estructura cristalina

18
ESTRUCTURA CRISTALINA José Luis Tello Montero c.i. 9759609

Upload: jose-luis-tello-montero

Post on 14-Apr-2017

338 views

Category:

Education


0 download

TRANSCRIPT

ESTRUCTURA CRISTALINA

José Luis Tello Montero

c.i. 9759609

ESTRUCTURA CRISTALINA

Los sólidos pueden clasificarse:

1.- Por su ordenación:

1a. Sólidos amorfos: tienen una estructura desordenada. Sus átomos o

moléculas se colocan de manera aleatoria (Ejemplo: el vidrio)

1b. Sólidos cristalinos: Están constituidos por una ordenación tridimensional

de unidades (átomos o moléculas) muy bien definida, formando cristales.

2.- Por su composición y enlace:

1a. Sólidos moleculares: están formados por moléculas

1b. Sólidos covalentes no moleculares: Con enlaces localizados (diamante,

SiO2) Con enlaces des localizados (metales)

1c. Sólidos Iónicos (NaCl)

CELDILLA UNIDAD

Parte del cristal que reproduce el cristal completo por repetición de la misma

mediante traslaciones. Aunque no hay una única celdilla unidad posible, se

suele elegir la que sea más simple y represente mejor la simetría del cristal.

Por ejemplo en la estructura del NaCl vemos que la celdilla de la figura

izquierda contiene un eje de simetría C4 y 4 ejes C2 que no están contenidos

en la celdilla unidad (más pequeña) propuesta en la figura de la derecha. Por lo

tanto es mejor elegir la celdilla de la izquierda.

ESTRUCTURA CRISTALINA MEDIANTE EMPAQUETAMIENTO DE

ESFERAS

La estructura cristalina describe la ordenación de átomos o moléculas en un

cristal. La estructura de muchos sólidos se puede describir considerando que

proceden de empaquetar (o, lo que es lo mismo, colocar lo más próximas

posible) esferas. Estas esferas representan a los átomos, iones o moléculas

sencillas, que forman la estructura del sólido. Es un sistema muy sencillo que

da resultados razonablemente buenos.

El ejemplo más simple es la representación de la estructura de los metales:

- Están formados por un solo tipo de átomos, de manera que se pueden

considerar esferas del mismo tamaño. - Sus enlaces no son direccionales, por

lo que los átomos tenderán a rodearse del mayor número de átomos (índice de

coordinación IC de 12 por geometría de esferas es el máximo posible). La

estructura del metal, por tanto, es el resultado de empaquetar esferas del

mismo tamaño de la forma más compacta posible, por lo tanto con IC de 12.

Empaquetamiento de esferas en una dimensión:

Empaquetamiento de esferas en dos dimensiones.

Índice de coordinación 4 (Figura izquierda) y 6 (Figura derecha). El de la

derecha es compacto porque tiene el hueco mínimo; por geometría, una esfera

puede estar rodeada como máximo de 6 esferas iguales en un mismo plano

(todas en contacto entre sí).

Empaquetamiento de esferas en tres dimensiones.

Para estudiar el empaquetamiento hemos de fijarnos en el centro de las

esferas. Cualquiera de las dos posibilidades descritas en el empaquetamiento

en dos dimensiones puede ponerse como AA (dos capas superpuestas) o

como AB (dos capas no superpuestas) cuando pasamos a tres dimensiones.

CASOS CON EMPAQUETAMIENTO DE TIPO AA:

Dos capas con IC = 4 superpuestas (AA): empaquetamiento cúbico simple

o primitivo (un hueco central cúbico): IC 6. Es una celdilla de tipo P (primitiva).

Dos capas con IC = 6 superpuestas (AA): empaquetamiento hexagonal simple

(no compacto con huecos en forma de prisma trigonal): IC 8

CASOS CON EMPAQUETAMIENTO DE TIPO AB:

- Dos capas con IC = 4 no superpuestas (AB): Empaquetamiento Cúbico

Centrado en el Cuerpo (acrónimo cc): IC 8. Se denomina celdilla de tipo I.

- Dos capas con IC = 6 no superpuestas (AB): Empaquetamiento Hexagonal

Compacto (acrónimo ehc). Se trata de un empaquetamiento compacto al tener

el mínimo hueco y un IC de 12. Partimos de una capa A compacta (IC = 6) y la

segunda capa (B) se dispone sobre los huecos de la primera capa (A). La

tercera capa se coloca sobre los huecos de la segunda capa de manera que

coincida sobre la primera. La celdilla unidad de esta disposición ABAB es

hexagonal.

La celdilla en la misma dirección que empaquetamiento: IC 12.

