biomecanica fracturi

Upload: mimiellena

Post on 07-Jul-2018

248 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Biomecanica fracturi

    1/113

    Biomechanics of Fractures

    and Fixation

  • 8/18/2019 Biomecanica fracturi

    2/113

    !"#$%&'()"&*

  • 8/18/2019 Biomecanica fracturi

    3/113

    !"#$%&'()"&*, -./0")%1

     

    2%3)"4#) 1

     

    567%* #8 9#4#)

    1  9%(*.:"); 9#4#) 1

     

    2%*&:"

  • 8/18/2019 Biomecanica fracturi

    4/113

    !"#$%&'()"&*

    5'% */.C6 #8 /'% */:.&/.:% ()C 8.)&4#)* #8

  • 8/18/2019 Biomecanica fracturi

    5/113

    9#4#)

    >")%$(4&*

     ?  C%*&:"

  • 8/18/2019 Biomecanica fracturi

    6/113

    K'6 */.C6

  • 8/18/2019 Biomecanica fracturi

    7/113

    567%* #8 $#4#)

    @")%(: R/:()*0(4#)S

     ?  (00 7(:/* /:(M%0 /'% *($% C"*/()&% ") /'% *($%

    4$% (0#); /'% *($% 7(/'

  • 8/18/2019 Biomecanica fracturi

    8/113

    567% #8 9#4#)1

     

    A);.0(: $#4#)

     ?  7(:/* :#/(/% (:#.)C ()

    (O"* #8 :#/(4#)

  • 8/18/2019 Biomecanica fracturi

    9/113

    =%)%:(0 9#4#)

     Most movements arelikely a combination of

    both linear and

    angular motion 

  • 8/18/2019 Biomecanica fracturi

    10/113

    9%(*.:"); 9#4#)1

     

    >")%$(4&*

     ?  D";' *7%%C

    &")%$(/#;:(7'6

     ? 

    D";' *7%%C T"C%#;:(7'6

     ? 

    U/:#")%4&*

     ?  V:%**.:% ()C B#:&%

    /:()*C.&%:*

     ? 

    B#:&% V0(W#:$

     ? 

    X*#L")%4& C6)($#$%/%:

    1  -/'%:

     ? 

    Y0%&/:#$6#;:(7'6

  • 8/18/2019 Biomecanica fracturi

    11/113

  • 8/18/2019 Biomecanica fracturi

    12/113

  • 8/18/2019 Biomecanica fracturi

    13/113

    K'(/ $";'/ N% $%(*.:%P!"#$%&'"()* ),-.-/ 012,13435

    V#*"4#)

     ?  0#&(4#) ") *7(&% :%0(4M% /# *#$% *7(4(0 #:C")(/%

    *6*/%$ :%8%:%)&% R%Z;ZF &%)/%: #8 [#")/F \-=F \-9F 7#")/

    #8 )/(&/S 

    2"*70(&%$%)/

     ?  "* /'% */:(";'/ 0")% C"*/()&% ()C C":%&4#) 

    2"*/()&% ?  /'% 0%);/' #8 /'% 7(/' /:(M%:*%C 

  • 8/18/2019 Biomecanica fracturi

    14/113

    K'(/ $";'/ N% $%(*.:%P

    \%)/%: #8 ;:(M"/6

    /'% 7#")/ (

  • 8/18/2019 Biomecanica fracturi

    15/113

    9%(*.:"); 9#4#)

  • 8/18/2019 Biomecanica fracturi

    16/113

    >")%$(4&*, B"0$

    A)(06*"*

    SETUP ANALYSIS

    CALIBRATION

    (

    (50,490)

    (10, 570)

  • 8/18/2019 Biomecanica fracturi

    17/113

    YO($70%, 2(/(

  • 8/18/2019 Biomecanica fracturi

    18/113

    YO($70%, V#*"4#) ()C T%0#&"/6 2(/(

  • 8/18/2019 Biomecanica fracturi

    19/113

    K'(/ $";'/ N% $%(*.:%P

    !6342-.07* ),-.-/ -38 542,19-/ 012,134357

    U7%%C

     ? 

    C"*/()&% ^ 4$% R$^*S

    T%0#&"/6

     ? 

