spin dependent electron transport in nanostructures

28
06/12/22 06/12/22 A. Ali Yanik, Purdue University A. Ali Yanik, Purdue University 1 Spin Dependent Electron Spin Dependent Electron Transport in Nanostructures Transport in Nanostructures A. Ali Yanik A. Ali Yanik Dissertation Dissertation Department of Physics Department of Physics & & Network for Computational Nanotechnology Network for Computational Nanotechnology Purdue University, West Lafayette, IN 47907 Purdue University, West Lafayette, IN 47907 April 2007 April 2007

Upload: zavad

Post on 01-Feb-2016

62 views

Category:

Documents


0 download

DESCRIPTION

Spin Dependent Electron Transport in Nanostructures. A. Ali Yanik † Dissertation † Department of Physics & Network for Computational Nanotechnology Purdue University, West Lafayette, IN 47907 April 2007. Spin + Electronics = Spintronics. Spintronic Devices. Field Controlled Spintronics. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Spin Dependent Electron Transport in Nanostructures

04/22/2304/22/23 A. Ali Yanik, Purdue UniversityA. Ali Yanik, Purdue University 11

Spin Dependent Electron Spin Dependent Electron Transport in Nanostructures Transport in Nanostructures

A. Ali YanikA. Ali Yanik††

DissertationDissertation

††Department of Physics Department of Physics &&

Network for Computational NanotechnologyNetwork for Computational NanotechnologyPurdue University, West Lafayette, IN 47907Purdue University, West Lafayette, IN 47907

April 2007April 2007

Page 2: Spin Dependent Electron Transport in Nanostructures

04/22/2304/22/23 A. Ali Yanik, Purdue UniversityA. Ali Yanik, Purdue University 22

Spin + Electronics = Spin + Electronics = SpintronicsSpintronics

Page 3: Spin Dependent Electron Transport in Nanostructures

04/22/2304/22/23 A. Ali Yanik, Purdue UniversityA. Ali Yanik, Purdue University 33

Spintronic DevicesSpintronic Devices

Non volatile RAM, Freescale,2006

Devices: GMR (read heads), TMR (MRAM), BMR Devices, etc..

MagnetoelectroniMagnetoelectronics cs

GateFM FM

2DEG

GateFM FM

2DEG

S. Datta & B. Das, APL. 56, 665 (1990)

Gate Voltage Control / Rashba Effect

Field Controlled SpintronicsDevices: Spin-FET (Datta), etc..

Contact Contact Injection/DetectionInjection/Detection

Gate Gate ContactContact

External B External B FieldField

Spin Spin DephasingDephasing

Page 4: Spin Dependent Electron Transport in Nanostructures

04/22/2304/22/23 A. Ali Yanik, Purdue UniversityA. Ali Yanik, Purdue University 44

NEGF Formalism

Motivation-IMotivation-I

DeviceDevicess

Concepts

Physics Community

Spin Decoherence + QM

Equilibrium

Engineering Community

Transport + QM

Non-Equilibrium

Decoherence Physics Quantum Transport

Ph.D. Thesis: First formalized treatment of Quantum-Transport with Spin-Decoherence in NEGF

Page 5: Spin Dependent Electron Transport in Nanostructures

04/22/2304/22/23 A. Ali Yanik, Purdue UniversityA. Ali Yanik, Purdue University 55

Motivation-IIMotivation-II

ContactsChannelElectrons

Ballistic Transport / NEGF FORMALISM

Phononsel

NEGF FORMALISM (Inelastic Transport)

Electron-phononrelaxation time

LocalizedSpins

es sl Spin-latticerelaxation time

EQUILIBRIUM PHYSICSEQUILIBRIUM PHYSICS

Challenges:

Physics Based Unified Treatment (not specialized for each device, geometry, etc)

Conservation Laws (angular momentum, total energy, particles)

Numerically Treatable

Benchmark against experiment.

