . . . . . . . . . 515 References ............ . 516

28. Application of an In Situ Bioremedy Biobarrier at a Retail Gas Station Gerard E. Spinnler, Paul M. Maner, Jeffrey D. Stevenson, Joseph P. Salanitro, Jennifer Bothwell, and John Hickey. . 517

Site Location and Geology/Hydrogeology . . 517 Nature and Extent of Contamination and

Potential Receptors. . 517 Remediation . . . . . . . . . . . . . . . 518

Biobarrier .............. . 518 Components of Biobarrier System . 518 Microbes . . . . . . . . . . 518 Oxygen. . . . . . . . . . . 518 Monitoring Well System . 520

Site Application . . . . . . . 520 Field Pilot/Evaluation Test . 520

xxi

Microcosm Evaluation Oxygen Delivery . . . MC Delivery . . . . . .

Performance of the Bioremedy Biobarrier System Costs Timeline .................. . References ................. .

520 521 522 524 525 527 527

29. Ground Water Recovery and Bior~actor Treatment at a California Site Joseph E. O'Connell and Steve M. Zigan 529

Summary . . . 529 Site History ... 529 Hydrology . . . . 530

Remedial Activities 531 Soil Excavation 532 Overpurging. . . 532 Interim Enhanced Vacuum Extraction 532 Remedial Design ..... . . . . . . . 532

Results ................... 539

30. Natural Attenuation of Tert Butyl Alcohol at a Texas Chemical Plant Michael J. Day and Terry Gulliver. . . . . 541

Introduction . . . . . . . . . . . . . . 541 Previous Work on TBA Degradation 541 Influence of TBA Properties on Natural Attenuation 542 Site Description . . . . . . . . . . . . . . . . . . . . . 543 Plant II TBA Plume . . . . . . . . . . . . . . . . . . . 546 Natural Attenuation of TBA in the Plant II Area Plume. 547

Role of Diffusion in Plant II Area Plume Natural Attenuation ........ .

Use of Carbon Isotopes to Document TBA Biodegradation . . . . . . . . .

Mechanisms of TBA Biodegradation Estimation of Natural Biodegradation Rates Conclusions Future Work ................ . References .......... . . . . . . . .

549

551 552 554 558 558 558

31. Natural Attenuation of Benzene and MTBE at Four Midwestern U.S. Sites

xxii

Joseph Robb and Ellen E. Moyer . Trend Analysis Approach Geochemical Data Site A ...... .

Hydrogeology. Seasonality . . .

561 562 564 564 565 565

Trends ......... . Geochemical Conditions

Site B Site C ... . Site D ... . Conclusions Recommendations. References .....

APPENDICES

Appendix A-MTBE Occurrence in Surface and Ground Water Edited by James A.M. Thomson . . . . . . . . .

Introduction . . . . . . . . . . . . . . . . . MTBE and the USGS's NAWQA Program

The NAWQA Program Program Status MTBE Data. Patterns ... Conclusions Limitations . Summary ..

MTBE Occurrence in the United States National MTBE Survey ....... . Northeastern and Mid-Atlantic States Northeast States for Coordinated Air Use

Management (NESCAUM) . . . . . . . Midwestern States Study . . . . . . . . . . . . . . . . . . . Conclusions of the Midwestern States Study Additional State Studies . . . . . . . . . Conclusions ............... .

MTBE Occurrence in England and Wales . Fuel Background . Water Background Study Method .. Risk Assessment. Conclusions . Impacts ..... . Further Work .. Acknowledgement

Plume Length Studies (Texas, Florida, and California) Texas .. . Florida ............. . California ........... . History of MTBE in California . Comparison among Texas, Florida, and California

· 566 · 568 · 568 · 570 · 572 · 575 · 577 · 578

· 581 · 581 · 581 · 581 .582 · 583 · 592 · 599 · 600 · 602 · 602 · 602 · 603

· 604 . . . 611

616 616 621 621 621

· 622 · 622 · 624 · 624 · 626 · 626 · 627 · 627 · 628 · 629 · 630 · 631 · 635 xxiii

Comparison of Plume Lengths for MTBE and BTEX at 212 South Carolina Sites.

Conclusions References ............... . Acronyms ................ .

Appendix B-Primary Author Contact Information .

Acronyms ........................ .

xxiv

· 635 · 638 · 640 · 645

647

653

List of Figures Figure 1-1.

Figure 1-2.

Figure 2-1.

Figure 2-2.

Figure 3-1.

Figure 3-2.

Figure 3-3.

Figure 3-4.

Figure 3-5.

Figure 3-6.

Figure 3-7.

Federal Reformulated Gasoline Areas (USEPA, 2002) .

Schematic of Example Double-Walled UST System ..

Molecular Structure of Selected Gasoline Constituents

Behavior of MTBE and Benzene . . . . . . . . . . . .