    C"*70(&%$%)/ ^ 4$% R$^*S

    A&&%0%:(4#) ?  M%0#&"/6 ^ 4$% R$^*_S

  • 8/18/2019 Biomecanica fracturi

    20/113

    K'(/ $";'/ N% $%(*.:%P

    >")%4&*

    X)%:4(

     ? 

    (

  • 8/18/2019 Biomecanica fracturi

    21/113

    9#4#)F B#:&%F ()C U": X**(&

    B":*/ @(N RX)%:4(S

     ?  (

  • 8/18/2019 Biomecanica fracturi

    22/113

    9#4#)F B#:&%F ()C U": X**(&

    U%)C @(N RA&&%0%:(4#) #: Ba$(S

     ?  /'% (&&%0%:(4#) #8 /'%

  • 8/18/2019 Biomecanica fracturi

    23/113

    9#4#)F B#:&%F ()C U": X**(&

    5'":C @(N R(&4#)c

    :%(&4#)S

     ?  %M%:6 (&4#) '(* ()

    %Q.(0 ()C #77#*"/%:%(&4#) R"$7#:/()/ 8#:

    )*%:M(4#) #8

    $#$%)/.$S

  • 8/18/2019 Biomecanica fracturi

    24/113

    GROUND REACTION FORCES 

  • 8/18/2019 Biomecanica fracturi

    25/113

    A);.0(: 9#4#)

    K'%) ( 8#:&% "* )#/ %O%:/%C (0#); ( 0")%

    /'(/ 7(**%* /':#.;' (

  • 8/18/2019 Biomecanica fracturi

    26/113

    K'(/ $";'/ N% $%(*.:%P

    A);.0(: C"*70(&%$%)/

     ?  &'();% ") 0#&(4#) #8 :#/(4);

  • 8/18/2019 Biomecanica fracturi

    27/113

    K'(/ $";'/ N% $%(*.:%P1

     

    A);.0(: T%0#&"/6 ?  ();.0(: C"*70(&%$%)/ ^

    4$% RC%;:%%^*S

    A);.0(: A&&%0%:(4#)

     ? 

    ();.0(: M%0#&"/6 ^ 4$%

    RC%;:%%*^*_S

  • 8/18/2019 Biomecanica fracturi

    28/113

    K'(/ $";'/ N% $%(*.:%P

    A);.0(: >")%4&*

    5#:Q.%

     ?  /.:)"); %d%&/ #) (

  • 8/18/2019 Biomecanica fracturi

    29/113

    9#$%)/ #8 X)%:4(, e%0(4M%

    5.&L

    V"L%

    B.00

  • 8/18/2019 Biomecanica fracturi

    30/113

    1.  Extended swingaround bar

    2. 

    Extended swingaround central axis3.  Pike4.  Tuck

    Assuming:

    !md2

    Where:

    M = massd = distance from

    axis of rotation

  • 8/18/2019 Biomecanica fracturi

    31/113

    B0."C 9%&'()"&*

    2:(;

     ?  B0."C 8#:&% /'(/ #77#*%* /'% 8#:N(:C $#4#) #8

    /'%

  • 8/18/2019 Biomecanica fracturi

    32/113

    2:(;

    B0."C 8#:&% /'(/ #77#*%* /'% 8#:N(:C $#4#)

    #8 /'%

  • 8/18/2019 Biomecanica fracturi

    33/113

    B#:$* #8 2:(;

    1  U.:8(&% R'6C:#C6)($"& C:(;S  ?

     

    :%8%::"); /# ")/%:(&4#)

  • 8/18/2019 Biomecanica fracturi

    34/113

    U.:8(&% 2:(;

    Water particles attract other water particles and

    will increase with “roughness of skin” 

  • 8/18/2019 Biomecanica fracturi

    35/113

    V:#30% 2:(;

     Low pressure pocket forms

    and “   holds back ”    the

    cyclist. As velocity doubles this

    resistive force quadruples!!!!

