thin film silicon technology - aeit sez. di...

18
1 Thin film silicon technology Cosimo Gerardi 3SUN R&D Tech. Coordinator

Upload: others

Post on 25-Jul-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Thin film silicon technology - AEIT Sez. di Cataniaaeit.diees.unict.it/.../3SUN_Technology_presentation.pdf• Technology roadmap Solar Cell Technology: Why Thin Film Si? Solar cell

1

Thin film silicon technology

Cosimo Gerardi 3SUN R&D Tech. Coordinator

Page 2: Thin film silicon technology - AEIT Sez. di Cataniaaeit.diees.unict.it/.../3SUN_Technology_presentation.pdf• Technology roadmap Solar Cell Technology: Why Thin Film Si? Solar cell

Outline

• Why thin film Si? • Advantages of Si thin film • Si thin film vs. other thin film • Hydrogenated amorphous silicon • Energy gap / band gap engineering • Tandem junction: amorphous/microcrystalline Si • Triple junction and multiple junctions • Light trapping • Technology roadmap

Page 3: Thin film silicon technology - AEIT Sez. di Cataniaaeit.diees.unict.it/.../3SUN_Technology_presentation.pdf• Technology roadmap Solar Cell Technology: Why Thin Film Si? Solar cell

Solar Cell Technology: Why Thin Film Si?

Solar cell Si raw material Efficiency Peak power Peak power

c-Si 1200-1300 g/m2 16% 160W/m2 0.13W/g

TF-Si 5 g/m2 10% 100W/m2 20W/g

Large area on glass

Flexible plastics

Transparency

Page 4: Thin film silicon technology - AEIT Sez. di Cataniaaeit.diees.unict.it/.../3SUN_Technology_presentation.pdf• Technology roadmap Solar Cell Technology: Why Thin Film Si? Solar cell

Air mass

T. Watanabe, Sharp, “4th Saudi Solar Energy Forum”, May 8-9t , Riyadh Saudi Arabia (2013)

Page 5: Thin film silicon technology - AEIT Sez. di Cataniaaeit.diees.unict.it/.../3SUN_Technology_presentation.pdf• Technology roadmap Solar Cell Technology: Why Thin Film Si? Solar cell

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

0 20 40 60 80 100

Nor

mal

ized

out

put

Temperature (°C)

amorphousc-Si

Temperature coefficient

The output of thin-film silicon solar cell decreases by only 0.23% when temperature increases by one degree, while that of crystalline silicon cell decreases by 0.45%

(Sharp@IEEE-IEDM 2008)

Page 6: Thin film silicon technology - AEIT Sez. di Cataniaaeit.diees.unict.it/.../3SUN_Technology_presentation.pdf• Technology roadmap Solar Cell Technology: Why Thin Film Si? Solar cell

Robust structure: long term stability

T. Watanabe, Sharp, “4th Saudi Solar Energy Forum”, May 8-9t , Riyadh Saudi Arabia (2013)

Page 7: Thin film silicon technology - AEIT Sez. di Cataniaaeit.diees.unict.it/.../3SUN_Technology_presentation.pdf• Technology roadmap Solar Cell Technology: Why Thin Film Si? Solar cell

Structure of glass-glass module

High barrier encapsulant material

Page 8: Thin film silicon technology - AEIT Sez. di Cataniaaeit.diees.unict.it/.../3SUN_Technology_presentation.pdf• Technology roadmap Solar Cell Technology: Why Thin Film Si? Solar cell

a-Si:H distribution of density of allowed energy states for electrons

8

Direct optical transitions are not forbidden in amorphous Si

(because of disorder)

Better light absorption than c-Si

Heavily hydrogenated network.

1-10% H2 content

Page 9: Thin film silicon technology - AEIT Sez. di Cataniaaeit.diees.unict.it/.../3SUN_Technology_presentation.pdf• Technology roadmap Solar Cell Technology: Why Thin Film Si? Solar cell

Conventional p - n junction solar cell

• For an abrupt p-n junction with constant doping on each side there are no electric field outside the depletion region.

• Photogenerated carriers in these regions are collected by a diffusion process while in the depletion region by drift

VOC

JSC

Current Density

Voltage

DarkLight

JL JM

VM

e-

n-type layer

h+p-type layer

Metal grid Antireflective layerSunlight

Back Metal Contacthν > EG

EF

Vbi

Electron Hole

EC

EV

Vp

BSFpn

n p p+

Page 10: Thin film silicon technology - AEIT Sez. di Cataniaaeit.diees.unict.it/.../3SUN_Technology_presentation.pdf• Technology roadmap Solar Cell Technology: Why Thin Film Si? Solar cell

Amorphous a-Si:H: p-i-n

i p n • Carriers are photogenerated in the

intrinsic region and collected by drift • p and n doped layers are very thin 15-

20nm to allow all available photons to absorbed by the i-layer.

• The excess doping level induces many defects/traps in n and p layers that recombine the photo-generated carriers

• Typically the p-a-Si:H layer is a p-a-SiC:H layer (Eg~2eV) that

• The I a-Si: layer must be below 300nm to reduce Staebler-Wronsky light induced degradation

Page 11: Thin film silicon technology - AEIT Sez. di Cataniaaeit.diees.unict.it/.../3SUN_Technology_presentation.pdf• Technology roadmap Solar Cell Technology: Why Thin Film Si? Solar cell

Energy gap

Light Eg1 Eg2 Eg3

Absorbed light

hυ>Eg~hυ>>Eg

Thermalization losses

Thermalization losses

(a) (b)Light

Energy=hυ

One junction

Multiple junction

Page 12: Thin film silicon technology - AEIT Sez. di Cataniaaeit.diees.unict.it/.../3SUN_Technology_presentation.pdf• Technology roadmap Solar Cell Technology: Why Thin Film Si? Solar cell

Amorphous Eg=1.7-1.8eV «High» absorption in the green-blue

Microcrystalline Eg=1.1eV «High» absorption in the red-near I.R.