State of Art Modelling

Averaging of Coherent Processes

Doesn’t Capture the Physics

Not straightforward to include dissipative interactions

NON-EQUILIBRIUM TRANSPORT

Page 6: Spin Dependent Electron Transport in Nanostructures

04/22/2304/22/23 A. Ali Yanik, Purdue UniversityA. Ali Yanik, Purdue University 66

A Unified Quantum A Unified Quantum Transport Model Transport Model

Page 7: Spin Dependent Electron Transport in Nanostructures

04/22/2304/22/23 A. Ali Yanik, Purdue UniversityA. Ali Yanik, Purdue University 77

Unified Approach to Nanoscale DevicesUnified Approach to Nanoscale Devices

Quantum

Device

Source Drain

Gate

Scatterer

Molecule (Gosh et al)

MTJ (Yanik et al)

L R

Scattering

Source Drain

Gate

QuantumDevice

H U

Spin Torque (Prabhakar et al)

Nanotubes (IBM, Kosawatta et al)

Nuclear Spin Polarization(Salahuddin et al)

MOSFET (Damle et al)

RTD (Klimeck et al)

Page 8: Spin Dependent Electron Transport in Nanostructures

04/22/2304/22/23 A. Ali Yanik, Purdue UniversityA. Ali Yanik, Purdue University 88

Magnetic Tunnel Magnetic Tunnel JunctionsJunctions

Availability of Experimental DataAvailability of Experimental Data

Technological ImportanceTechnological Importance

Page 9: Spin Dependent Electron Transport in Nanostructures

04/22/2304/22/23 A. Ali Yanik, Purdue UniversityA. Ali Yanik, Purdue University 99

Coherent RegimeCoherent Regime

Page 10: Spin Dependent Electron Transport in Nanostructures

04/22/2304/22/23 A. Ali Yanik, Purdue UniversityA. Ali Yanik, Purdue University 1010

Junction MagnetoresistanceJunction Magnetoresistance Potential Barrier + Magnetic Contacts

Soft Layer & Hard Layer (fixed)

Exchange shifted two current model

Parallel Contacts Anti-parallel Contacts

0

0F AF F AF

AF F

I IR R G GRJMR

R R G I

Soft Layer

Hard Layer

Tunneling Oxide

F

F

Soft Layer

Hard Layer

Tunneling Oxide

F

F

Δ

FE

minoritycE

majoritycE

FEminoritycE

majoritycE

ΔΔ

FE

minoritycE

majoritycE

FEminoritycE

majoritycE

Δ Δ

FE

minoritycE

majoritycE

FEminoritycE

majoritycE

Δ

Parallel Contacts Anti-parallel Contacts

0

0F AF F AF

AF F

I IR R G GRJMR

R R G I

Soft Layer

Hard Layer

Tunneling Oxide

F

F

Soft Layer

Hard Layer

Tunneling Oxide

F

F

Δ

FE

minoritycE

majoritycE

FEminoritycE

majoritycE

ΔΔ

FE

minoritycE

majoritycE

FEminoritycE

majoritycE

Δ Δ

FE

minoritycE

majoritycE

FEminoritycE

majoritycE

Δ

F AF F AF

AF AF

R R G GRJMR

R R G

Parallel ContactsAntiparallel Contacts

T.M. Maffit et al IBM J. Res. & Dev. 50, 25 (2006)

Barrier

FE

minoritycE

majoritycE

FE

minoritycE

majoritycE

barrU

Barrier

FE

minoritycE

majoritycE

FE

minoritycE

majoritycE

barrU

Stearns M. B., J. Magn. Magn. Mater. 5, 167 (1977)

Page 11: Spin Dependent Electron Transport in Nanostructures

04/22/2304/22/23 A. Ali Yanik, Purdue UniversityA. Ali Yanik, Purdue University 1111

Junction MagnetoresistanceJunction Magnetoresistance Potential Barrier + Magnetic Contacts

Soft Layer & Hard Layer (fixed)