- Tres capas compactas con IC = 6 no superpuestas (ABC):

Empaquetamiento Cúbico Compacto o cúbico centrado en las caras (acrónimo:

ecc o ccc; una capa tapa unos huecos y la siguiente los otros): IC 12 como

corresponde a un empaquetamiento compacto de esferas iguales.

En el siguiente figura se resumen los tipos de empaquetamientos

tridimensionales a partir de empaquetamientos bidimensionales de esferas (no

compacto IC =4 en un primer caso, compacto IC = 6 en el segundo caso), así

como las celdillas unidad de cada uno de ellos.

En esta figura se usan los acrónimos en inglés: Simple cubic (sc), body

centered cubic (bcc).

En esta figura se usan los acrónimos en inglés: Simple Hexagonal (sh),

Hexagonal Close Packing (hcp) y Cubic Close Packing (ccp).

Parámetros de la Celdilla Unidad de Empaquetamientos de Esferas.

Número de átomos por celda unidad: Dado que la celdilla no está aislada,

deben diferenciarse aquellos átomos que pertenecen solamente a una

determinada celda de los que se comparten con las celdas vecinas.

Número de coordinación: Es el número de vecinos más próximos que rodean1

a un determinado átomo en una estructura. Para los empaquetamientos cúbico

centrado en las caras (compacto) y hexagonal compacto el IC es 12.

Factor de ocupación el espacio: es la fracción del espacio disponible de la

celdilla unidad que está ocupada por los átomos contenidos en la misma

suponiendo que cada átomo sea una esfera rígida de radio r. El % de

ocupación se define como:

% ocupación = [(Vesfera x N) / Vcubo] x 100 (N = nº de esferas pertenecen

exclusivamente a la celdilla)

La relación entre el radio de una esfera (r) y la longitud de la arista del cubo (a)

de los átomos de distintas redes cúbicas viene dada en la siguiente figura:

Con esta expresión, se puede calcular fácilmente la eficiencia de los

diferentes empaquetamientos. Los resultados aparecen en la siguiente tabla.

Para una estructura compacta, la porción de espacio no ocupada, es decir,

la cantidad de espacio libre por huecos, es el 26 % del total.

Huecos en empaquetamientos compactos: localización, nº y tamaño. Una

de las características de los empaquetamientos es el tipo de huecos (espacio

sin ocupar) que se genera entre las esferas. Frecuentemente se contemplan

los sólidos iónicos o las aleaciones como estructuras de esferas de

empaquetamiento compacto, situándose el ión más pequeño en los huecos de

este ordenamiento. Estos huecos en empaquetamientos compactos pueden ser

octaédricos o tetraédricos:

Un hueco octaédrico es el espacio sin ocupar en el centro de seis esferas

que forman un octaedro, por lo que presenta simetría octaédrica. Cada hueco

se sitúa entre dos triángulos formados por esferas, opuestos y pertenecientes a

capas adyacentes. En una estructura compacta de N átomos existen N huecos

octaédricos, como demostraremos posteriormente.

Un hueco tetraédrico es el espacio sin ocupar en el centro de cuatro esferas

que forman un tetraedro, por lo que presenta simetría tetraédrica. Cada hueco

se forma cuando sobre un triángulo de esferas de una capa se coloca otra

esfera de la capa contigua, formando un tetraedro que puede apuntar hacia

arriba o hacia abajo. Existen dos tipos de huecos tetraédricos, dependiendo de

que el vértice del mismo está orientado hacia arriba o hacia abajo. En un

empaquetamiento compacto con N átomos existen N huecos de cada tipo, para

dar un total de 2N huecos tetraédricos, como demostraremos posteriormente.

Importante: Un cristal con N átomos contiene N huecos octaédricos y 2N

huecos tetraédricos.

Localización de los huecos: Siempre se sitúan entre dos capas de esferas

adyacentes, pero la distancia a cada una de las capas depende del tipo de

hueco.

Octaédricos: Se sitúan donde no hay esferas en las dos capas A y B. Si se

representa una vista lateral del empaquetamiento, los huecos Oh se sitúan

exactamente en el centro de las dos capas. En un empaquetamiento cúbico

compacto están en el centro de arista y en el centro del cubo. En un

empaquetamiento hexagonal compacto no están ni encima ni debajo de cada

esfera. Ver figuras siguientes.

Tetraédricos: Se sitúan debajo o encima de cada esfera, por lo tanto donde

hay una esfera hay un hueco Td. Como se puede observar en la

representación de la vista lateral, encima de cada esfera de la capa inferior hay

un hueco Td que está más cerca de la capa B que de la A. Debajo de cada

esfera de la capa superior hay un hueco Td que se sitúa más cerca de la capa

inferior. Como cada esfera tiene encima o debajo un hueco tetraédrico hay, por

cada N esferas, 2N huecos tetraédricos.