Enhanced absorption: double junction/tandem

Wavelength (nm)

Ligh

t int

ensi

ty (

kW/m

2 µm

) “spectrum splitting.”

Micromorph cell efficiency 11-14% Micromorph module efficiency 8.5-10.8%

glass

TCOa-Si:H – Top cell

µc-Si:H – Top cell

Back reflector

~3mm

~2µm

Light

Page 13: Thin film silicon technology - AEIT Sez. di Cataniaaeit.diees.unict.it/.../3SUN_Technology_presentation.pdf• Technology roadmap Solar Cell Technology: Why Thin Film Si? Solar cell

Amorphous and Microcrystalline silicon

13

Two materials with the same process: PECVD

a-Si:H Eg=1.8eV µc-Si:H Eg=1.1 eV

Typical process temperature: -180C a-Si:H -150C µc-Si:H Plasma conditions: 13.56 MHz 10-15kW Deposition rate ~ 0.5nm/s

Cathode

Anode

Plasma Substrate

Page 14: Thin film silicon technology - AEIT Sez. di Cataniaaeit.diees.unict.it/.../3SUN_Technology_presentation.pdf• Technology roadmap Solar Cell Technology: Why Thin Film Si? Solar cell

From Single to Multiple junctions • Single Junction

–aSi:H cell with enhanced light trapping – TCO and Texturing Efficiency: 6 to 8% on module

• Double Junction / Tandem cell –highest theoretical efficiency: combination of absorber materials having band gap 1.8 eV (a-Si:H) for the top and 1.1 eV (µc-Si:H) for the bottom cell. Efficiency 12.5% on cell 10% on large module

• Triple junction / Quadruple Junction –a-SiGe:H middle absorber –a-Si:H/a-SiGe:H/ µc-Si:H Efficiency: 14-15% on cell, 12% on large module

Possible drawbacks of triple junction:

• Reduced throughput:~ 25% lower with respect to Tandem

• Power stabilization weakness (light induced degradation) of a-SiGe:H (15% to 18% LID degradation factor)

• Quadruple Junction Approach: Higher Voc and improved LID degradation

glass

textured TCO

a-Si:H top absorber

a-SiGe:Hmiddle absorber

µc-Si:H bottom absorber

ZnOAg

Eg: 1.752eV

Eg: 1.45eV

Eg: 1.1eV

Page 15: Thin film silicon technology - AEIT Sez. di Cataniaaeit.diees.unict.it/.../3SUN_Technology_presentation.pdf• Technology roadmap Solar Cell Technology: Why Thin Film Si? Solar cell

Light trapping

p-i-n a-Si:H

p-i-n uc-Si:H

TCO

glass light

TCO Back reflector

~700nm

~250nm

~1.6µm

~50nm

Asahi VU APCVD (SnO2:F)

Asahi W

ZnO:B -MOCVD W text ZnO

• Texturing causes light scattering, increasing the optical path of photons in silicon • Natural texturing can be achieved during the CVD deposition process • Double feature texture (possible both for SnO2 and ZnO): higher and smaller

texturing shapes can be reached (but not ready for production!)

Page 16: Thin film silicon technology - AEIT Sez. di Cataniaaeit.diees.unict.it/.../3SUN_Technology_presentation.pdf• Technology roadmap Solar Cell Technology: Why Thin Film Si? Solar cell

Impact of texturing and different TCO material

• ZnO has better transmittance at long wavelengths

• Higher Haze can be achieved with MOCVD

• Texturing (increases optical path) improves the currents generated in the top and bottom cells

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

200 300 400 500 600 700 800 900 1000 1100 1200

EXTE

RN

AL Q

UA

NTU

M E

FFIC

IEN

CY

Wavelength (nm)

ZnO - H=20%ZnO - H=20%ZnO - H=20%SnO2-H=10%SnO2-H=10%SnO2-H=10%

a-Si:H

µc-Si:H

SnO2:F

ZnO:B

low haze TCO high haze TCO

TCO a-Si:H

µc-Si:H

BR

Haze (%)

Transmittance(%)

Page 17: Thin film silicon technology - AEIT Sez. di Cataniaaeit.diees.unict.it/.../3SUN_Technology_presentation.pdf• Technology roadmap Solar Cell Technology: Why Thin Film Si? Solar cell

Thin Film Si Roadmap Multi Junction Full spectrum Triple J Double J

9-10% 10-12% 12-14%

SnO2:F U-Valley ZnO Double TCO Plasmonics

14-16%

Improving absorber layers and cell structure

Improved light trapping

Efficiency:

a-Si:H / µc-Si:H a-Si:H / a-SiGe:H/µc-Si:H

TCO

Back contact

Eg1 Eg2

Eg3

Eg4

Multiple gap solar cell

Page 18: Thin film silicon technology - AEIT Sez. di Cataniaaeit.diees.unict.it/.../3SUN_Technology_presentation.pdf• Technology roadmap Solar Cell Technology: Why Thin Film Si? Solar cell

Long term research: beyond 16% efficiency

18

Ultra-thin c-Si 3D Structures Ag Nanowires in TCO

Si - nanowires solar cells Plasmonic resonators

EU Research Programs