oh eispc april2012 bh - johns hopkins university · jim bridger monta vista logan creek summit...

9
Benjamin F. Hobbs Schad Professor of Environmental Management, Whiting School of Engineering Director Environment Energy Sustainability & Health Institute Director , Environment, Energy, Sustainability & Health Institute The Johns Hopkins University Chair, Market Surveillance Committee California Independent System Operator Francisco Munoz Harry van der Weijde Ozge Ozdemir Free University of Amsterdam Energy Research Center of the Netherlands The Johns Hopkins University JHU E 2 SHI Thanks to National Science Foundation; Fulbright Foundation, UK EPSRC JHU E 2 SHI Outline Outline I. The problem CAISO TEAM method II. Cooptimize gen & discrete lines: MILP 7 zone UK 17 zone WECC 17 zone WECC 240 bus WECC III. Cooptimize gen & continuous line III. Cooptimize gen & continuous line capacity: Successive LP EU 26 model: COMPETES Demand response JHU E 2 SHI

Upload: others

Post on 22-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: OH EISPC April2012 bh - Johns Hopkins University · jim bridger monta vista logan creek summit meter hunter emery spanish fork moss landing camp williams inter mountain round mountain

Benjamin F. HobbsSchad Professor of Environmental Management, Whiting School of Engineering

Director Environment Energy Sustainability & Health InstituteDirector, Environment, Energy, Sustainability & Health InstituteThe Johns Hopkins University

Chair, Market Surveillance CommitteeCalifornia Independent System Operator

Francisco Munoz Harry van der Weijde Ozge OzdemirFree University of

Amsterdam Energy Research

Center of the NetherlandsThe Johns Hopkins

University

JHU E2SHIThanks to National Science Foundation; Fulbright Foundation, UK EPSRC JHU E2SHI

y

OutlineOutline

I. The problem– CAISO TEAM method

II. Cooptimize gen & discrete lines: MILP– 7 zone UK

17 zone WECC– 17 zone WECC

– 240 bus WECC

III.Cooptimize gen & continuous lineIII.Cooptimize gen & continuous line capacity: Successive LP– EU 26 model: COMPETES

– Demand response

JHU E2SHI

Page 2: OH EISPC April2012 bh - Johns Hopkins University · jim bridger monta vista logan creek summit meter hunter emery spanish fork moss landing camp williams inter mountain round mountain

Consider Generator Investment Response Consider Generator Investment Response in Transmission in Transmission Planning Planning ((AwadAwad et al., 2010)et al., 2010)

1. Benefits framework: Many

Integrated economic benefits method:

perspectives

2. Full network (linearized dc)

3. Market-based pricingp g• Recognize how upgrade mitigates

market power

4. Recognize uncertaintyg y• Transmission insures against extreme

events5. Resource (supply/DSM) substitution

• Simulate gen operations & investment response to changed prices

• Account for savings in all resource t

JHU E2SHI

costs

CooptimizeCooptimize with Discrete Lineswith Discrete Lines

Generation representation• Continuous investment & output

• Regional correlations of wind/load (100-700 h/yr)

• Hydro pre-dispatch

Transmission representationTransmission representation• Discrete circuits

• Linearized dc load flow

Uncertainty• Here-and-now decisions (e.g., 2010)

Wait and see scenarios (decisions e g 2020 30)• Wait-and-see scenarios (decisions e.g., 2020,30)

MIP solved with AIMMS/CPLEX

JHU E2SHI

Page 3: OH EISPC April2012 bh - Johns Hopkins University · jim bridger monta vista logan creek summit meter hunter emery spanish fork moss landing camp williams inter mountain round mountain

TwoTwo--stage Stochastic Approachstage Stochastic Approach

“Here & Now”

Scenarios “Wait & See”

• Transmission• Generation

• $ Fuels • $ Technology• Policies

Imports

• Transmission• Generation• Operations

JHU E2SHI

• Imports

UK Analysis (RadialUK Analysis (Radial--DCDC Model: MILP)Model: MILP)((van van derder WeijdeWeijde & Hobbs, 2012)& Hobbs, 2012)