-En un empaquetamiento cúbico compacto están en el centro de cada uno

de los 8 cubos en que se divide la celdilla unidad (uno por vértice: es el centro

del tetraedro formado por el vértice y las esferas de las tres caras de ese

vértice). -En un empaquetamiento hexagonal compacto están encima y debajo

de cada esfera.

a) Huecos tetraédricos en empaquetamiento cúbico compacto

b) Huecos octaédricos en empaquetamiento cúbico compacto

c) Huecos octaédricos en empaquetamiento hexagonal compacto

d) Huecos tetraédricos en empaquetamiento hexagonal compacto

e) Huecos tetraédricos en empaquetamiento hexagonal compacto

Número de huecos y su localización en cada tipo de empaquetamiento

En lugar de aprender donde están los huecos y su nº como acabamos de

hacer, podemos localizar los huecos y contarlos en la celdilla unidad, llegando

obviamente al mismo resultado. La siguiente figura muestra la colocación de

los huecos en un empaquetamiento hexagonal compacto, así como el cálculo

del número de huecos octaédricos y tetraédricos.

Se representa a continuación la colocación de los huecos en un

empaquetamiento cúbico compacto y, de nuevo, el cálculo del número de

huecos octaédricos y tetraédricos.

La siguiente tabla resume los parámetros de los empaquetamientos más

habituales:

De nuevo se verifica que en empaquetamientos compactos el nº de huecos

octaédricos coincide con el de esferas constituyentes, mientras que el nº de

huecos tetraédricos es el doble.

Relación entre el radio de la esfera constituyente del empaquetamiento y el

del hueco Dado que generalmente las estructuras de los sólidos iónicos se

basan en esferas de empaquetamiento compacto donde el ión más pequeño se

sitúa en los huecos, es importante conocer el espacio de que se dispone para

colocar los iones en los huecos. Para un hueco octaédrico, si cada esfera tiene

un radio r, puede demostrarse fácilmente que un hueco de estas características

puede acomodar otra esfera de radio 0.414r.

Por su parte, un hueco tetraédrico puede acomodar una esfera de radio

igual o inferior a 0.225r (rc+ra es la mitad de la diagonal del cubo y ra es la

mitad de la diagonal de una cara del cubo).

EMPAQUETAMIENTO DE POLIEDROS

Es un sistema alternativo de representar fácilmente la estructura cristalina.

El método consiste en describir las estructuras cristalinas como un conjunto de

poliedros que comparten vértices, aristas o caras.

¿Qué representa un poliedro?

Los átomos son los vértices del poliedro y el átomo central no se representa

(ocuparía el centro del poliedro). Se pueden encontrar una gran variedad de

poliedros, aunque los tetraedros y octaedros son los más comunes. La

descripción estructural mediante este modelo no implica la existencia de tales

poliedros como entidades separadas. Ejemplos: NaCl: Esto se puede

representar como un octaedro con iones Cl– en los vértices y el Na+ en el

centro. El poliedro de coordinación del Na+ sería un octaedro, tal y como se

describe en la Figura.

La estructura completa del NaCl se muestra en la siguiente figura y se

describe como un conjunto de octaedros “NaCl6” que están compartiendo

todas las aristas, de tal modo que cada vértice pertenece a seis octaedros:

Las descripciones de estructuras basadas en empaquetamiento de

poliedros no son demasiado realistas ya que con ellas se omiten los átomos

que están en el centro del poliedro (normalmente el catión) y se representa a

los aniones mediante los vértices del poliedro. Además, no se muestran los

enlaces catión anión, y las aristas de los poliedros representan las

interacciones entre aniones. A pesar de esto, este método permite destacar el

tipo de coordinación que presenta el catión, su índice de coordinación y su

geometría, así como la forma en que se comparten los aniones.

El método de empaquetamiento de poliedros se utiliza con mucha

frecuencia para describir estructuras complejas, generalmente de sales de

grandes polianiones, o bien de alguno óxidos de elementos de transición. Por

ejemplo se utilizan habitualmente en:

Sólidos moleculares como los derivados de aluminio: Al2Br6 -Los

compuestos que contienen iones complejos, silicatos: Estos oxoaniones se

describen representando a la agrupación “SiO4” mediante un tetraedro.

Estas unidades tetraédricas pueden unirse compartiendo uno, dos o tres

vértices, lo que genera polianiones silicatos muy variados, como muestran los

siguientes casos:

La fórmula empírica de estos polianiones se determina teniendo en cuenta el

número de tetraedros que entran en la unidad mínima que se repite en cada tipo de

estructura, y contabilizando una carga negativa por cada átomo de oxígeno terminal.