     Important factors:• Shape

    • 

     smoothness

    • 

    orientation (crouch can lower

    resistance ~30%

  • 8/18/2019 Biomecanica fracturi

    36/113

    e%C.&"); 2:(;•

     

     Frame designson bikes are often

    “   tear-shaped ”    to

    reduce drag

    • 

     Drafting  within 1 m

    can reduce drag

    accounting for 6% of

    energy cost (e.g., ducks flying)

  • 8/18/2019 Biomecanica fracturi

    37/113

    @"f

    \#$7#)%)/ #8 (": :%*"*/()&% /'(/ "* C":%&/%C

    (/ :";'/ ();0%* /# /'% C:(; 8#:&%Lift

    Air Flow

    Drag

    Resultant

  • 8/18/2019 Biomecanica fracturi

    38/113

    @"f c $$#) %O($70%High velocity/Low Pressure

    Low velocity/High Pressure

     According to Bernoulli's Law , faster air has lower

    air pressure, and thus the high pressure beneath the

    wing pushes up to cause lift. 

  • 8/18/2019 Biomecanica fracturi

    39/113

    @"f ()C B#:$.0( X

    1  5'% C%*":% /# 8.:/'%: ")&:%(*% /'% 4:% (C'%*"#) 0%C 5E4 $([#:

    :%M#0.4#) ") :(&"); &(: C%*";)F /'% ")/:#C.&4#) #8 ")M%:/%C

    N");*FN'"&' 7:#C.&% )%;(4M% 0"f #: hC#N)8#:&%hZ 

  • 8/18/2019 Biomecanica fracturi

    40/113

    'i7,^^NNNZ)70Z.".&Z%C.^jIY(c)(/'()^7#

  • 8/18/2019 Biomecanica fracturi

    41/113

    9(;).* Yd%&/

    1  B#:&% 3:*/ C"*M%:%C

  • 8/18/2019 Biomecanica fracturi

    42/113

    e%M"%N1

     

    >")%$(4&*

     ?  0")%(: $#4#)

    1  C"*70(&%$%)/F M%0#&"/6ZZ

     ? 

    A);.0(: 9#4#)

    ();.0(: C"*70(&%$%)/k

    >")%4&*

     ?  0")%(: $#4#)

    1  $(**F ")%:4(

     ? 

    A);.0(: 9#4#)

    /#:Q.%F $#$%)/ #8 ")%:4(

    •  Fluid dynamics

     –   drag

     –  

    lift

  • 8/18/2019 Biomecanica fracturi

    43/113

    Basic Biomechanics

    • 

    Material Properties

     – 

    Elastic-Plastic

     – 

    Yield point

     – 

    Brittle-Ductile

     – 

    Toughness

    • 

    Independent of

    Shape!

    • 

    Structural Properties

     – 

    Bending Stiffness

     – 

    Torsional Stiffness

     – 

     Axial Stiffness

    • 

    Depends on Shape

    and Material!

  • 8/18/2019 Biomecanica fracturi

    44/113

    Basic BiomechanicsForce, Displacement & Stiffness

    Force

    Displacement

    Slope = Stiffness =

    Force/Displacement

  • 8/18/2019 Biomecanica fracturi

    45/113

    Basic Biomechanics

    Stress = Force/Area Strain Change Height (!L) /Original Height(L0)

    Force

    AreaL

  • 8/18/2019 Biomecanica fracturi

    46/113

    Basic BiomechanicsStress-Strain & Elastic Modulus

    Stress =

    Force/Area

    Strain =Change in Length/Original Length (!L/ L0)

    Slope =

    Elastic Modulus =

    Stress/Strain

  • 8/18/2019 Biomecanica fracturi

    47/113

    Basic BiomechanicsCommon Materials in Orthopaedics

    • 

    Elastic Modulus

    (GPa)

