updates of iowa state university

16
Updates of Iowa State University S. Dumpala, S. Broderick and K. Rajan Sep – 18, 2013

Upload: onofre

Post on 24-Feb-2016

21 views

Category:

Documents


0 download

DESCRIPTION

Updates of Iowa State University . S. Dumpala , S. Broderick and K. Rajan Sep – 18, 2013 . Summary . Refinements in Environmental chamber set up for in-situ gas reactions Oxidation studies of Al using new set up of E-cell - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Updates of Iowa State University

Updates of Iowa State University

S. Dumpala, S. Broderick and K. Rajan

Sep – 18, 2013

Page 2: Updates of Iowa State University

Summary • Refinements in Environmental chamber set up for in-situ gas reactions

• Oxidation studies of Al using new set up of E-cell

• Preliminary analysis of silicon oxidation results in comparison with ReaxFF simulations (Adri’s papers)

• Further analysis of silicon oxidation growth mechanisms and sub oxide species at different temperatures

• Study of Si tips from Maryland using APT

Page 3: Updates of Iowa State University

E-Cell APT Results

Bulk Alumina Phase Bulk Al Phase

Aluminum Oxidation

3D atomic scale interfacial analysis (structural and chemical)

Stoichiometry of different phases observed Inter-diffusional characteristics of elements

Page 4: Updates of Iowa State University

Reduced Contamination with In-situ E-Cell Oxidation

In-situ E-cell Oxidation

• Numerous additional peaks representing contamination that were detected in ex-situ oxidation were absent in in-situ oxidation results.

Unkown peaks.

Ex-situ Oxidation

Page 5: Updates of Iowa State University

Increased Mass Resolution with In-situ E-Cell Oxidation

• Lower mass resolution with longer tails of the peaks were seen in ex-situ

Unkown peaks.

In-situ E-cell OxidationEx-situ Oxidation

Page 6: Updates of Iowa State University

APT of Si Tips from Maryland : Anode Voltage: 250 V of Argon exposure

50 monolayers 150 monolayers Bare Si Tip

• Laser APT – 1nj (laser power)

• Higher Ar content in beam exposed tips compared to bare Si tip

Page 7: Updates of Iowa State University

Mass Spectra

1. Small peak of Ar

2. Check other condition tips (Different beam currents)

3. Different deposition thickness of monolayers

4. FIM studies

50 monolayers

150 monolayers

Bare Si Tip

Page 8: Updates of Iowa State University

Oxidation of Silicon

ReasFF Simulations APT- Experimental

• Hyper thermal oxidation (atomic and molecular oxygen beam source)

• Dynamic study

• Smaller time scales (3pc)

• Monolayer detection

• Plasma oxidation (ambient oxygen)

• Static study (post deposition study)

• Longer time scales (minutes)

• Sub nano scale detection

Page 9: Updates of Iowa State University

0

10

20

30

40

50

60

70

80

90

100

-5 -4 -3 -2 -1 0 1 2 3 4 5

Conc

entr

ation

(at%

)

Distance (nm)

2 nm

0

10

20

30

40

50

60

70

80

90

100

-5 -4 -3 -2 -1 0 1 2 3 4 5

Conc

entr

ation

(at%

)

Distance (nm)

2.5 nm

-2-4 2 40

-22

0

-2-4 2 40

-22

0

Interfacial Diffusion – Interfacial Width383 K 548 K

Page 10: Updates of Iowa State University

0

10

20

30

40

50

60

70

80

90

100

-5 -4 -3 -2 -1 0 1 2 3 4 5

Conc

entr

ation

(at%

)

Distance (nm)

2.5 nm

Region III Region IRegion II

383 K 548 K

Diffusion Profiles – Sub Oxides

0

5

10

15

20

25

-5 -4 -3 -2 -1 0 1 2 3 4 5

Si2O %

SiO2

SiO

0

2

4

6

8

10

12

14

16

18

20

-5 -4 -3 -2 -1 0 1 2 3 4 5

Si2O %

SiO

SiO2

Conc

entr

ation

(at%

)