Diffusion of MTBE from Reformulated Gasoline into

.5

. 8

13

17

Soil Gas over Time . . . . . . . . . . . . . . . . . . . . 21

Cumulative Frequency Distribution of the Maximum Concentration of MTBE Measured at Gasoline Service Stations Sites . . . . . . . . . . . . . . . . . . . . .. .. 23

Vertical Distribution of TPH in Sediment, MTBE in Ground Water, and Hydraulic Conductivity at a Fuel Spill in a Flood Plain Landscape. . . . . . . . . 26

Effect of Adsorption on the Retardation of MTBE and Benzene with Respect to the Flow of Water . . 27

Conceptualization of the Role of Longitudinal and Transverse Dispersion in the Spreading and Dilution of a Plume. . . . . . . . . . . . . . . . . . . . . . . . . 29

Variation in Direction and Magnitude of Ground Water Flow at a Site in Elizabeth City, North Carolina.. . . . . . . . . . . . . . . . . . . . 30

Variation in the Direction of Ground Water Flow at 132 Gasoline Stations in Texas. . . . . . . . . . . . . . 31

Figure 3-8. Effect of the Variation in the Direction of Ground Water Flow. . . . . . . . . . . . . . . . . . . . . . . 32

Figure 3-9. Effect of Natural Biodegradation of MTBE on the Time Required to Cleanup Ground Water Contamination.. . 36

Figure 3-10. Distribution of MTBE and TBA in Wells from Gasoline Spills at Selected Service Stations in Pennsylvania, Ohio, Indiana, New York, New Jersey, Maryland, the District of Columbia, and Florida. . . . . . . . . . . . . . . 37

Figure 3-11. An Interpretation of the MTBE Plume at Elizabeth City, North Carolina Based on Conventional Wells with Either Ten-Foot Screens Or Fifteen-Foot Screens. . . . . . . . . . . . . . . . . 41

Figure 3-12. Relationship between the Screened Interval of the Well and the Vertical Distribution of Hydraulic Conductivity atESM-14 ............................ 42

Figure 3-13. Relationship between the Screened Interval of the Well and the Vertical Distribution of MTBE at ESM-14 . . . . . 42

xxv

Figure 3-14. Relationship between the Screened Interval of the Well and the Vertical Distribution of Hydraulic Conductivity at ESM-3 . . . . . . . . . . . . . . . . . . . . . . . . . . .. 43

Figure 3-15. Relationship between the Screened Interval of the Well and the Vertical Distribution of MTBE at ESN-3 . . . ., 43

Figure 3-16. Conditions That Are Conducive to Plume Diving Caused by Recharge of Precipitation. . . . . . . . . . . . . . . .. 45

Figure 3-17. Evidence for "Plume Diving" in the Deep Sand Aquifer on Long Island, New York ................. 46

Figure 3-18. Conventional Wells That Are Screened over the First Ten Feet of the Aquifer Cannot Detect the Downgradient Portion of the Plume at the Hagerman Avenue Site . . . . 47

Figure 3-19. MIBE Plume Life Cycle Where Attenuation of the Source is Slow Compared to Attenuation in the Ground Water. 50

Figure 3-20. Sampling Locations Used to Estimate the Rate of Attenuation of MTBE, Benzene, and Methane along a Flow Path at a Site Where Natural Anaerobic Biodegradation of MTBE Is Important ......... 51

Figure 3-21. Attenuation of the Concentrations of MTBE, Benzene, and Methane Along a Flow Path at a Site Where Natural Anaerobic Biodegradation of MTBE Is Important . 52

Figure 3-22. MIBE Plume Life Cycle Where Attenuation of the Source Is Fast Compared to Attenuation in the Ground Water ..................... .. 52

Figure 3-23. Sampling Locations Used to Estimate the Rate of Attenuation of MTBE, Benzene, and Methane along a Flow Path at a Site Where Natural Anaerobic Biodegradation of MTBE Is Not Important, and Dispersion Is the Primary Mechanism of Natural Attenuation.. . . . . . . . . . . . . . . . . . 53

Figure 3-24. Attenuation of the Concentrations of MTBE, Benzene, and Methane along a Flow Path at a Site Where the Primary Mechanism of Natural Attenuation Is Dispersion and Natural Anaerobic Biodegradation of MTBE Is Not Important. . . . . . . . . . . . . . . 54

Figure 3-25. Two Time Intervals in the Life Cycle of a Plume That Has Not Come to a Steady State. . . . . . . . . . . . . 55

Figure 3-26. Contrasting Behavior in the Attenuation of MTBE over Time in Two Monitoring Wells at a Site . . . . . . . .. 56

Figure 5-1. Cross-Section Identifying the Stratigraphy Underlying an Industrial Site in Chicopee, Massachusetts . . . .. 89

Figure 6-1. Dilution Corrected Results from a Set of Samples that Were Run Undiluted (IX) and Diluted (lOX). . . . . .. 96

xxvi

Figure 6-2.

