transport across the tropical tropopause by convection ......ape-theseo 2-3/1999 non-convective...

17
C. Michael Volk, J. Baehr, C. Homan, A.C. Kuhn, A. Werner, S. Viciani, A. Ulanovsky, F. Ravegnani, P. Konopka, D. Brunner 4 th SPARC General Assembly Bologna, 4 September 2008 Transport across the tropical tropopause by convection, mixing, and slow upwelling: Insights from recent in situ observations with the Geophysica aircraft

Upload: others

Post on 19-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • C. Michael Volk, J. Baehr, C. Homan, A.C. Kuhn, A. Werner, S. Viciani, A. Ulanovsky, F. Ravegnani, P. Konopka, D. Brunner

    4th SPARC General AssemblyBologna, 4 September 2008

    Transport across the tropical tropopause

    by convection, mixing, and slow upwelling:

    Insights from recent in situ observations with

    the Geophysica aircraft

  • Transport Processes in the Tropical Tropopause Region

    Stratospheric

    Subtropical barrierIsolated tropical stratosphere

    Goal: Quantitative understanding of the balance between the dominant transport

    processes as function of time and space

    (from Konopka et al. ACP 2007)

  • M55 In situ Tracer Measurements

    HAGAR (Univ. Frankfurt)

    N2O, F11, F12, H1211, SF6, CO2

    (CH4, CO, H2)

    FOZAN (CAO, Russia): O3

    COLD (INOA, Italy): CO

  • Campaign locations 1999-2006 (incl. transfer flights)

    Adapted from S. Borrmann

    MarrakeshMarocco

    OuagadougouBurina Faso

    AccraGhana

    VeronaItaly

    Seychelles

    TroCCiNOx 2/2005Continental convection

    APE-THESEO 2-3/1999Non-convective

    SCOUT-O3 11-12/2005Maritime Convection

    AMMA 8/2006Cont. Convection

    Total # of tropical flights: 44

  • 300

    250

    200

    150

    100

    FO

    ZA

    N O

    3 (

    pp

    b)

    320318316314312

    HAGAR N2O (ppb)

    AMMA Flights 060804, 060808, 060811, 060813

    Correlation Coefficients R:355-365 K: R = -0.15

    365-375 K: R = -0.025

    375-385 K: R = -0.39

    385-395 K: R = -0.51395-405 K: R = -0.39

    Confidence level > 95%

    320310300290

    HAGAR N2O (ppb)

    420

    400

    380

    360

    340

    Th

    eta

    (K

    )

    40 30 20 10

    Latitude (°N)

    Flight Dates 060804

    060808 060811 060813 060729 060731

    060801 060816 060817

    no low

    N2O in

    TTL

    TTL: Stratospheric (horizontal) inmixing above W. Africa 2006?

    No significant negative

    O3-N2O correlation

    below CPT

    fraction of aged air small (

  • Significant anti-correlations between O3 and F12 found everywhere

    between 365 K and 380 K indicate significant stratospheric influence.

    (see poster by A.C. Kuhn et al.)

    The CLaMS model calculates a fraction of 30-40% of TTL air over subtropical Brazil originating from the

    stratosphere

    TTL: Stratospheric inmixing above Brazil 2005?

  • Brazil 2005

    Convective uplift of boundary layer air into the TTL: CO2

    051130b

    355 K

    Max. outflow level ~ 355 K

    Darwin 2005

    378376374372

    CO2 [µmol/mol]

    20

    15

    10

    5

    0

    Altitude [km

    ]

    Storm chase February 4th(ascent and descent)

    median profile(non-convectiveflights)

    convective influence up to 17 km

  • 377376375374CO2 [nmol/mol]

    Flight Dates 050201 050204 050205 050212

    050215 050217 050218

    050204 Theta: 355-378 K

    300

    250

    200

    150

    100

    50

    0

    FO

    ZA

    N O

    3 [

    nm

    ol/m

    ol]

    120100806040

    TDL CO [nmol/mol]

    Flight Dates

    050204 050205 050212 050215 050218

    Troposphere

    TTL

    Stratosphere

    Mixing of overshooting air

    (see poster by J. Baehr et al.)

    vertical transport of convectively detraining air to the upperTTL by mixing

    Mixing of overshooting air in the TTL: Brazil 2005 correlations

  • 10090807060504030

    COLD CO (ppb)

    150100500

    FOZAN O3 (ppb)

    400

    380

    360

    340

    320

    Th

    eta

    (K

    )

    "Background" Flights 051119

    051123

    051125

    051129

    Background Average

    051130 Flights M55 afternoon

    M55 evening

    O3 sonde afternoon O3 sonde evening

    Vertical mixing in the TTL over Darwin 11/2005

    Enhanced O3 and CO levels on 051130 consistent with vertical mixing(not consistent with horizontal stratospheric inmixing into TTL)

    Enhanced CO

    Enhanced O3

  • D. Brunner

    Most likely explanation for high O3 and CO levels:

    Vertical mixing in the vicinity of the subtropical jet

    Vertical cross section at 110°E of the wind speed (color contours) and PV (black contours).

