mycoremidiation

17
MYCOREMIDIATION POTENTIAL OF WHITE ROT FUNGI By: Mugdha Nigam ME Biotech

Upload: mugdha-nigam

Post on 31-May-2015

292 views

Category:

Education


1 download

DESCRIPTION

Description of Xenobiotic compounds; and case study on White rot fungi remidiation potential.

TRANSCRIPT

Page 1: Mycoremidiation

MYCOREMIDIATION POTENTIAL OFWHITE ROT FUNGI

By:Mugdha Nigam

ME Biotech

Page 2: Mycoremidiation

Bioremediation is the use of micro-organisms- naturally present or genetically engineered to remove pollutants.

They can be applied on site (in situ) or off site ( ex situ) mediated by mixed microbial consortia or pure microbial strains and plants.

They include several processes – bioventing, biostimulation, biosparging, bioaugmentation, bioleaching, phytoremediation, fungal bioremediation and biosorption.

Page 3: Mycoremidiation
Page 4: Mycoremidiation

Mycoremediation, a phrase coined by Paul Stamets, is a form of bioremediation, using fungi to degrade or sequester contaminants in the environment.

Page 5: Mycoremidiation

They are capable of mineralizing a wide variety of toxic xenobiotics. They occur ubiquitously in the natural environment. They have the potential to oxidize substrates that have low solubility because the

key enzymes involved in the oxidation of several pollutants are extracellular. The constitutive nature of the key enzymes involved in lignin degradation obviates

the need for these organisms to be adapted to the chemical being degraded. The preferred substrates for the growth of white-rot fungi, such as corn cobs, straw,

peanut shells, and sawdust, are inexpensive and easily added as nutrients to the contaminated site.

The key LDEs are expressed under nutrient-deficient conditions, which are prevalent in many soils. Nitrogen serves as the main limiting factor.

Four main genera of white rot fungi have shown potential for bioremediation: Phanerochaete, Trametes, Bjerkandera, and Pleurotus.

Page 6: Mycoremidiation

Lignin peroxidase is a glycosylated heme protein that catalyzes hydrogen peroxide-dependent oxidation of lignin-related aromatic compounds. They have a higher redox potential than most peroxidases and so are able to oxidize a wide range of chemicals, including some non-phenolic aromatic compounds.

  Mn-dependent peroxidase also requires hydrogen peroxide to oxidize

Mn2+ to Mn3+. The Mn3+ state of the enzyme then mediates the oxidation of phenolic substrates.

  Laccase, a multicopper oxidase enzyme, is the primary enzyme

involved in the degradation process. It uses dioxygen as an oxidant, reducing it to water and it has the ability to catalyze the oxidation of a widerange of dihydroxy and diamino aromatic compounds. It is most stable at a pH of 5-6 and temperature of 45°C. However, this enzyme is still active at pH levels as low as 4 and as high as 7. This is beneficial in contaminated field sites with very low pH levels.

Page 7: Mycoremidiation
Page 8: Mycoremidiation
Page 9: Mycoremidiation

SOURCES - Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzo-furans (PCDFs) are unintentionally formed in the process of:

- producing chlorine-containing herbicides,

- in the bleaching of paper pulp by using chlorine compounds

- during combustion of domestic and industrial waste

- during burning of petrochemicals and PAHs.

EFFECTS –

- PCDDs and PCDFs have been a public concern for several decades because of their strong toxicity in animal tests. These hazardous compounds tend to accumulate in the body fat of animals since they are relatively lipophilic and chemically stable.

- They have been released into the environment as recalcitrant contaminants and have been found in many environmental matrices such as air, soil, and plants.

- Studies of the degradation of PCDDs and PCDFs in the environment have shown these rates to be extremely low, the half-life of 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-tetraCDD) in an outdoor pond and soil being in the order of 1 year.

Page 10: Mycoremidiation

BIODEGRADATION METHODS –   P. sordida YK-624 and P. chrysosporium IFO31249 culture were prepared on

Low-nitrogen basal III medium containing 1% glucose, 1.2 mM ammonium tartrate, and 20 mM dimethylsuccinate (pH 4.5). After incubation for 7 days, 10% glucose was added to each inoculated flask and the headspaces were flushed with oxygen.

Ethyl acetate solution of PCDDs-PCDFs (500 pg each) was added, and each flask was sealed with a glass stopper and sealing tape. The cultures were incubated for 3, 7, 10, and 14 days (each in triplicate). For 10- and 14-day incubation samples, 10% glucose was added to the cultures, and the flasks were oxygenated on day 7. 

At the end of the incubation, hexane and 13C-labeled PCDDs-PCDFs (500 pg each) was added to the cultures. To recover the PCDDs and PCDFs adsorbed to the mycelia and to dissolve the mycelia thoroughly, concentrated sulphuric acid was added.

Page 11: Mycoremidiation

The cultures were extracted twice with hexane. All of the hexane extracts were washed with water.

The hexane layer was evaporated, and polar compounds were removed with silica gel chromatography.

Uninoculated medium controls were treated in the way.

  Concentrations of PCDDs-PCDFs were determined by high-resolution gas

chromatography and high-resolution mass spectrometry (HRGC-HRMS) (selected ion-monitoring mode [SIM]).

Page 12: Mycoremidiation

RESULTS – For all compounds, the glucose-supplemented culture led to a higher

percent degradation.

Page 13: Mycoremidiation

In both PCDDs and PCDFs, hexa-CDD and -CDF showed the highest degradation values, i.e., ;75% and ;70%, respectively.

  The degradation of PCDDs-PCDFs by P. Chrysosporium IFO31249 was

also carried out for 14 days under conditions similar to those for YK-624 (Table 1). The results show almost the same degradation rate as that for YK-624.

Time courses for the degradation of PCDDs and PCDFs by the fungus YK-624 were plotted. All of the PCDDs and PCDFs were partially degraded. The percent degradation values were promoted by the addition of glucose and oxygenation on days 0 and 7; however, the effect continued only for 3 days, as indicated by the fact that the slopes of percent degradation of days 0 to 3 and 7 to 10 were steeper than those of days 3 to 7 and 10 to 14 – (figure 4 and 5).

Page 14: Mycoremidiation

Degradation of PCDDs by P. sordida YK-624 under low-nitrogenmedium. Glucose was added to each culture, and headspaces were purged

with oxygen.

Page 15: Mycoremidiation

Degradation of PCDFs by P. sordida YK-624 under low-nitrogenMedium. Glucose was added to each culture, and headspaces were

purged with oxygen.

Page 16: Mycoremidiation

CONCLUSION –

The degradation method was developed carefully to avoid the evaporation of dioxins and consequent human exposure. The solubilities of PCDDs are extremely low. The 500 pg of these compounds used in this experiment did not dissolve in 10 ml of the aqueous culture and remained largely in solid or vapour states. Consequently, biodegradation was carried out in flasks by sealing with glass stoppers and, in addition, sealing with sealing tape in order to protect against the loss of these compounds.

  P. sordida YK-624 and P. chrysosporium IFO31249 were capable of

substantial degradation of the mixtures of the 2,3,7,8-substituted tetra- to octa-CDDs and CDFs tested, as determined by substrate disappearances.

  These fungi showed no clear structural dependence for degradation of

PCDDs and PCDFs, verifying that the degradation of these substrates is indeed, a free-radical process showing little specificity.

Page 17: Mycoremidiation