JHU E2SHI7 scenarios, 3 stages, 700 hrs 500,000 variables

Page 4: OH EISPC April2012 bh - Johns Hopkins University · jim bridger monta vista logan creek summit meter hunter emery spanish fork moss landing camp williams inter mountain round mountain

CAISO 17 Zone Test CaseCAISO 17 Zone Test Case((MunoMunoz, Hobbs, z, Hobbs, KasinaKasina 2012)2012)

CAISO 17• Generator data from WECC 225-bus system • (Price et al. 2011)• 24 corridors• 5 Import buses

• Demand (CAISO)

Time Series

• Wind (NREL)• Solar (NREL)• Hydro (EIA)

Sample of 100 hrs/yr + 2 Stages + 3 Scenarios

200,000 variables + 300,000 constraints

JHU E2SHI

Generator Response 2021Generator Response 2021

conventional

wind

Geothermal

solar

JHU E2SHI

Page 5: OH EISPC April2012 bh - Johns Hopkins University · jim bridger monta vista logan creek summit meter hunter emery spanish fork moss landing camp williams inter mountain round mountain

Stochastic vs. DeterministicStochastic vs. Deterministic

Stochastic Status Quo Techno Electrification

Deterministic Scenario Analysis

Stochastic Status Quo Techno Electrification

Stochastic Solution better

Can we make a recommendation based on deterministic solutions?

JHU E2SHI

by ~$300M “Robust” Solutions?

Next: WECC 240Next: WECC 240--bus test systembus test system(Based on Price (Based on Price and and GoodinGoodin, 2011), 2011)

BELL

CA230

NORTH

DALLES

CANALB

CANADA

MONTANA

HANFORD

WCASCADE

CELILOCA

GRAND COULEE

FULTON

PALERMO

COLGATE

CORTINA

RIO OSO

BRIGHTON

GOLDHILL

TABLE MT.LOGAN CREEK

BORAH

BURNS

MALIN

DALLES

GRIZZLYWILLAMET

CELILOCA

HUMBOLDT

MIDPOINT

COLSTRIP

GARRISON

MERIDIAN

BIG EDDY

SUMMER LAKETRACYTESLA

MORAGA

NEWARK

MARTIN

POTRERO

BELLOTA

IGNACIO

SOBRANTE

JEFFERSON

SAN MATEO

PITTSBURG

LAKEVILLE

RAVENSWOOD

VACA DIXON

RANCHO SECO

MONTA VISTA

EMBARCADERO

CONTRA COSTA

MONA

CRAIG

TRACY

VALMY

GREGG HELMS

GLENN

TRACYTESLA

SUMMIT

FULTON

SIGURD

MORAGA

NEWARK

MARTIN

WILSON

GONDER

OLINDA

PALERMO

COLGATE

POTRERO

METCALF

CORTINA

BELLOTA

IGNACIO

RIO OSO

LARAMIE

BRIGHTON

TERMINAL

NAUGHTON

SOBRANTE

GOLDHILL

JEFFERSONSAN MATEO

PITTSBURG

LAKEVILLE

TABLE MT.