    => air travels alongthe edge of the

    subtropical jet

    => vertical wind

    shear facilitatessmall-scale mixing

    White squares: crossing of backward trajectories from Geophysica flight track

  • The subtropical jet as a major agent for vertical mixing

    CLaMS: Chemical Langrangian Model of the Stratosphere

    (Konopka et al., 2007)

    Vertical diffusivity at 380 K (February)

  • 382380378376374CO2 (ppmv)

    440

    420

    400

    380

    360

    340

    The

    ta (

    K)

    Flight Dates 060804 060808 060811 060813

    Convection versus slow ascent: CO2 profiles West Africa

    ~15 km

    Max. convective outflow ~ 14-15 km

    Coherent tape

    recorder signal due to slow ascent

    Satellite picture flight 11th Aug.

    Small features at 08-08-2006 due to overshooting convection ?

  • Define mean CO2surface = average Mauna Loa +Samoa

    385

    380

    375

    370

    CO

    2 (

    pp

    m)

    200720062005200420032002Year

    CO2 tracer clock to quantify slow ascent

    CO2 tape recorder

    Use seasonal change of CO2 to measure mean age since entering the TTL

    NOAA ESRL (Conway et al.)

    Assumptions:

    • At TTL bottom (~350 K): CO2(t) = CO2surface(t)

    • Uniform ascent rate in the TTL w = dθ/dt

    • => match “model” profile in region dominated by slow ascent

    (360 < θ < 390 K): CO2(θ, t) = CO2surface (t – [θ-350K]/w)

    AMMA

    SCOUT-O3TROCCINOX

  • 382381380379378377376CO2 (ppmv)

    420

    400

    380

    360

    340

    Th

    eta

    (K

    )

    Flight Dates060804060811060813

    grey: all datared: data with F12>532 ppm 0.5K/day

    0.6 K/day

    0.4 K/day

    AMMA – August 2006

    Mean ascentrate in the TTL:

    0.5 +/-0.1 K/day

    => Air ascended since mid June

    390 K

    360 K

  • SCOUT-O3- November/December 2005

    Mean ascentrate in the TTL:

    0.5 +/-0.1 K/day

    380379378377CO

    2 (ppmv)

    400

    390

    380

    370

    360

    350

    340

    330

    Th

    eta

    (K

    )

    Flight Dates051123051125051128051129051206

    grey: all flights red: f12> 532 ppm

    0.6 K/day 0.5 K/day

    0.4 K/day

    390 K

    360 K=> Air ascended since early October

  • 380379378377376375374373CO2 (ppmv)

    420

    400

    380

    360

    340

    Th

    eta

    (K

    )

    Flight Dates050212050215050217050218050224050227a050227b

    grey: all datared: data with F12>532 ppm

    1.7 K/day

    1.4 K/day 2.0 K/day

    TROCCINOX- February 2005

    390 K

    370 K

    Mean ascentrate in the TTL:

    1.7 +/-0.6 K/day

    => Air ascended since late January

  • Conclusions

    • Horizontal inmixing of aged stratospheric air into TTL: appears to be common close to the subtropical jets, but not in inner tropics

    • Convection: Max. outflow levels @ ~365 K or ~15 km, max. in Darwin

    • Vertical mixing following convective overshooting:

    can effect much higher levels (~ 390K or 17 km observed over Brazil 2005) => causes strat.-trop. exchange

    W. Africa: possibly influence of overshooting up to 420 K

    • Vertical mixing along subtropical jets:

    likely a major agent for tropical stratosphere-troposphere exchange !

    • Mean diabatic ascent (360-390K) derived from CO2 clock:

    June/July 2006: 0.5 +/- 0.1 K/day

    Oct./Nov. 2005: 0.5 +/- 0.1 K/day

    Jan./Feb. 2005: 1.7 +/- 0.6 K/day