    • 

    Stainless Steel 200

    • 

    Titanium 100

    • 

    Cortical Bone 7-21

    • 

    Bone Cement 2.5-3.5

    • 

    Cancellous Bone

    0.7-4.9

    • 

    UHMW-PE 1.4-4.2

    Stress

    Strain

  • 8/18/2019 Biomecanica fracturi

    48/113

    Basic Biomechanics

    • 

    Elastic Deformation

    • 

    Plastic Deformation

    • 

    Energy

    Energy

    Absorbed

    Force 

    Displacement

    PlasticElastic

  • 8/18/2019 Biomecanica fracturi

    49/113

    Basic Biomechanics

    •  Stiffness-Flexibility

    •  Yield Point

    • 

    Failure Point

    • 

    Brittle-Ductile

    •  Toughness-Weakness 

    Force

    Displacement

    PlasticElastic

    Failure

    Yield

    Stiffness

  • 8/18/2019 Biomecanica fracturi

    50/113

    Stiff

    Ductile

    Tough

    StrongStiff

    BrittleStrong

    Ductile

    WeakBrittle

    Weak

    Strain

    Stress

  • 8/18/2019 Biomecanica fracturi

    51/113

    Flexible

    Ductile

    Tough

    Strong

    Flexible

    Brittle

    Strong

    Flexible

    DuctileWeak

    Flexible

    Brittle

    Weak

    Strain

    Stress

  • 8/18/2019 Biomecanica fracturi

    52/113

    Basic Biomechanics

    • 

    Load to Failure

     – 

    Continuous

    application of force

    until the materialbreaks (failure point

    at the ultimate load).

     –  Common mode offailure of bone and

    reported in theimplant literature.

    • 

    Fatigue Failure

     – 

    Cyclical sub-

    threshold loading

    may result in failuredue to fatigue.

     – 

    Common mode of

    failure of orthopaedicimplants and fracture

    fixation constructs.

  • 8/18/2019 Biomecanica fracturi

    53/113

    Basic Biomechanics

    • 

     Anisotropic

     – 

    Mechanical

    properties dependent

    upon direction ofloading

    • 

    Viscoelastic

     – 

    Stress-Strain

    character dependent

    upon rate of appliedstrain (time

    dependent).

  • 8/18/2019 Biomecanica fracturi

    54/113

    Bone Biomechanics

    • 

    Bone is anisotropic - its modulus isdependent upon the direction ofloading.

    • 

    Bone is weakest in shear, then tension,then compression.

    • 

    Ultimate Stress at Failure Cortical BoneCompression < 212 N/m2

    Tension < 146 N/m2

    Shear < 82 N/m2

  • 8/18/2019 Biomecanica fracturi

    55/113

    Bone Biomechanics

    • 

    Bone is viscoelastic: its force-

    deformation characteristics are

    dependent upon the rate of loading.

    • 

    Trabecular bone becomes stiffer in

    compression the faster it is loaded.

  • 8/18/2019 Biomecanica fracturi

    56/113

    Bone Mechanics

    • 

    Bone Density

     – 

    Subtle densitychanges greatlychanges strength

    and elastic modulus•

     

    Density changes

     –  Normal aging

     – 

    Disease

     – 

    Use – 

    Disuse

    Cortical Bone

    Trabecular Bone

    Figure from: Browner et al: Skeletal Trauma

    2nd Ed. Saunders, 1998.

  • 8/18/2019 Biomecanica fracturi

    57/113

    Basic Biomechanics

    • 

    Bending

    • 

     Axial Loading

     – 

    Tension –

     

    Compression

    • 

    Torsion

    Bending Compression Torsion

  • 8/18/2019 Biomecanica fracturi

    58/113

    Fracture Mechanics

    Figure from: Browner et al: Skeletal Trauma 2nd Ed, Saunders, 1998.

  • 8/18/2019 Biomecanica fracturi

    59/113

    Fracture Mechanics

    • 

    Bending load:

     – 

    Compression

    strength greater than

    tensile strength –

     

    Fails in tension

    Figure from: Tencer. Biomechanics in Orthopaedic

    Trauma, Lippincott, 1994. 

  • 8/18/2019 Biomecanica fracturi

    60/113

    Fracture Mechanics

    • 

    Torsion

     –  

    The diagonal in the direction of the applied force is in

    tension – cracks perpendicular to this tension diagonal

     –  

    Spiral fracture 45º to the long axis

    Figures from: Tencer. Biomechanics in Orthopaedic

    Trauma, Lippincott, 1994.

  • 8/18/2019 Biomecanica fracturi

    61/113

    Fracture Mechanics

    • 

    Combined bending

    & axial load

     – 

    Oblique fracture

     – 

    Butterfly fragment

    Figure from: Tencer. Biomechanics in Orthopaedic

    Trauma, Lippincott, 1994.

  • 8/18/2019 Biomecanica fracturi

    62/113

    Moments of Inertia

    • 

    Resistance to

    bending, twisting,

    compression or

    tension of an object isa function of its shape

    • 

    Relationship of

    applied force to

    distribution of mass(shape) with respect

    to an axis. Figure from: Browner et al, Skeletal Trauma 2nd Ed,Saunders, 1998.