Figure 6-3.

Figure 6-4.

Figure 6-5.

Figure 6-6.

Figure 6-7.

Figure 6-8.

Figure 6-9.

Figure 6-10.

Figure 6-11.

Figure 6-12.

Figure 6-13.

Figure 7-1.

Figure 7-2.

Figure 7-3.

Figure 7-4.

Figure 8-1.

Figure 8-2.

Figure 8-3.

Figure 9-1.

Figure 9-2.

Figure 9-3.

Figure 9-4.

Figure 9-5.

Figure 10-1.

Figure 10-2.

Figure 10-3.

Figure 10-4.

Cross Sectional Plot of Results from the Analysis of Hydrochloric Acid Preserved Samples ........ 97

Cross Sectional Plot of Results from the Analysis of Tri-Sodium Phosphate Preserved Samples . . . . . . 98

Cross Sectional Plot of Results from the Analysis of Acidified, Tri-Sodium Phosphate Preserved Samples 99

The Increase in the Rate of MTBE Hydrolysis in Water. 101

Results of Tri-Lab Study for ETBE at Site A 108

Results of Tri-Lab Study for TAME at Site A. . . 109

Results of Tri-Lab Study for MTBE at Site A . . 110

Results of Tri-Lab Study for Benzene at Site B . . 111

Results of Tri-Lab Study for MTBE at Site B 112

Results of Tri-Lab Study for TBA at Site B 113

Matrix Spike Recoveries for Site A . . . . 116

Matrix Spike Recoveries for Site B . . . . 118

Traditional Risk Assessment Framework. 124

Multi-Media Exposure Pathways. .... 134

Distribution of Estimated Average Daily Dose for MTBE By Exposure Route in California (a) General Population (b) Households With Contaminated Drinking Water. 139

Ecological Risk Assessment Framework. 149

Technology, Sequencing, and Phases. 172

Human Receptor Exposure 175

Protect the Structure . . . . . 184

Sources . . . . . . . . . . . . . 190

Ex Situ Thermal Desorption. 194

Soil Vapor Extraction. 197

Bioslurping . . . . . . . . . . 197

Pump-and-Treat ....... 199

Vertical Air Sparging and Vertical Soil Vapor Extraction Wells. . . . . . . . . . . . . . . . . 202

Vertical Air Sparging with No Recovery. . . 205

Vertical Air Sparging and Horizontal Trenched Soil Vapor Extraction Wells . . . . . . . . . . . . . . . . 206

Continual Trenched Horizontal Air Sparging and Soil Vapor Extraction Wells . . . . . . . . . . . . . 207

Figure 11-1. Indirect (via OH.) Degradation of MTBE and Formation of Degradation Products by Acero et al. (2001) . 228

Figure 11-2. Permanganate Full-Scale ISCO Costs by XDO ...... 238 xxvii

Figure 12-1. Effect of Concentration of Dissolved Oxygen on the Rate of Biodegradation of MTBE . . . . . . . . . . . 249

Figure 12-2. Generalized Pathway for Aerobic Biodegradation ofMTBE . . . . . . . . . . . . . . . . . . . . . . . . . 252

Figure 13-1. Distribution of Dominant Anaerobic Terminal Electron Accepting Processes in Gasoline Impacted Aquifer Sediment and Ground Water ... . . .. ... 266

Figure 13-2. Free Energy Yielded by the Theoretical Complete Oxidation of MTBE with Different Terminal Electron Acceptors . . . . . . . . . . . . . . . . . . . 267

Figure 13-3. Electron Shuttling Via Humic Substances to Fe(III) . . 270

Figure 13-4. Anaerobic Production of 14C02 and 14CH4 from [14C]-TBA in Aquatic Sediment that Was (A) Unamended; (B) Amended with lOmM Sulfate without Molybdate Added at t = 123; (C) Amended with 10mM Sulfate and lOmM Molybdate Added at t = 123 . . . . . . . . . . . . . . . . . . . . . .. ... 273

Figure 13-5. Anaerobic Production of 14C02 and 14CH4 from [14C]-TBA in Petroleum-Contaminated Aquifer Sediment Not Previously Exposed to TBA. . . . . . 274

Figure 13-6. Diagram for Implementing the Proposed Anaerobic Bioremediation Strategies in an MTBE-Impacted Aquifer with Metabolites that Serve as an Indicator of Anaerobic Respiration . . . . . . . . . . . . . . . . . .. 275

Figure 14-1. Effect of Trees on MTBE Concentration in Ground Water

Figure 15-1.

Figure 15-2.

Figure 15-3.

Figure 15-4.

Figure 15-5.

Figure 15-6.