Distance (nm)

0

2

4

6

8

10

12

14

16

18

20

-5 -4 -3 -2 -1 0 1 2 3 4 5

Si2O %

SiO

SiO2

0

2

4

6

8

10

12

14

16

18

20

-5 -4 -3 -2 -1 0 1 2 3 4 5

Si2O %

SiOSiO2

Conc

entr

ation

(at%

)

Distance (nm)

0

10

20

30

40

50

60

70

80

90

100

-5 -4 -3 -2 -1 0 1 2 3 4 5

Conc

entr

ation

(at%

)

Distance (nm)

2 nm

Region IRegion III Region II

Page 11: Updates of Iowa State University

0

1

2

3

4

5

6

7

8

383 K 548 K

Si2O

SiO

SiO2

0

50

100

150

200

250

300

350

400

450

500

Region I Region II Region III

Si2OSiOSiO2

• Interface region – Between bulk Si, and bulk silica (region II from proxigrams)

• The total number of sub oxide species increase with increase temperature, observed similar trend in APT results

• Relative amounts/ratio of Si+1 (Si2O), Si+2 (SiO) at two different temperatures agrees with simulations

• Silica layer – 1. Surface, 2. Bulk (Si+4 components in interface)

0

1

2

3

4

5

6

383 K 548 K

Si2O

SiO

0

50

100

150

200

250

300

350

400

450

500

Region I Region II Region III

Si2OSiOSiO2

Aver

age

Conc

entr

ation

(at%

)Av

erag

e Co

ncen

trati

on (a

t%)

Analysis of Interfacial Sub Oxides – Comparison of Simulations with APTAtom Probe (Interfacial Region) ReaxFF Simulation

Page 12: Updates of Iowa State University

• For 8 ML, the number of Si4+ components is much higher at low temperatures than at high temperatures, indicating that the initial growth of the silica (SiO2) layer occurs much faster at low than at high temperature

• After 32 ML, number of Si4+ components is almost same at all temperatures indicating that the silica layer now grows faster at higher temperatures, but its nucleation started later

• APT results also indicate the presence of almost same number of Si4+(SiO2) components at both the temperatures

0

2

4

6

8

10

12

14

16

383 K 548 K

Si2O

SiO

SiO2

Aver

age

Conc

entr

ation

(at%

)0

50

100

150

200

250

300

350

400

450

500

Region I Region II Region III

Si2OSiOSiO2

Analysis of Si+4 (SiO2) Oxides – Comparison of Simulations with APT

Atom Probe (Silica Region) ReaxFF Simulation

Page 13: Updates of Iowa State University

Growth Mechanism - Low Temperature

0

5

10

15

20

25

-5 -4 -3 -2 -1 0 1 2 3 4 5

Si2O %

SiO2

SiO

0

2

4

6

8

10

12

14

16

18

20

-5 -4 -3 -2 -1 0 1 2 3 4 5

Si2O %

SiO

SiO2

Conc

entr

ation

(at%

)

Distance (nm)

0

2

4

6

8

10

12

14

Region I Region II Region III

Si2OSiOSiO2

0

50

100

150

200

250

300

350

400

450

500

Region I Region II Region III

Si2OSiOSiO2

Aver

age

Conc

entr

ation

(at%

)

0

10

20

30

40

50

60

70

80

90

100

-5 -4 -3 -2 -1 0 1 2 3 4 5

Conc

entr

ation

(at%

)

Distance (nm)

2 nm

Region IRegion III Region II

APT - 383 K

• Stage I - Growth of sub oxides and an incipient silica layer growth• Stage II -1) Continued growth of sub oxides and also growth of silica observed, 2) Inward

growth rate of sub oxides drops (high activation energy) (mainly Si2O) due to fast conversion of Si+1 Si+2 Si+4