     

  • 8/18/2019 Biomecanica fracturi

    63/113

    Fracture Mechanics

    • 

    Fracture Callus

     – 

    Moment of inertia

    proportional to r 4

     – 

    Increase in radius bycallus greatly

    increases moment of

    inertia and stiffness

    1.6 x stronger

    0.5 x weakerFigure from: Browner et al, Skeletal Trauma2nd Ed, Saunders, 1998. Figure from: Tencer et al: Biomechanics in

    Orthopaedic Trauma, Lippincott, 1994.

  • 8/18/2019 Biomecanica fracturi

    64/113

    Fracture Mechanics

    • 

    Time of Healing

     – 

    Callus increases

    with time

     – 

    Stiffness

    increases with

    time

     – 

    Near normal

    stiffness at 27

    days –

     

    Does not

    correspond to

    radiographs

    Figure from: Browner et al, Skeletal Trauma,

    2nd Ed, Saunders, 1998.

     

  • 8/18/2019 Biomecanica fracturi

    65/113

    IM Nails

    Moment of Inertia•

     

    Stiffness

    proportional to the

    4th power.

    Figure from: Browner et al, Skeletal Trauma, 2nd Ed,

    Saunders, 1998.

  • 8/18/2019 Biomecanica fracturi

    66/113

    IM Nail Diameter 

    Figure from: Tencer et al, Biomechanics in Orthopaedic Trauma, Lippincott, 1994.

  • 8/18/2019 Biomecanica fracturi

    67/113

    Slotting

    Figure from: Tencer et al, Biomechanics

     in Orthopaedic Trauma, Lippincott, 1994.

    Figure from Rockwood and Green’s, 4th Ed

     

    • Allows more flexibility

    • 

    In bending

    • Decreases torsional strength

  • 8/18/2019 Biomecanica fracturi

    68/113

    Slotting-Torsion

    Figure from: Tencer et al, Biomechanics

     in Orthopaedic Trauma, Lippincott, 1994.

  • 8/18/2019 Biomecanica fracturi

    69/113

    Interlocking Screws

    •  Controls torsion and axialloads 

    •   Advantages  –   Axial and rotational stability

     –   Angular stability

    • 

    Disadvantages –  Time and radiation

    exposure

     –  Stress riser in nail

    • 

    Location of screws –  Screws closer to the end

    of the nail expand thezone of fxs that can befixed at the expense ofconstruct stability

  • 8/18/2019 Biomecanica fracturi

    70/113

    Biomechanics of Internal Fixation

  • 8/18/2019 Biomecanica fracturi

    71/113

  • 8/18/2019 Biomecanica fracturi

    72/113

    Biomechanics of Screw Fixation

    • 

    To increase strength

    of the screw & resist

    fatigue failure:

     – 

    Increase the innerroot diameter

    • 

    To increase pull out

    strength of screw in

    bone:

     – 

    Increase outerdiameter

     – 

    Decrease inner

    diameter

     –  Increase thread density

     –  Increase thickness ofcortex

     – 

    Use cortex with more

  • 8/18/2019 Biomecanica fracturi

    73/113

    Biomechanics of Screw Fixation

    • 

    Cannulated Screws

     –  

    Increased inner

    diameter required

     –  

    Relatively smallerthread width results in

    lower pull out strength

     –  

    Screw strength

    minimally affected

    (! r 4outer core - r 4inner core ) 

    Figure from: Tencer et al, Biomechanics in

    OrthopaedicTrauma, Lippincott, 1994.

  • 8/18/2019 Biomecanica fracturi

    74/113

    Biomechanics of Plate Fixation

    • 

    Plates:

     – 

    Bending stiffness

    proportional to the

    thickness (h) ofthe plate to the 3rd 

    power.I= bh3/12

    Base (b)

    Height

    (h)

  • 8/18/2019 Biomecanica fracturi

    75/113

    Biomechanics of Plate Fixation

    • 

    Functions of the plate

     –  

    Compression

     –  

     Neutralization

     –  

    Buttress

    •  “The bone protects the

     plate” 

  • 8/18/2019 Biomecanica fracturi

    76/113

    Biomechanics of Plate Fixation

    • 

    Unstable constructs

     – 

    Severe comminution

     – 

    Bone loss

     – 

    Poor quality bone –

     

    Poor screw

    technique

  • 8/18/2019 Biomecanica fracturi

    77/113

    Biomechanics of Plate Fixation

    • 

    Fracture Gap /Comminution

     – 

     Allows bending of plate with

    applied loads

     – 

    Fatigue failure

    Applied Load

    BonePlate

    Gap

  • 8/18/2019 Biomecanica fracturi

    78/113

    Biomechanics of Plate Fixation

    • 

    Fatigue Failure

     – 

    Even stable

    constructs may fail

    from fatigue if thefracture does not

    heal due to biological

    reasons.