Figure 15-7.

and Transpiration Concentrations ..

Generalized Pump-and-Treat System ..... .

Typical Recovery Well Design. . . . . . . . . . .

Simple Trench Extraction/Reinfiltration System

Granular Activated Carbon Treatment Beds in Series

Resin Adsorption System .

Packed Tower Air Stripper .

Tray Stripper ........ .

285

· 291

· 294

· 295

· 301

· 307

· 309

· 310

Figure 15-8. Diffused Aeration Stripper. . . . . . . . . .... 311

Figure 15-9. Mechanical Venturi Air Stripper .. . . . 312

Figure 15-10. Catalytic and Thermal Off-Gas Treatment System . 312

Figure 15-11.

Figure 15-12.

Figure 15-13.

Off-Gas Treatment with Biofilters .

Simple Aerated Activated Sludge Biotreatment System . . . . . . . .

Biological Trickling Filter .. . . .

Figure 15-14. Rotating Biological Disk Contactor . xxviii

· 313

· 316

· 318

· 319

Figure 15-15. Fluidized Bed Bioreactor. . . . . . . . . .

Figure 15-16. Membrane Filter Separation ....... .

Figure 15-17. Generalized Fenton's Reagent Chemistry

Figure 16-1.

Figure 16-2.

Figure 17-1.

Figure 18-1.

Initial Monooxygenation Reactions from MTBE to TBAtoMHP ................ .

Reactions Leading from MHP to Acetone

MTBE/BTEX Cleanup Costs for 311 Sites

Case 1 Schematic Cross-Section of Site and Receptor ............... .

Figure 18-2. Case 1 Source Area Contamination Level

Figure 18-3.

Figure 18-4.

Figure 19-1.

Figure 19-2.

Figure 19-3.

Figure 21-1.

Figure 22-1.

Figure 22-2.

Figure 22-3.

Figure 22-4.

Figure 23-1.

Figure 24-1.

Versus Time . . . . . . . . . . . . . . . . . . . . . .

Case 1 Municipal Well Contamination Over Time

Case 2 Schematic Cross-Section of Site and Receptor ................... .

Format for Case Study Write-Ups ....... .

States with Case Studies Featured in the USEPA MTBE Website. . . . . . . . . . . . . . .

Number of Case Studies by State . . . . . . .

Site Plan and Area Water Supply Wells ...

Pre-Remediation MTBE Contaminant Plume

Pre-Remediation BTEX Contaminant Plume

Post-Remediation MTBE Contaminant Plume

Post-Remediation BTEX Contaminant Plume.

Site Plan ..................... .

Site Location and Total VOCs under Pumping Conditions (1999) .....

Figure 24-2. Graves Brook and Wetlands: Perched Water Table

· 320

· 321 .322

· 333

· 335

· 351

· 368

· 370

· 370

.372

· 388

· 389

· 389 .409

.422

.423

· 425

· 426 .436

.447

Between Source and Wellfield . . . . . . . . . . . . . 449

Figure 24-3.

Figure 25-1.

Figure 25-2.

Figure 25-3.

Figure 25-4.

Figure 25-5.

Cross-Section Depicting Impact of Perched Ground Water Table . . . . . . . . . . . . . . . . . . . . .

Microbubble Organic Oxidation Reactions and Partitioning Environment for Ozone Reactions .

Primary and Secondary Reaction of MTBE with Ozone ........................ .

Steady-State Radial Ozone Transport at Ozone Half-Lives of 5, 15, and 45 Minutes .....

Treatment Site Plan with Projected Radius of Influence ........................ .

Example Well Construction Log Showing Microporous Spargepoint® Installation ................ .

· 450

.456

. 458

· 459

· 460

. 461 xxix

Figure 25-6.

Figure 25-7.

Treatment Zone for an Example Microporous Spargepoint® .. .

Removal of MTBE at MW-1 . . .

Figure 25-8. Projection of Time-Course Kinetics of Attenuation

463

468

of VOCs Observed at Well TP-2. . . . . . . . . . . 469

Figure 26-1. Gasoline and MTBE Plume at NBVC Port Hueneme

Figure 26-2.

Figure 26-3.

Figure 26-4.

Figure 26-5.

Figure 26-6.

Figure 26-7.

Figure 26-8.

Figure 26-9.

Site with Demonstration Locations . . . . . . . . . . .

Simplified Cross-Section of Ground Water Circulation Well Treatment Process. . . . . . . . . . . . . . . . .

Simplified Cross-Section of Air Sparging Treatment Process and Multi-level Monitoring Well Configuration . . . . . . . . . . . . . . . . . .

Air Sparging System and Associated Monitoring Well Configurations ................ .

Cross-Section of Hollow Fiber Membrane Unit . .

Hollow Fiber Membrane Unit in Conjunction with SAVE System Operation . . . . . . . . . . . . . . .

