water pollution biology

Download Water pollution biology

Post on 21-Aug-2014




13 download

Embed Size (px)




  • Water Pollution Biology
  • Water Pollution Biology Second Edition P.D.ABEL The Northumbrian Water Ecology Centre, University of Sunderland,Sunderland, UK
  • UK Taylor & Francis Ltd, 11 New Fetter Lane, London, EC4P 4EE USA Taylor & Francis Inc., 325 Chestnut Street, 8th Floor, Philadelphia, DA 19106 Taylor & Francis is an imprint of the Taylor & Francis Group This edition published in the Taylor & Francis e-Library, 2002. Copyright Taylor & Francis Ltd 1996 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library. ISBN 0-203-48374-X Master e-book ISBN ISBN 0-203-79198-3 (Adobe eReader Format) ISBN 0-7484-0661-1 (cased) ISBN 0-7484-0619-0 (paperback) Library of Congress Cataloging in Publication Data are available Cover design by Youngs Design in Production
  • Contents Preface to Second Edition ix 1 Water Pollution Problems and Solutions 1 1.1 The scale of water pollution 2 1.2 Metalliferous rivers 4 1.2.1 The Rivers East and West Allen 8 1.2.2 Physical and Chemical Survey 10 1.2.3 Biological Survey 12 1.2.4 Zinc Toxicity 14 1.2.5 Some Further Questions 17 1.3 Toxicity and the status of fisheries 20 2 Sources and Effects of Water Pollutants 29 2.1 The nature of effluents 29 2.2 The environmental requirements of aquatic organisms 32 2.3 Organic pollution 35 2.4 Nutrient pollution 41 2.5 Eutrophication 42 2.6 Thermal pollution 45 2.7 Toxic pollution 52 2.7.1 Heavy Metals 53 2.7.2 Ammonia, Cyanides and Phenols 55 2.7.3 Pesticides 56 2.8 Suspended solids 57 2.9 Extreme pH and acidification 58 2.10 Detergents 63 2.11 Oil and petroleum products 65 v
  • 3 Biological Monitoring of Water Quality 67 3.1 The conceptual basis of biological monitoring 67 3.2 Indicator organisms 71 3.3 Sampling methods 73 3.3.1 Evaluating Sampling Techniques 80 3.4 Data analysis and interpretation 83 3.4.1 Pollution Indices 85 3.4.2 Diversity Indices 87 3.4.3 Biotic Indices 90 3.4.4 Similarity Indices 95 3.4.5 Other Multivariate Techniques 104 3.4.6 RIVPACS 105 3.4.7 Some General Comments about Data Analysis and Interpretation 109 4 The Toxicity of Pollutants to Aquatic Organisms 113 4.1 Lethal toxicity and its measurement 115 4.1.1 The Experimental Conditions 115 4.1.2 Data Collection and Analysis 116 4.1.3 Probit Lines 119 4.1.4 Toxicity Curves 122 4.1.5 Alternative Methods for Measuring Lethal Toxicity 127 4.2 Factors influencing toxicity 128 4.2.1 The Toxic Properties of the Pollutant 128 4.2.2 The Effects of Environmental Conditions 130 4.2.3 Combinations of Poisons 134 4.2.4 Fluctuating Concentrations 138 4.2.5 Biotic Factors Influencing Toxicity 139 4.2.6 Intraspecific Variation 141 4.3 Applications of lethal toxicity measurements 142 4.4 Sublethal toxicity 145 4.4.1 Single-species Toxicity Tests 146 4.4.2 Experimental Ecosystems 153 4.4.3 Bioaccumulation 156 4.5 Evaluating toxicological data 159 4.6 Quantitative structure-activity relationships (QSARs) 161 5 Water Pollution and Public Health 165 5.1 Water pollution and pathogens 166 5.1.1 Bacterial Pathogens 166 5.1.2 Viral Pathogens 170 5.1.3 Parasitic Infections 172 5.1.4 Pathogens in the Aquatic Environment and in Waste Water Treatment Processes 175 5.2 Monitoring pathogens in water 176 Contents vi
  • 5.2.1 Monitoring for Coliforms 177 5.2.2 Monitoring for Viruses 181 5.2.3 Monitoring for Parisites 181 5.3 Water pollution and water supply 182 5.3.1 Potable Water Supply 182 5.3.2 Agricultural Water Supply 183 5.3.3 Industrial Water Supply 184 6 Water Pollution Control 187 6.1 Biological treatment of waste water 188 6.1.1 Primary Treatment 189 6.1.2 Secondary Treatment 190 6.1.3 Tertiary Treatment 195 6.1.4 Sludge Disposal 196 6.1.5 Biological Treatment of Industrial Waste Water 198 6.2 The legislative and administrative framework of water pollution control 199 6.2.1 The Polluter Pays Principle 201 6.2.2 Receiving Water Quality Standards 202 6.2.3 Emission Standards 207 6.2.4 Water Quality Objectives 209 6.3 Water pollution law in practice 214 6.3.1 Water Pollution Law in Britain 216 6.3.2 European Water Pollution Law 218 6.3.3 Water Pollution Law in the USA 221 7 Estuarine and Marine Pollution 225 7.1 Pollution of estuaries 226 7.2 Pollution of the seas 230 7.2.1 Oil Pollution 231 7.2.2 Sewage and Domestic Wastes 234 7.2.3 Toxic Pollutants 236 7.3 Marine biological monitoring 241 7.3.1 Indicator Organisms 241 7.3.2 Sampling Methodology 245 7.3.3 Data Analysis 247 7.4 International co-operation on marine pollution 248 References 255 Index 279 Contents vii