Exchange shifted two current model

Parallel Contacts Anti-parallel Contacts

0

0F AF F AF

AF F

I IR R G GRJMR

R R G I

Soft Layer

Hard Layer

Tunneling Oxide

F

F

Soft Layer

Hard Layer

Tunneling Oxide

F

F

Δ

FE

minoritycE

majoritycE

FEminoritycE

majoritycE

ΔΔ

FE

minoritycE

majoritycE

FEminoritycE

majoritycE

Δ Δ

FE

minoritycE

majoritycE

FEminoritycE

majoritycE

Δ

Parallel Contacts Anti-parallel Contacts

0

0F AF F AF

AF F

I IR R G GRJMR

R R G I

Soft Layer

Hard Layer

Tunneling Oxide

F

F

Soft Layer

Hard Layer

Tunneling Oxide

F

F

Δ

FE

minoritycE

majoritycE

FEminoritycE

majoritycE

ΔΔ

FE

minoritycE

majoritycE

FEminoritycE

majoritycE

Δ Δ

FE

minoritycE

majoritycE

FEminoritycE

majoritycE

Δ

F AF F AF

AF AF

R R G GRJMR

R R G

Parallel ContactsAntiparallel Contacts

T.M. Maffit et al IBM J. Res. & Dev. 50, 25 (2006)

Spin polarization is conserved

Rectangular potential barrier & exchange shifted parabolic bands.

Qualitatively correct and widely used by experimentalists

2

2F F F F

FM

F F F F

k k k kP

k k k k

22 barr Fm U E

Slonczewski’s Formula:

Fails for Thin Tunneling Barriers!!!

J.C. Slonczewski PRB 39, 6995 (1989)

Practical Interest

Page 12: Spin Dependent Electron Transport in Nanostructures

04/22/2304/22/23 A. Ali Yanik, Purdue UniversityA. Ali Yanik, Purdue University 1212

Coherent Regime (NEGF)Coherent Regime (NEGF)

F z AF zz

F z

I E I EJMR E

I E

Weighting Factor

JMR for Different Incoming Energies

z

z F z F zE

E I E I E

majoritycE

minoritycE FE

EF=2.2eV, ∆=1.45eV and Vbias=1meV after Stearns et al.

ω(Ez) shifts towards higher energies with increasing barrier thicknesses

Page 13: Spin Dependent Electron Transport in Nanostructures

04/22/2304/22/23 A. Ali Yanik, Purdue UniversityA. Ali Yanik, Purdue University 1313

Coherent Regime (NEGF)Coherent Regime (NEGF)

F z AF zz

F z

I E I EJMR E

I E

Weighting Factor

JMR for Different Incoming Energies

z

z F z F zE

E I E I E

EF=2.2eV, ∆=1.45eV and Vbias=1meV after Stearns et al.

ω(Ez) shifts towards higher energies with increasing barrier thicknesses

( )z z zJMR E JMR E dE

Experimentally Measured JMR

ω(Ez) shifts towards higher energies with increasing barrier thicknesses

Page 14: Spin Dependent Electron Transport in Nanostructures

04/22/2304/22/23 A. Ali Yanik, Purdue UniversityA. Ali Yanik, Purdue University 1414

Incoherent RegimeIncoherent Regime

Impurity Concentration

Barrier Thickness

Barrier Height

Page 15: Spin Dependent Electron Transport in Nanostructures

04/22/2304/22/23 A. Ali Yanik, Purdue UniversityA. Ali Yanik, Purdue University 1515

MTJs with Magnetic Impurity LayersMTJs with Magnetic Impurity LayersR. Jansen & J. S. Moodera, J. Appl. Phys. 83, 6682 (1998)

Hard Layer

FTunneling Oxide

Impurity Layer

Tunneling Oxide

Soft Layer

F

Barrier

FE

minoritycE

majoritycE

FE

minoritycE

majoritycE

barrU

Impurity Layer

Barrier

FE

minoritycE

majoritycE

FE

minoritycE

majoritycE

barrU

Barrier

FE

minoritycE

majoritycE

FE

minoritycE

majoritycE

barrU

Impurity Layer

Page 16: Spin Dependent Electron Transport in Nanostructures

04/22/2304/22/23 A. Ali Yanik, Purdue UniversityA. Ali Yanik, Purdue University 1616

MTJs with Magnetic Impurity LayersMTJs with Magnetic Impurity Layers

Normalized JMR ratios are barrier thickness independent

JMR(Ez) ratios reduces at all energies

Elastic spin scattering doesn’t effect normalized ω(Ez)

Decreasing JMRs with increasing impurity concentrations

Page 17: Spin Dependent Electron Transport in Nanostructures

04/22/2304/22/23 A. Ali Yanik, Purdue UniversityA. Ali Yanik, Purdue University 1717