E-beam Trailer with Interior Cross-Section .....

Truck Mounted HiPOx Advanced Oxidation Unit .

Cross-Section and Process Flow for HiPOx Advanced Oxidation Unit . . . . . . . . . . . . . . . . . . . .

Figure 26-10. Equilon In Situ Bioremediation Site, with Original

474

476

477

478

480

481

484

486

486

Installation in Foreground . . . . . . . . . . . . . 488

Figure 26-11. Equilon In Situ Bioremediation Site Layout with Injection and Monitoring Well Configuration . . . 489

Figure 26-12. University of California Davis Site, Direct Injection of PM-1 Bacteria to Biodegrade MTBE-Impacted Ground Water . . . . . . . . . . . . . . . . . . .. ... 490

Figure 26-13. University of California Davis Site, Simple Cross-Section Showing Process and Monitoring Well Configuration . . . . . . . . . . . . . . . . . 491

Figure 26-14. Large Biobarrier Demonstration with Air / Oxygen and Microbial Regimes. . . . . . . . . . . . . . . . . 493

Figure 26-15. Large Biobarrier Demonstration Layout with Injection and Monitoring Well Configuration . . . . . . . . . 494

Figure 26-16. Envirogen Propane Biostimulation Demonstration Site Layout with Injection and Monitoring Well Configurations .. . . . . . . . . . . . . . . 496

Figure 26-17. Ground Water Sampling at Envirogen Propane Biostimulation Demonstration Site . . . . . . . .

xxx

497

Figure 26-18. Injection of Perdeuterated MTBE Tracer for Natural Attenuation of MTBE Demonstration . . . . . 498

Figure 26-19. Perdeuterated MTBE Tracer Plume One Year After Injection . . . . . . . . . . . . . . . . . . . 499

Figure 26-20. Soil Gas and Ground Water Sampling to Determine Methane and Oxygen Concentrations . . . . . . 501

Figure 27-1. Field Demonstration Site and System Layout. . . . 505

Figure 27-2. Results of Microcosm Testing. . . . . . . . . . . . . 509

Figure 27-3. Dissolved Oxygen Concentration in Ground Water from the Demonstration Site Monitoring Wells 510

Figure 27-4. Ground Water pH at the Demonstration Site Monitoring Wells . . . . . . . . . . . . . . . . . . 511

Figure 27-5. MTBE and TBA Concentrations in Ground Water from the Demonstration Site Monitoring Wells 512

Figure 28-1. Idealized Cross-Section of an MTBE Biobarrier System. . . . . . . . . . . . . . . . . 519

Figure 28-2. Map View of an Idealized MTBE Biobarrier System 519

Figure 28-3. Microcosm Results from: Site Soil and Ground

Figure 28-4.

Figure 28-5.

Figure 28-6.

Figure 28-7.

Figure 28-8.

Figure 29-1.

Figure 29-2.

Figure 29-3.

Figure 29-4.

Water Only; Nutrients; and Sodium Azide ....

Microcosm Results for Two MTBE Starting Concentrations with Site Soil and Ground Water and Adding 400 mg/kg MC, 800 mg/kg MC . . .

Site Map with Enlargement of Biobarrier Area . .

Mean of MTBE Concentration in Biobarrier Wells and Up gradient Wells since the Start of the Biobarrier System . . . . . . . . . . . . . . . . . .

Biomass Loading at Each Injection Point across the Site .............. .

Timeline of Site Activities ........ .

Equipment Layout - Plan View . . . . .

Schematic Drawing of Fluid Bed Reactor

Groundwater Contours Before and After OPE

TBA Groundwater ISO Concentration Map - Before and After OPE. . . . . . . . . . . . . . . . . . . . .

Figure 29-5. MTBE Groundwater Concentration Map - Before

521

522

523

524

526

527

533

534

535

536

and After OPE. . . . . . . . . . . . . . . . 537

Figure 30-1. Schematic of Shallow Hydrostratigraphy 544

Figure 30-2. Potentiometric Surface of Sl Sand Unit in Plant II Area . . . . . . . . . . . . . . . . . . 545

xxxi

Figure 30-3. TBA Concentration Distribution in Shallow Ground Water . . . . . . . . . . . . . . . . . .

Figure 30-4. TBA Concentration Profiles along Ground Water

547

Flow Paths . . . . . . . . . . . . . . . . . . . . . . . 548

Figure 30-5. TBA, DCE, and DCA Concentration Profiles along Ground Water Flow Path in Northern Lobe of Plant II TBA Plume . . . . . . . . . . . . . . . . . . . 550

Figure 30-6. Predicted Transport of TBA along Ground Water Flow Path . . . . . . . . . . . . . . . . . . . . . . . . 551

Figure 30-7. TBA Concentration Versus 13C Values in TBA Samples .... . . . . . . . . . . . 552

Figure 30-8. 13C Ratios in Plant II TBA Plume . . . . . . 553

Figure 30-9. Key Inorganics in Plant II TBA Plume . . . 555

Figure 30-10. Variation of Selected Constituents along the Plume Centerline . . . . . . . . . . . . . . .

