technologies for adapting to climate change: water resources and agriculture

16
Adapting to Climate Change: Water Resources and Agriculture Anthony Nyong, University of Jos NIGERIA UNFCCC Seminar on the Development and Transfer of Environmentally Sound Technologies for Adaptation to Climate Change 14 – 16 June 2005, Tobago, Trinidad and Tobago

Upload: howell

Post on 05-Jan-2016

40 views

Category:

Documents


0 download

DESCRIPTION

Technologies for Adapting to Climate Change: Water Resources and Agriculture. Anthony Nyong, University of Jos NIGERIA. UNFCCC Seminar on the Development and Transfer of Environmentally Sound Technologies for Adaptation to Climate Change 14 – 16 June 2005, Tobago, Trinidad and Tobago. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Technologies for Adapting to Climate Change: Water Resources and Agriculture

Technologies for Adapting to Climate Change:

Water Resources and Agriculture

Anthony Nyong, University of Jos

NIGERIA

UNFCCC Seminar on the Development and Transfer of Environmentally Sound Technologies for Adaptation to Climate Change

14 – 16 June 2005, Tobago, Trinidad and Tobago

Page 2: Technologies for Adapting to Climate Change: Water Resources and Agriculture

Outline of Presentation Introduction

Brief presentation on Vulnerability and Adaptation with regards to Africa Why Africa?

Most LDCs are in Africa Most vulnerable region Limited capacity to adapt to climate change Dependence on Agriculture and natural systems

Vulnerability of Africa’s agriculture and water resources to Climate Change.

Technologies for adapting to climate change in agric and water resources The two are inter-related as water is a major factor in agriculture

Adoption of such technologies in West African Sahel Who uses and who does not? Why?

The lessons learned Transfer of technology for adaptation is not one way. There is a synergy as

people also adapt to the technology.

Page 3: Technologies for Adapting to Climate Change: Water Resources and Agriculture

Introduction and Background

Vulnerability to Climate Change Why are we so concerned about climate change?

The IPCC TAR identifies Africa as the most vulnerable region because of its dependence on the ecosystem, rain-fed agriculture and low adaptive capacity.

What are we vulnerable to? Designing any adaptation strategy requires that we

first of all know what it is we are vulnerable to. Vulnerability is not only a climate affair but an

interaction with non-climate factors that produce vulnerability Exposure, sensitivity and adaptive capacity

Adaptation should address these concerns.

Page 4: Technologies for Adapting to Climate Change: Water Resources and Agriculture

UNFCCC and Adaptation Article 4.5 of refers to promoting, facilitating and financing transfer of

“environmentally sound technologies and know-how” to enable developing countries to implement provisions of the Convention. These technologies include adaptation technologies as well as the technologies for reducing GHG emissions.

Adaptation activities are considered in three stages: Stage I Adaptation: “Planning, which includes studies of possible

impacts of climate change, to identify particularly vulnerable countries or regions and policy options for adaptation and appropriate capacity building”;

Stage II Adaptation: “Measures, including further capacity building, which may be taken to prepare for adaptation . . . .”

Stage III Adaptation: “Measures to facilitate adequate adaptation, including insurance, and other adaptation measures . . .”

Page 5: Technologies for Adapting to Climate Change: Water Resources and Agriculture

S/No Perceived Risk Percentage

1 Insufficient food for people 58.2

2 Shortage of water for domestic use 50.9

3 Shortage of water for animals 50.3

4 Shortage of crops for cultivation 48.4

5 Animal diseases 42.5

6 Insufficient pasture for animals 36.6

7 Limited land for cultivation 34.6

8 Crop failure 26.8

9 Conflicts/insecurity 22.2

10 Human diseases 20.9

11 Low prices for animals 13.7

12 Lack of employment 12.4

Reasons for Vulnerability (West African Sahel)

Page 6: Technologies for Adapting to Climate Change: Water Resources and Agriculture

Adaptation to Climate Change: Agriculture Two Spheres of Adaptation: Farm level and Systemic Level.

Farm Level: Adjustments in planting and harvesting dates Planting of new crop varieties and species Changes in farming practices – tillage, use of topography Application of fertilizers, pesticides and herbicides Use of irrigation – timing and dose Use of farm equipment – tractors, harvesters, etc Improved food storage systems Herd management – splitting, switching, diversification Migration

Systemic Level: Transportation Finance National farm policies International agricultural policies and agreements Food Aid

Page 7: Technologies for Adapting to Climate Change: Water Resources and Agriculture

Adaptation to Climate Change: Water Resources In Africa, the impacts of changes in climate on water resources are

minor compared to the problems being faced already with the present climate variability.