  • 8/18/2019 Biomecanica fracturi

    79/113

    Biomechanics of Plate Fixation

    • 

    Bone-Screw-Plate

    Relationship

     – 

    Bone via

    compression –

     

    Plate via bone-plate

    friction

     – 

    Screw via resistance

    to bending and pull

    out.

    Applied Load

  • 8/18/2019 Biomecanica fracturi

    80/113

    Biomechanics of Plate Fixation

    • 

    The screws closest

    to the fracture see

    the most forces.

    • 

    The construct rigiditydecreases as the

    distance between

    the innermost

    screws increases. Screw Axial Force

  • 8/18/2019 Biomecanica fracturi

    81/113

    Biomechanics of Plate Fixation

    • 

    Number of screws (cortices)recommended on each side ofthe fracture:

    Forearm 3 (5-6)

    Humerus 3-4 (6-8)

    Tibia 4 (7-8)

    Femur 4-5 (8)

  • 8/18/2019 Biomecanica fracturi

    82/113

    Biomechanics of Plating

    • 

    Tornkvist H. et al: JOT 10(3) 1996, p

    204-208

    • 

    Strength of plate fixation ~ number of

    screws & spacing (1 3 5 > 123)

    • 

    Torsional strength ~ number of screws

    but not spacing

  • 8/18/2019 Biomecanica fracturi

    83/113

    Biomechanics of External Fixation

  • 8/18/2019 Biomecanica fracturi

    84/113

    Biomechanics of External Fixation

    • 

    Pin Size

     – 

    {Radius}4

     – 

    Most significant

    factor in framestability

  • 8/18/2019 Biomecanica fracturi

    85/113

    Biomechanics of External Fixation

    • 

    Number of Pins

     – 

    Two per segment

     – 

    Third pin

  • 8/18/2019 Biomecanica fracturi

    86/113

    Biomechanics of External Fixation

    A

    B

    CThird pin (C)

    out of plane of

    two other pins

    (A & B)

    stabilizes that

    segment.

  • 8/18/2019 Biomecanica fracturi

    87/113

    Biomechanics of External Fixation

    •  Pin Location

     –  

    Avoid zone of injury or future ORIF

     –   Pins close to fracture as possible

     –  

    Pins spread far apart in each fragment

    • 

    Wires

     –   90º

  • 8/18/2019 Biomecanica fracturi

    88/113

  • 8/18/2019 Biomecanica fracturi

    89/113

    Biomechanics of External Fixation

    • 

    SUMMARY OF EXTERNAL FIXATOR STABILITY:Increase stability by:

    1] Increasing the pin diameter.

    2] Increasing the number of pins.

    3] Increasing the spread of the pins.

    4] Multiplanar fixation.5] Reducing the bone-frame distance.

    6] Predrilling and cooling (reduces thermal necrosis).

    7] Radially preload pins.

    8] 90° tensioned wires.

    9] Stacked frames.

    **but a very rigid frame is not always good.

  • 8/18/2019 Biomecanica fracturi

    90/113

    Ideal Construct

    •  Far/Near - Near/Far on either side of fx

    •  Third pin in middle to increase stability

    • 

    Construct stability compromised withspanning ext fix – avoid zone of injury (far/

    near – far/far)