Figure 30-11. TBA Concentration Versus Distance along

Figure 31-1.

Figure 31-2.

Figure 31-3.

Figure 31-4.

Figure 31-5.

Figure A-I.

FigureA-2.

FigureA-3.

FigureA-4.

FigureA-5.

FigureA-6.

FigureA-7.

FigureA-8.

FigureA-9.

Figure A-lO.

FigureA-ll.

Figure A-12.

Figure A-13.

xxxii

Flow Paths .................. .

Site A ..................... .

Concentration Trends and Ground Water Elevations at MW-1 at Site A

Site B .

Site C ...... .

Site D ...... .

Ground Water MTBE Histogram

Ground Water Benzene Histogram

Ground Water - Benzene vs. MTBE Crossplot .

Surface Water MTBE Histogram . . . . . . . .

Surface Water Benzene Histogram . . . . . . . .

Surface Water - Benzene vs. MTBE Crossplot .

Plot of Temporal Sampling and Analysis Results for Multiple Sites in Colorado . . . . . . . .

Analyses vs. Detections ................ .

Average MTBE Concentrations by Year . . . . . . . .

Detections by Basin Ranked by Number of Analyses

Detection-to-Analysis Percentages for PWSs and CWSs in NE and Mid-Atlantic States ....... .

Chemicals with the Highest Detection-to-Analysis Percentages

LUST and PWS Sampling Sites . .

. 556

. 556

565

566

569

571

574

586

587

588

589

590

591

593

594

595

598

604

605

612

Figure A-14a. Comparison of Sum of BTEX versus the Sum of MTBE and TBA Concentrations (ppb) from Midwestern LUST Site Samples. . . . . . . . . . . 613

Figure A-14b. Comparison of Benzene versus MTBE Concentrations (ppb) from Midwestern LUST Site Samples. . . . . 613

Figure A-14c. Comparison of MTBE versus TBA Concentrations (ppb) from Midwestern LUST Site Samples. . . . . 614

Figure A-IS. Distribution of Maximum MTBE Concentrations in Ground Water from 837 Site Investigations in England and Wales . . . . . . . . . . . . . . . . . .. .. 623

Figure A-16. Modeled relationship between MTBE concentration in PWS wells and distance to spill in England and Wales . . . . . . . . . . . . . . . . . . . . . . . . 625

Figure A-17. MTBE in PWS Wells - Predicted Outcome from

Figure A-18.

Increasing MTBE in Gasoline . . . . . . . . . .

Plume Length Distribution of 212 USTs from South Carolina. . . . . . . . . . . . . . . . . . .

. 626

. 637

xxxiii

List of Tables Table 1-1.

Table 2-1.

Table 3-1.

Table 3-2.

Table 3-3.

Table 3-4.

Table 3-5.

Table 3-6.

Table 3-7.

Table 5-1.

Table 5-2.

Table 6-1.

Table 6-2.

Table 6-3.

Table 6-4.

Table 6-5.

Table 6-6.

Table 7-1.

Table 7-2.

Chronology of Use of Oxygenates in U.s. Gasoline ...... 4

Representative Values of Chemical and Physical Properties of Various Fuel Components and Degradation Products. . . . . . . . . . . . . . . . 12

Concentrations of Gasoline Oxygenates to Be Expected in Ground Water . . . . . . . . . . . . . . . . . . . . . .. 24

Retardation due to Adsorption That Is Expected from the Organic Matter Content of the Aquifer Solids . . . . . 27

Rates of Biodegradation of MTBE under Aerobic and Nitrate-Reducing Conditions .............. 33

Rates of Biodegradation of MTBE under Anaerobic Conditions . . . . . . . . . . . . . . . . . . 34

Rate of Natural Degradation in the Field under Anaerobic Conditions . . . . . . . . . . . . . . . ....... 35

Potential for TBA Biodegradation in Anaerobic Ground Water . . . . . . . . . . . . . . . . . . .

Comparison of Concentration of MTBE in Water from Conventional Wells Screened across the Water Table to the Concentration from Vertical Push Samples. . . . .

Ground Water Field Screening Methods . . . . . . . .

Maximum MTBE and BTEX Concentrations in Water in Contact with Freshly Released Reformulated Gasoline at 25°C . . . . . . . . . . . . . . . . . . . . . .

Measurement Methods for the Laboratories Participating in the Tri-Lab Study ........... .

Reporting Limits for the Laboratories Participating in the Tri-Lab Study ..................... .