Coping for present day climate variability’ already takes us a long way down the road towards adapting for climate change.

Essence of adapting in the water sector is to be able to live in equilibrium with projected water scarcities.

Scarcity is influenced by factors at global level (climate change), regional level (land-use change), river basin level (water resource management) and household level (access to water).

Adaptation strategies in the water include Water exploitation methods Water storage methods +rain harvesting Water management and planning

Page 8: Technologies for Adapting to Climate Change: Water Resources and Agriculture

Technologies for AdaptingAdaptation

TechnologiesNumber of Households

% Average no of years practiced

Mixed cropping 33 53 25

Early planting 24 39 15

Wetland farming 43 69 19

Early maturing/ drought resistant crops

18 29 8

Increased spacing of crops 22 35 10

Change in crop type 9 15 15

Increase in farm size 19 31 17

Agro-pastoralism

Weather forecasts/outlook

Farm implements

8

23

41

13

69

66

19

12

19

Water exploitation methods 21 34 12

Water storage methods 18 29 17

Food storage methods

Herd Management

8

22

13

35

11

18

Page 9: Technologies for Adapting to Climate Change: Water Resources and Agriculture

Reasons for Adoption/Non-Adoption

Access Non-yield variables for crop technologies Understanding of technology Adaptive capacity

Individual/community Institutional

Uncertainties and risk aversion

Page 10: Technologies for Adapting to Climate Change: Water Resources and Agriculture

Rainwater Harvesting

Broadly defined as the method of concentrating, diverting, collecting, storing, and utilizing and managing runoff for productive use.

One of the approaches to integrated land and water management, which could contribute to recovery of agricultural production in dry area as well as provide water for sustainable development.

Runoff is collected mainly from roof-tops, ground catchments as well as ephemeral streams (flood water harvesting), and road/footpath drainage.

Different structures are used for storage - tanks, reservoirs, dams, water pans, etc.

Page 11: Technologies for Adapting to Climate Change: Water Resources and Agriculture

Types of rain water harvesting systems

In-situ water conservation Run-off harvesting

Storage rain water harvesting system Direct run-off harvesting system

Largely based on traditional systems that could be improved upon

Page 12: Technologies for Adapting to Climate Change: Water Resources and Agriculture

Benefits of RWH System

Reduces erosion and water pollution Reduces damaging effects of floods Improves agricultural production Reduces conflict Improves water availability

Page 13: Technologies for Adapting to Climate Change: Water Resources and Agriculture

Improved Crop Varieties

Several varieties of maize, groundnut, cowpeas and sorghum were identified.

Traditional (local) varieties still formed the bulk of the crops grown. The late maturing, low-seed yielding local variety of

cowpea most preferred because of ability to yield abundant fodder in addition to seed.

Serious insect pest problems have limited adoption of improved high seed-producing cowpea.

Non-yield factors such as market value, acceptability and cooking quality affect the adoption of improved maize varieties

Page 14: Technologies for Adapting to Climate Change: Water Resources and Agriculture

Lessons to be learned

Local knowledge Cultural norms vs Engineering feats Participation and partnership Disparity between what beneficiaries want and what is

provided for them

Page 15: Technologies for Adapting to Climate Change: Water Resources and Agriculture

Mal-adaptation Migration and conflicts Agricultural intensification and attendant

problems on the Fadama farms. Dependence on food aid. Dams

Salinization Lake Chad?

Page 16: Technologies for Adapting to Climate Change: Water Resources and Agriculture

Conclusion A major underutilized resource in adaptation resides in the

knowledge and initiative of the local peoples themselves. If multilateral initiatives are to actually produce results on the ground, they must be palatable and appropriate to the peoples’ cultures, which have embodied adaptations to the rigors of climate variability and change.

There is a near absence of appropriate indigenous research, design, and development (RD&D) capabilities. Implying that the African countries have to depend on imported (high-cost) technology and its supplier for troubleshooting and upgrading needs.

One lesson of the past has been that development efforts have relied too much on prescriptions applied without sufficient understanding and sensitivity to the local communities.