LOS BANOS

BEN LOMOND

COTTONWOOD

VACA DIXON

OWENS GORGE

JIM BRIDGER

MONTA VISTA

LOGAN CREEK

SUMMIT METER

HUNTER EMERY

SPANISH FORK

MOSS LANDING

CAMP WILLIAMS

INTER MOUNTAIN

ROUND MOUNTAINMETCALF

LOS BANOS

MESA

LUGO

MEAD

PINTO

OLIVE

GREGG HELMS

RIVER

GATES

MOHAVE

HAYNES

SLYMARPARDEE

VALLEYPARKER

CHOLLA

NAVAJO

MCCALL

HOOVER

DEVERS

MIDWAY

PANOCHE

CASTAIC

RINALDI

SERRANO

GLENDALE

ADELANTO

ELDORADO

WESTWING

SAN JUAN

CORONADO

MOENKOPI

STATION J

STATION GSTATION F

STATION B

MORRO BAY

LIGHTHIPE

SAN ONOFRE

PALO VERDE

HARRY ALLEN

FOUR CORNERS

DIABLO CANYON

COTTONWOOD SOUTH

MESA

LUGO

OLIVE

RIVER

HAYNES

SLYMAR

PARDEE

VALLEY

CASTAIC

RINALDI

SERRANO

VINCENT

GLENDALE

ADELANTO

STATION J

STATION G

STATION F

STATION E

STATION B

VALLEY SS

LIGHTHIPE

MIRA LOMA

VICTORVILLE

COTTONWOOD SOUTH

Multiple circuits; bubble constraints; ramp limits

MEXICO

MIGUELMISSION

IMPERIAL

PALO VERDE

IMPERIAL VALLEY

HAYNES

SAN ONOFRE

JHU E2SHI

Single scenario: 500 hr/yr, 4M vars

Total Gen: 223,690 MW• 579 generators in California, 418 rest of WECC

Page 6: OH EISPC April2012 bh - Johns Hopkins University · jim bridger monta vista logan creek summit meter hunter emery spanish fork moss landing camp williams inter mountain round mountain

CooptimizingCooptimizing Transmission, Gen & DRTransmission, Gen & DR::

COMPETES Market ModelCOMPETES Market ModelCOMPETES Market ModelCOMPETES Market Model((Hobbs et al. 2004; Hobbs et al. 2004; LiseLise, Hobbs, Hers, , Hobbs, Hers, 2008)2008)

Munoz, Ozdemir, Hobbs (in progress):

Successive LP• Continuous transmission capacity

• Linearized dc

DR: elastic demand

500K Variables

IRENE 40 projectp j

To be integrated with GASTALE gas model (Lise & Hobbs, 2010)

JHU E2SHI

63100

COMPETES Transmission ConvergenceCOMPETES Transmission Convergence

63050

63100

n K

62950

63000

eF

un

ctio

n

62850

62900

Ob

jeci

ve

62800

0 5 10 15 20 25

Iterations

8 minutes per iteration

JHU E2SHI

Page 7: OH EISPC April2012 bh - Johns Hopkins University · jim bridger monta vista logan creek summit meter hunter emery spanish fork moss landing camp williams inter mountain round mountain

Effect of Kirchhoff’s Voltage LawEffect of Kirchhoff’s Voltage Law

Linearized DC vs. Pipeline/Transport

JHU E2SHI

Demand ResponseDemand ResponseUse Gauss Seidel iterationUse Gauss-Seidel iteration• Update load with prices from last iteration (demand curves)

100 hr test case 2050 (100k variables), 10 sec/iteration( )

70900

71000

K€

70600

70700

70800

70900

Fu

nct

ion

70400

70500

70600

Ob

ject

ive With DR

W/O DR

70300

0 10 20 30 40

O

Iterations

JHU E2SHICan make a large difference in gen mix (deJonghe, Hobbs, Bellman 2012)

Page 8: OH EISPC April2012 bh - Johns Hopkins University · jim bridger monta vista logan creek summit meter hunter emery spanish fork moss landing camp williams inter mountain round mountain

Comparison (100 h/yr case)Comparison (100 h/yr case)

MW of transmission investments

JHU E2SHICorridor

ConclusionsConclusions

We can:• Cooptimize gen & transmission• Cooptimize gen & transmission

– For regional policy analysis

• Model DR• Model DR

• Do least-regret planning:– Transmission as insurance– Transmission as insurance

… And it matters!Examples: WECC UK EU• Examples: WECC, UK, EU

JHU E2SHI

Page 9: OH EISPC April2012 bh - Johns Hopkins University · jim bridger monta vista logan creek summit meter hunter emery spanish fork moss landing camp williams inter mountain round mountain

ReferencesReferencesM. Awad, K.E. Casey, A.S. Geevarghese, J.C. Miller, A.F. Rahimi, A.Y. Sheffrin, M. Zhang, E. Toolson, G. Drayton, B.F. Hobbs, and F.A. Wolak, "Economic Assessment of Transmission Upgrades: Application of the California ISO Approach", Ch. 7, in X.-P. Zhang, Restructured Electric Power Systems: Analysis of Electricity Markets with Equilibrium Models, Power Engineering Series, J. Wiley & Sons/IEEE Press, July 2010, 241-270.