The Laboratory Specific Results of the Original Samples used for Matrix Spikes for Site A . . . . . . . . . . . . . .

The Concentration of the Spikes Used for the ~oovffy&ud~s ...................... .

The Laboratory Specific Results of the Original Samples Used for Matrix Spikes for Site B ............. .

The Concentration of the Spikes Used for the Recovery Studies . . . . . . . . . . . . . . .

Summary of Threshold Doses for Selected Gasoline Constituents . . . . . . . . . . . . . . . . . . .

Chronic Animal Bioassay Data Used to Derive Cancer Potency for MTBE in California ............ .

39

44

82

. 84

107

107

114

115

117

117

130

132

xxxv

Table 7-3. Estimated Cancer Slope Factors for MTBE Based on Rat Oral and Inhalation Studies ........... ... 133

Table 7-4. Estimated Average Daily Dose from MTBE Air and Drinking Water Exposures for Different Population Groups in California . . . . . . . . . . . . . . . . . . . . . . 138

Table 7-5. Estimated Average Daily Dose from MTBE Air and Drinking Water Exposures in the Northeast Based on Different Exposure Scenarios . . . . . . . . . . . 140

Table 7-6. Estimated Average Daily Dose from Tap Water Affected by Leaks and Spills of MTBE in the U.S. . . . . . . . . .. 140

Table 7-7. Estimated Lifetime Average Daily Dose for Populations Exposed to MTBE in Air in the U.S. . . . . . . . . . 141

Table 7-8. Estimated Distribution of Hazard Quotients (HQs) and Hazard Indices (HI) from MTBE Drinking Water Exposures for Different Population Groups in California. . . . . . . . . . . . . . . . . . . . . .. ... 143

Table 7-9. Estimated Margin of Exposure (MOE) from MTBE in Drinking Water Based on Alternative Exposure and Toxicity Estimates .. . . . . . . . . . . . . . . . . 143

Table 7-10. Drinking Water and Ground Water Standards for MTBE in Various U.s. Regions . . . . . . . . . . . 145

Table 7-11. Estimated Distribution of Lifetime Cancer Risk from MTBE Drinking Water Exposures for Different Population Groups and Exposure Durations in California. . . . . . . . . . . . . . . . . . . . . . . 147

Table 7-12. Estimated Distribution of Lifetime Cancer Risk from

Table 8-1.

Table 8-2.

Table 8-3.

Table 9-1.

Table 9-2.

Table 9-3.

Table 10-1.

Table 10-2.

Table 10-3.

Table 10-4.

Table 11-1.

xxxvi

MTBE Air and Drinking Water Exposures for Different Population Groups in California . . . . . . . .

Receptor Protection-Technologies for Vapor

Receptor Protection-Technologies for Water.

Receptor Protection-Technologies for Soils .

Source Control Technologies for Unsaturated Soils and Tankholds . . . . . . . . . . . . . . . . . . .

Source Control Technologies for LNAPL . . . .

Source Control Technologies for Saturated Soils

Rules of Thumb for Applicability of Soil Vapor Extraction . . . . . . . . . . . . . . . . . .

Rules of Thumb for Applicability of Air Sparging . .

Equipment for Gas-Based Remediation Technologies

Typical Design Parameters for Gas-Based Systems ..

Matrix of Oxidants and Their Considerations for Use

148

178

180

182

192

195

198

· 204

· 204

· 214

· 216

· 225

Table 11-2.

Table 11-3.

Table 11-4.

Table 11-5.

Table 11-6.

Table 12-1.

Table 12-2.

Table 12-3.

Table 12-4.

Table 12-5.

Table 12-6.

Table 14-1.

Table 14-2.

Table 15-1.

Table 16-1.

Table 16-2.

Table 17-1.

Table 17-2.

Table 17-3.

Table 17-4.

Table 17-5.

Table 17-6.

Table 17-7.

Table 18-1.

Table 18-2.

Rate Constants for Reactions of MTBE with 0 3

andOH· ..................... .

Percentage MTBE Removal via 0 3 and Peroxone .

The Influence of pH on Oxidation Potential .. .

Pseudo-First-Order Rate Constants ...... .

Kang and Hoffman (1998) Chemically Assisted Ultrasound Oxidation Batch Study. . . . . . . .

Rate of Growth of Microorganisms that Aerobically Biodegrade MTBE . . . . . . . . . . . . . . . . . . . .

Rate of Growth and Kinetics of Aerobic Biodegradation of Benzene, Toluene, and Xylenes by Microorganisms that Are Not Known to Degrade MTBE ........ .

Rates of Aerobic Biodegradation of MTBE and TBA . .

Half-Saturation Constants for Aerobic Biodegradation ofMTBE ......................... .

Performance of Technology to Treat MTBE in Water .

Available Methods for Amending the Subsurface with Oxygen . . . . . . . . . . . . . . . . . . . . . . .