  • Preface to Second Edition The first edition of this book having been on the whole well received, I have tried to retain as far as possible its general style and character in the second. Nevertheless some sections have needed extensive revision and updating, and I have taken the opportunity to expand or develop some topics, often in response to the many constructive suggestions I have received from readers and reviewers, and from my own students. Inevitably, I have had to delete some material for reasons of space. The main changes are to revise, update and extend those areas in which there have been significant technical advances, or which were perhaps inadequately covered in the first edition. To keep the book within manageable proportions, I have omitted some material which was included in the first edition; in most cases, this material is by now readily accessible elsewhere and has been appropriately referenced. I have rewritten and/or restructured some sections of the book, to take account of the comments I have received regarding the readers impression of the most appropriate order in which the material should be presented. Readers of the first edition may detect some greater reliance on secondary sources than was shown in the first. This reflects the increased availability of high-quality monographs and reviews since the first edition. It also, sadly, reflects the experience which I and colleagues at other universities have had over the last few years that students simply no longer have ready access to primary sources, and increasingly do not have the opportunity to develop the skills required to assess and evaluate them. This may be a trend which many deplore, but we have little choice other than, as authors and teachers, to modify our approach to suit the changing circumstances. Nevertheless I still believe that the main purpose of this second edition is the same as the first: To impart not only factual information, but also some idea of the areas of uncertainty which must remain; to impart to the reader some sense of how he/she may evaluate for him/herself the quality and reliability of the vast amount of material he/she may encounter; and to concentrate on the elucidation of principles rather than the promulgation of data. In relation to this aim, I have not been inhibited in preferring sometimes to cite older, original material over more recently-dated sources. The rate of increase in knowledge and understanding, even in science, is often slower than the rate of increase in the number of published works. Also, the ix
  • understanding of basic principles and methodology is often more easily achieved through the study of clear and accessible examples, which are sometimes rare in material published under the constraints of space and jargon which are characteristic of many modern journals. One of the fascinations of studying water pollution is that it demands some familiarity with a wide range of specialisms. In the following pages, I have been foolhardy enough to attempt to touch upon subjects ranging from molecular biology to international law, all of which are relevant to my chosen topic. I cannot write with equal authority and fluency upon all of these subjects, so in many cases I have had to rely heavily upon the assistance and advice of colleagues. I am obstinate enough sometimes to have followed my own path, so must accept responsibility for any errors of fact or interpretation which remain. Many of my colleagues may not even be aware of the extent of their assistance, perhaps because in conversation they have set off a train of thought or drawn my attention to a source of information. Their contributions are no less valued for that, but some have offered me very specific and extensive support or assistance, including Dr A.Abbott, Mr A. Milne, Ms K.Shepherd and Dr D.Reid. I am particularly grateful to Ms L.Kiakides, who has afforded me every form of help, both in the preparation of the book itself and in shouldering many responsibilities which were properly mine in order to allow me to finish it. P.D.Abel Sunderland, UK x Preface to the second edition
  • 1 Water Pollution Problems and Solutions Water is one of our most important natural resources, and there are many conflicting demands upon it. Skilful management of our water bodies is required if they are to be used for such diverse purposes as domestic and industrial supply, crop irrigation, transport, recreation, sport and commercial fisheries, power generation, land drainage and flood protection, and waste disposal. An important objective of most