C De Jonghe B F Hobbs and R Belmans “Optimal generation mix with short term demand reC. De Jonghe, B.F. Hobbs, and R. Belmans, Optimal generation mix with short-term demand re-sponse and wind penetration,” IEEE Transactions on Power Systems, in press. (available as University of Cambridge Electricity Policy Research Group Working Paper EPRG-1113)

B.F. Hobbs and F.A.M. Rijkers, “Modeling Strategic Generator Behavior with Conjectured Transmission Price Responses in a Mixed Transmission Pricing System I: Formulation,” IEEE p g y ,Trans. Power Systems, 19(2), May 2004, 707-717.

W. Lise, B.F. Hobbs, and F. van Oostvoorn, “Natural Gas Corridors between the EU and Its Main Suppliers: Simulation Results with the Dynamic GASTALE Model,” Energy Policy, 36(6), June 2008, 1890-1906.

W. Lise, B.F. Hobbs, and S. Hers, “Market Power in the European Electricity Market - The Impacts of Dry Weather and Additional Transmission Capacity,” Energy Policy, 36(4), April 2008, 1331-1343.

F.D. Munoz, B.F. Hobbs, and S. Kasina, “Efficient Proactive Transmission Planning to Accommodate Renewables ” IEEE Power Engineering Society General Meeting July 2012Accommodate Renewables, IEEE Power Engineering Society General Meeting, July 2012

J.E. Price and J. Goodin, “Reduced Network Modeling of WECC as a Market Design Prototype, “PAPER 2011GM0942, IEEE Power Engineering Society General Meeting, July 2011

A.H. van der Weijde and B.F. Hobbs, “The Economics of Planning Electricity Transmission to Accommodate Renewables: Using Two-Stage Optimisation to Evaluate Flexibility and the Cost of

JHU E2SHI

Accommodate Renewables: Using Two-Stage Optimisation to Evaluate Flexibility and the Cost of Disregarding Uncertainty, “Energy Economics, in press, doi:10.1016/j.eneco.2012.02.015 (also University of Cambridge EPRG Working Paper, (available as University of Cambridge Electricity Policy Research Group Working Paper EPRG-1103)

Appendix: WECC Model FormulationAppendix: WECC Model Formulation

∑ +++s

ssss OOIpI )( 2031202120212011min

∑∑∑ ∑ ∑∈∈ ∈ ∈ ∈

+≥+Bb

tshb

Uu Bb NIk Ik

uskbk

uskb dRMyCCy

t

*,,,,,, )1()(1. Reserve Margins

t

skbUt

tskb yy

t

,,,, ≤∑∈

gt ≤ Δ ys∑

2. Resources

3 Max Generation gb,k,h,s ≤ Δb,k,s yb,k,su∈Ut

∑3. Max Generation

4. RPS ∑∑∑∑∑∑∈ ∈ ∈∈ ∈ ∈

≥Kk Hh Bb

tshkb

ts

Rk Hh Bb

tshkb gRPSg ,,,,,,

sshb

Uu Bb Kk

tshb

tshkb

Ll

tushl drgf

t b

,,,,,,,,,, )( =++∑ ∑ ∑∑

∈ ∈ ∈∈

11 ttt

5. KCL

6 KVL

Disjunctive constraints

JHU E2SHI

0)( ,,,,1,1

,, =−− tshp

tshbl

tshlf θθγ )1()( ,,,,,

,,,

tsl

tshp

tshbl

tushl xMf −≤−− θθγ

1,1,, ltshl ff ≤ t

slltushl xff ,

,,, ≤

6. KVL

7. Thermal Limits