Volatilization of MTBE by Poplar and Eucalyptus Compared to Unplanted Controls and to Volatilization of TCE by Hybrid Poplars. . . . . . . . . .

Volatilization of MTBE from Soil . . . . . . . . . .

Costs for Typical Pump-and-Treat System ....

Footprints for Aerobic Biodegradation of MTBE .

Footprints for Anaerobic or Hybrid Biodegradation ofMTBE ......................... .

Total Project Cost by Type of Site . . . . . . . . . . . .

Cost Comparison of Several Remedial Technologies .

South Carolina Cleanup Costs Sorted by Soil Type

South Carolina Cleanup Costs Sorted by Remedial Technology. . . . . . . . . . . . . . . . . .

Cleanup Technologies Used for 1,563 USTs in the State of New York ..................... .

Comparison of Treatment Efficiencies of Various Technologies for Aquifer Impacted UST Sites. . .

Comparison of Treatment Efficiencies of Various Technologies for UST Sites With No Aquifer Impacts

Soil Contamination Guideline Values . . .

Typical Retail Station Remediation Cost in Finland-200l ............... .

· 229

· 230

· 232

· 234

· 236

· 245

· 245

· 248

· 250

· 255

· 259

· 281

· 282

· 326 .340

· 342 .350

· 352

· 354

.354

· 355

· 356

· 357

· 365

· 367

xxxvii

Table 18-3. Case 1 Cost Summary

Table 18-4. Case 2 Cost Summary

Table 18-5. Case 3 Cost Summary

Table 19-1. List of USEPA Case Studies

Table 19-2. Study Characteristics Summary Statistics .

Table 19-3. Bioaugmentation in USEPA Case Studies .

Table 20-1. ENSR's Experience Remediating Gasoline Containing MTBE .. . . . . . . . . . . . .

Table 21-1. Ground Water Concentration Ranges and Applicable Cleanup Standards, Former Gasoline Dispensing

· 371

· 373

· 374

· 378

· 387

· 392

· 400

Facility, Massachusetts. . . . . . . . . . . . . . . . .. . 412

Table 22-1. Petroleum Hydrocarbons Recovered (Pounds) 1996 to 2000 . . . . . . . . . . . . . . . . . . . . . . . . . .. . 430

Table 23-1. Ground Water Concentration Ranges and Applicable Cleanup Standards, Former Gasoline Dispensing Facility, Massachusetts. . . . . . . . . . . . . . . . . . . 439

Table 25-1. Oxidation Potential ................... . 457

Table 25-2. Oxidative Demand and Gram Equivalents of Ozone for Selected VOC Contaminants . . . . . . . . . . 464

Table 25-3. Total Ozone Demand for Oxygenates . . . . . 466

Table 25-4.

Table 25-5.

Groundwater Sampling Results Ramos Oil, Lincoln, California . . . . . . . . . . . . . . .

Rates of Decay of MTBE and TBA from Ground Water Samples Obtained at Different Distances from Spargepoints® .. . . . . . . . . . . . . . .

Table 27-1. Historical Seasonal Trends in MTBE Concentration at the

· 467

469

In Situ Propane Biosparging Demonstration Site. 514

Table 28-1.

Table 29-1.

Table 30-1.

Table 30-2.

Costs for Connecticut Site BioRemedy BioBarrier

Operating Data . . . . . . . . . . . . . . . .

Summary of Results of 2002 Sampling. . .

Parameters and Results of Biodegradation Rate Calculations . . . . . . . . . . . . . . .

Table 31-1. Trend Analysis for Benzene and MTBE in Source Area

· 527

· 538

· 554

· 557

Wells at Site A. . . . . . . . . . . . . . . . . . . . . . .. . 567

Table 31-2. Average MTBE, Benzene, Dissolved Oxygen, and ORP at Site A . . . . . . . . . . . . . . . . . . . . . . . . .. . 568

Table 31-3. Contaminant Distribution, Trends, and Geochemical Parameters at Site B . . . . . . . . . . . . . . . . . . . . 570

Table 31-4. Contaminant Distribution, Trends, and Geochemical Parameters at Site C . . . . . . . . . . . . . . . . . .. . 573

xxxviii

Table 31-5. Contaminant Distribution, Trends, and Geochemical Parameters at Site D . . . . . . . . . . . . . . . . . . 576

Table A-l. Summary of NAQWA Study Components . . . . .. . 584

Table A-2. Average Detection Limit of MTBE Samples With No Detections, by Year. . . . . . . . . . . . . . . . . . 596

Table A-3. NEIWPCC Survey Results. . . . . . . . . . . . . . . 627

Table A-4. Comparison of BTEX and MTBE plume lengths in South Carolina . . . . . . . . . . . . . . . . . . . . . 636

xxxix