MTJs with Magnetic Impurity LayersMTJs with Magnetic Impurity Layers

A universal trend independent from the barrier heights

Minimal Fitting Parameters

Page 18: Spin Dependent Electron Transport in Nanostructures

04/22/2304/22/23 A. Ali Yanik, Purdue UniversityA. Ali Yanik, Purdue University 1818

Pd & Ni Impurity LayersPd & Ni Impurity Layers

<J2>2D exchange coupling used as a fitting parameter

Minimal temperature dependence

Close <J2>2D coupling constants estimated for Pd and Ni impurities

+1 spin state is believed to be the dominant state.

Page 19: Spin Dependent Electron Transport in Nanostructures

04/22/2304/22/23 A. Ali Yanik, Purdue UniversityA. Ali Yanik, Purdue University 1919

High-Spin/Low-Spin Phase TransitionHigh-Spin/Low-Spin Phase Transition

J exchange coupling used as a fitting parameter

Large temperature dependence

Thermally driven low-spin/high-spin phase transitions

d4-d7 systems:t2g set → low spin state

eg set → high spin case.

S. W. Biernacki et al, PRB. 72, 024406 (2005).

Crystal Field Theory

-The Pairing energy (P) Coulombic repulsion Exchange Energy-The eg - t2g Splitting

Page 20: Spin Dependent Electron Transport in Nanostructures

04/22/2304/22/23 A. Ali Yanik, Purdue UniversityA. Ali Yanik, Purdue University 2020

Details of the TheoryDetails of the Theory

Page 21: Spin Dependent Electron Transport in Nanostructures

04/22/2304/22/23 A. Ali Yanik, Purdue UniversityA. Ali Yanik, Purdue University 2121

Spin Array

L RSource

Drain

Gate

QuantumDevice

H U

Spin Array

L RSource

Drain

Gate

QuantumDevice

H U

Exchange Interaction Spin ScatteringExchange Interaction Spin Scattering

Hamiltonian: , ch L R IH H H H

chH Effective mass description†

k k kk

c c

,L RH Modeled through contact self energy

IHModeled using self consistent Born approximation S

, L R

Magnetic Impurity Magnon ScatteringAranov-Bir-Pikus (Electron-Hole)Nuclei (Hyperfine Interaction)

, , ,, ;

,

, '; , '; , '; i j i j k l k l

k l

in out n p n pS r r E D r r G r r E d

Analogous to the Electron/Hole Density

Rate at which electrons/holes are scattered in/out of a state

Page 22: Spin Dependent Electron Transport in Nanostructures

04/22/2304/22/23 A. Ali Yanik, Purdue UniversityA. Ali Yanik, Purdue University 2222

Spin Scattering Self EnergySpin Scattering Self Energy

*, ' , ', 'nint intD H r t H r t

int -j

j jRH r J r R S

Interaction Hamiltonian:

† †1 1 1,

2 2 2int zH r t J r R aS t a S t a a S t

Spin Array

Spin Array

Channel

Spin Exchange Interaction

† 0a

0

†1 1

2 2x a a

†1 1

2 2y a ai i

† 1

2z a a

0

0 0

qi teS t d

0 0

0qi tS t d

e

1

2zS d d Imp

uri

ty

Op

era

tors

Ele

ctr

on

O

pera

tors

Preserves Angular Momentum

Jordan-Wigner

Page 23: Spin Dependent Electron Transport in Nanostructures

04/22/2304/22/23 A. Ali Yanik, Purdue UniversityA. Ali Yanik, Purdue University 2323

n,p 2

nsf

,

,

1 0 0 0D , '; '0 1 0 0

0 0 1 0

0 0 0 1

q

k l

i j

I qr r r r J N

Inelastic Spin Flip ScatteringInelastic Spin Flip Scattering

n,p 2 ,

sf

,

,

,

0 0 0D , '; '