  • 8/18/2019 Biomecanica fracturi

    91/113

    Biomechanics of Locked

    Plating

    Conventional Plate Fixation

    Courtesy of Synthes- Robi Frigg

  • 8/18/2019 Biomecanica fracturi

    92/113

    Patient Load 

    Conventional Plate Fixation

    Patient Load

  • 8/18/2019 Biomecanica fracturi

    93/113

    Locked Plate and Screw Fixation

    Patient Load =<Compressive

    Strength of theBone

    St i th B

    Courtesy of Synthes- Robi Frigg

  • 8/18/2019 Biomecanica fracturi

    94/113

    Stress in the Bone

    Patient Load 

    +  Preload 

    St d d L k d L di

    Courtesy of Synthes- Robi Frigg

  • 8/18/2019 Biomecanica fracturi

    95/113

    Standard versus Locked Loading

    Pullout of regular screwsCourtesy of Synthes- Robi Frigg

  • 8/18/2019 Biomecanica fracturi

    96/113

    Pullout of regular screws

    by bending load

    Higher resistant LHSCourtesy of Synthes- Robi Frigg

  • 8/18/2019 Biomecanica fracturi

    97/113

    g

    against bending load

    Larger resistant area

  • 8/18/2019 Biomecanica fracturi

    98/113

    Biomechanical Advantages of

    Locked Plate Fixation

    • 

    Purchase of screws to bone not critical

    (osteoporotic bone)

    •  Preservation of periosteal blood supply

    • 

    Strength of fixation rely on the fixed angle

    construct of screws to plate

    •  Acts as “internal” external fixator

    Preservation of Blood Supply

  • 8/18/2019 Biomecanica fracturi

    99/113

    Preservation of Blood Supply

    Plate Design

    DCP LCDCP

    Preservation of Blood SupplyCourtesy of Synthes- Robi Frigg

  • 8/18/2019 Biomecanica fracturi

    100/113

    Preservation of Blood SupplyLess bone pre-stress

    Conventional Plating

    • 

    Bone is pre-stressed

    • Periosteum strangled

    Locked Plating

    • 

    Plate (not bone) is pre-stressed

    • Periosteum preserved

    Angular Stability of ScrewsCourtesy of Synthes- Robi Frigg

  • 8/18/2019 Biomecanica fracturi

    101/113

    Angular Stability of Screws

    LockedNonlocked

    Biomechanical principlesCourtesy of Synthes- Robi Frigg

  • 8/18/2019 Biomecanica fracturi

    102/113

    similar to those of external fixators

    Stress distribution

    Surgical TechniqueCourtesy of Synthes- Robi Frigg

  • 8/18/2019 Biomecanica fracturi

    103/113

    g qCompression Plating

    • 

    The contoured plate maintains anatomical

    reduction as compression between plate and bone

    is generated. •

     

    A well contoured plate can then be used to help reduce

    the fracture.  Traditional Plating

    Surgical TechniqueCourtesy of Synthes- Robi Frigg

  • 8/18/2019 Biomecanica fracturi

    104/113

    g qReduction

    If the same technique is attempted with a locked plate and locking screws, an anatomical reduction

    will not be achieved. Locked Plating

  • 8/18/2019 Biomecanica fracturi

    105/113

    S i l T h i

  • 8/18/2019 Biomecanica fracturi

    106/113

    Surgical TechniquePrecontoured Plates

    1. Contour of plate is importantto maintain anatomic

    reduction.

    Conventional Plating Locked Plating

    1. Reduce fracture prior toapplying locking screws.

    Unlocked vs Locked Screws

  • 8/18/2019 Biomecanica fracturi

    107/113

    Biomechanical Advantage

    Unlocked vs Locked Screws

    1. Force distribution2. Prevent primary reduction loss

    Sequential Screw Pullout Larger area of resistance

    3. Prevent secondary reduction loss4. “Ignores” opposite cortex integrity

    5. Improved purchase on osteoporotic bone

    Surgical TechniqueCourtesy of Synthes- Robi Frigg

  • 8/18/2019 Biomecanica fracturi

    108/113

    g qReduction with Combination Plate

    Lag screws can be used to help reduce fragmentsand construct stability improved w/ locking screws

      Locked Plating

  • 8/18/2019 Biomecanica fracturi

    109/113

  • 8/18/2019 Biomecanica fracturi

    110/113

    Hybrid Fixation

    • 

    Combine benefits of both standard &

    locked screws

    • 

    Precontoured plate

    • 

    Reduce bone to plate, compress & lag

    through plate

    • 

    Increase fixation with locked screws at

    end of construct

  • 8/18/2019 Biomecanica fracturi

    111/113

  • 8/18/2019 Biomecanica fracturi

    112/113

  • 8/18/2019 Biomecanica fracturi

    113/113

    Questions?

     

    If you would like to volunteer as an author for