• Stage III, IV - Growth of sub oxides and silica slowed down

ReaxFF - 300 K

Page 14: Updates of Iowa State University

0

10

20

30

40

50

60

70

80

90

100

-5 -4 -3 -2 -1 0 1 2 3 4 5

Conc

entr

ation

(at%

)

Distance (nm)

2.5 nm

Region III Region IRegion II

0

2

4

6

8

10

12

14

16

18

20

-5 -4 -3 -2 -1 0 1 2 3 4 5

Si2O %

SiO

SiO2

Conc

entr

ation

(at%

)

Distance (nm)

0

2

4

6

8

10

12

14

16

Region I Region II Region III

Si2OSiOSiO2

0

50

100

150

200

250

300

350

400

450

500

Region I Region II Region III

Si2OSiO

SiO2

Aver

age

Conc

entr

ation

(at%

)

0

2

4

6

8

10

12

14

16

18

20

-5 -4 -3 -2 -1 0 1 2 3 4 5

Si2O %

SiO

SiO2

0

2

4

6

8

10

12

14

16

18

20

-5 -4 -3 -2 -1 0 1 2 3 4 5

Si2O %

SiO

SiO2

Conc

entr

ation

(at%

)

Distance (nm)

• Stage I - Growth of sub oxides and an incipient silica layer growth• Stage II -1) Continued growth of sub oxides and also growth of silica observed, 2) Inward

growth rate of sub oxides still continues does not drop as in lower temperature case• Stage III, IV – 1) Continued growth of sub oxides (interstitial neutral oxygen atoms

surmount the activation energy barrier at threshold T of 500 K), 2) Interface (consisting of sub oxides) is thicker than low T and 3) Inward growth of silica slows down

APT - 548 K

ReaxFF - 1300 KGrowth Mechanism - High Temperature

Page 15: Updates of Iowa State University

Effect of Temperature on Growth Mechanism

0

5

10

15

20

25

-5 -4 -3 -2 -1 0 1 2 3 4 5

Si2O %

SiO2

SiO

0

2

4

6

8

10

12

14

16

18

20

-5 -4 -3 -2 -1 0 1 2 3 4 5

Si2O %SiO

SiO2

Conc

entr

ation

(at%

)

Distance (nm)

0

2

4

6

8

10

12

14

Region I Region II Region III

Si2OSiOSiO2

0

50

100

150

200

250

300

350

400

450

500

Region I Region II Region III

Si2OSiOSiO2

Aver

age

Conc

entr

ation

(at%

)

0

10

20

30

40

50

60

70

80

90

100

-5 -4 -3 -2 -1 0 1 2 3 4 5

Conc

entr

ation

(at%

)

Distance (nm)

2 nm

Region IRegion III Region II

APT - 383 K

0

10

20

30

40

50

60

70

80

90

100

-5 -4 -3 -2 -1 0 1 2 3 4 5

Conc

entr

ation

(at%

)

Distance (nm)

2.5 nm

Region III Region IRegion II

0

2

4

6

8

10

12

14

16

18

20

-5 -4 -3 -2 -1 0 1 2 3 4 5

Si2O %

SiO

SiO2

Conc

entr

ation

(at%

)

Distance (nm)

0

2

4

6

8

10

12

14

16

Region I Region II Region III

Si2OSiOSiO2

0

50

100

150

200

250

300

350

400

450

500

Region I Region II Region III

Si2OSiO

SiO2

Aver

age

Conc

entr

ation

(at%

)0

2

4

6

8

10

12

14

16

18

20

-5 -4 -3 -2 -1 0 1 2 3 4 5

Si2O %

SiO

SiO2

0

2

4

6

8

10

12

14

16

18

20

-5 -4 -3 -2 -1 0 1 2 3 4 5

Si2O %

SiO

SiO2

Conc

entr

ation

(at%

)

Distance (nm)

APT - 548 K

ReaxFF

Page 16: Updates of Iowa State University

Future

• Study of thermal oxidation (silicon) case

• Analysis of bonding information in different regions (bulk, interface) from APT data that could offer complimentary information to the bond length and bong angle analysis by ReaxFF.