0 0 0 0 0 0 0

0 0 0 0

q

k l

i j

u d qqI

d u q

Fr r r r J N

F

, , ,, '; , '; , '; n p n p n p

sf nsfD r r D r r D r r

Spin Flip Scattering

Non-Spin Flip Scattering

0

0u

d

F

F

Impurity Density Matrix

Page 24: Spin Dependent Electron Transport in Nanostructures

04/22/2304/22/23 A. Ali Yanik, Purdue UniversityA. Ali Yanik, Purdue University 2424

Elastic Spin Flip ScatteringElastic Spin Flip Scattering

2-D Translational Symmetry

Elastic Spin Flip Scattering

2 2

2

1'

q

I q IDr r J N J n

a

n,p 2Isf 2D

0 0 0,

0 0 0,D 0 n a

0 0 0 0

0 0 0 0

k l

i j

Fu d

Fd uJ

a

a

Page 25: Spin Dependent Electron Transport in Nanostructures

04/22/2304/22/23 A. Ali Yanik, Purdue UniversityA. Ali Yanik, Purdue University 2525

Spin Array

L RSource

Drain

Gate

QuantumDevice

H U

Spin Array

L RSource

Drain

Gate

QuantumDevice

H U

Unpolarized Spin EnsembleUnpolarized Spin Ensemble

0.5 0

0 0.5

Magnetic Impurity Layer

Page 26: Spin Dependent Electron Transport in Nanostructures

04/22/2304/22/23 A. Ali Yanik, Purdue UniversityA. Ali Yanik, Purdue University 2626

Self-consistent SolutionSelf-consistent Solution

Regular Contacts:

Channel: zH

Incoherent Scattering:

Hamiltonian

Transport Equations:

Green’s Function

L R SG E EI H U

2 , ,ln 1 expD z L R s z L R Bf E N E k T

Fix

ed

at

the

Ou

tset

Self

-con

sit

en

t S

ol.

2 2 z

D in D nL L z z L z z z

E

qI tr E A E tr E G E dE

h

; ; i j i k k l k l

i j

S D G E

Dir

ect

Sol

, 2 , ,inL R z D z L R L R zE f E E

, 2 , ,1outL R z D z L R L R zE f E E

12 2D n D n

z z zG E I P E S E

Page 27: Spin Dependent Electron Transport in Nanostructures

04/22/2304/22/23 A. Ali Yanik, Purdue UniversityA. Ali Yanik, Purdue University 2727

SummarySummary

Magnetic Impurity Layer

ContactsChannelElectrons Phononsel

Electron-phononrelaxation time

LocalizedSpins

es sl Spin-latticerelaxation time

NON-EQUILIBRIUM TRANSPORT

0.5 0

0 0.5

Magnetic Impurity LayerMagnetic Impurity Layer

ContactsChannelElectrons Phononsel

Electron-phononrelaxation time

LocalizedSpins

es sl Spin-latticerelaxation time

NON-EQUILIBRIUM TRANSPORT

0.5 0

0 0.5

ContactsContactsChannelElectronsChannelElectrons PhononsPhononsel

Electron-phononrelaxation time

LocalizedSpins

es sl Spin-latticerelaxation time

LocalizedSpins

LocalizedSpins

es sl Spin-latticerelaxation time

NON-EQUILIBRIUM TRANSPORT

0.5 0

0 0.5

Challenges:

Physics Based Unified Treatment

Conservation Laws (angular momentum, total energy, particles)

Numerically Treatable

Benchmarking against experiment

Contributions:

A Non-Equilibrium Quantum Transport model with Spin Decoherence is developed.

A Self Energy Calculation scheme is derived for Exchange Interaction Scattering.

A numerical implementation is shown in MTJ devices.

Page 28: Spin Dependent Electron Transport in Nanostructures

04/22/2304/22/23 A. Ali Yanik, Purdue UniversityA. Ali Yanik, Purdue University 2828

AcknowledgementAcknowledgement

Professors Supriyo Datta and Gerhard KlimeckProfessors Supriyo Datta and Gerhard Klimeck

Dr. Dmitri Nikonov – Intel corporationDr. Dmitri Nikonov – Intel corporation

Sayeef Salahuddin, Prabhakar Srivastava Sayeef Salahuddin, Prabhakar Srivastava

NSF funded Network for Computational NSF funded Network for Computational Nanotechnology (NCN) and MARCONanotechnology (NCN) and MARCO