power blocks david fiedeldey michael badaracca peter brehm micahl keltner tenzin choephak

42
POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

Upload: corbin-anable

Post on 14-Jan-2016

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

POWER BLOCKS

David FiedeldeyMichael BadaraccaPeter BrehmMicahl KeltnerTenzin Choephak

Page 2: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

• Reduce phantom loads Purpose

• Power strip turns off selected outlets when you are not home

Project

• Power Strip• Base Station• Home Presence Sensors

Elements

Project Overview

Michael Badaracca

David Fiedeldey

Page 3: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

Fallback Functionality

David Fiedeldey

• Power strip: • Primary block of 4 outlets plus a modular block of 2

outlets controllable from base station. • Current measurements are recorded, processed, and

sent back to a base station wirelessly.

◦ Base station: Working LCD interface capable of controlling individual

outlets wirelessly. Reports basic power consumption information.

◦ Sensors: Physical connection between sensors and base station.

Page 4: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

Expected Functionality

David Fiedeldey

◦ Power strip: Add a second modular block of 2 outlets with

added variable voltage functionality.

◦ Base station: Long term power usage statistics available to

users in an improved LCD interface. Potentially presenting data in graphical form as well.

◦ Sensors: Wireless connection between sensors and

base station.

Page 5: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

Advanced Functionality

David Fiedeldey

◦ Power strip: Up to 12 total outlets (4 modular blocks max.) including a

variable voltage block. A “sync” button to give visual confirmation of wireless

connectivity. Seven-segment display on the strip that shows present power

consumption.

◦ Base station: Internet connectivity with a web interface for controlling

the strip. Alternatively a smartphone app.

◦ Sensors: Multiple sets of motion and photo sensors communicating with

the base station.

Page 6: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

Milestone 1

David Fiedeldey

◦ Power strip: Wirelessly receive outlet enable commands for the primary block on the strip (no modular blocks)

◦ Base station: Wirelessly send outlet enable commands to the primary block on the strip. User interface will involve LEDs and buttons. Receives input from hardwired sensors and turns LEDs on/off

◦ Sensors: Hardwire deadbolt and motion/light sensors to base station.

Page 7: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

Milestone 2

David Fiedeldey

◦ Power strip: Incorporate a removable, modular power block. Process and send current data

◦ Base station: LCD interface with working software menu and buttons. Wirelessly receive sensor data and interpret it into commands to power strip.

◦ Sensors: Wireless deadbolt and motion/light sensors

Page 8: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

Expo

David Fiedeldey

◦ Power strip: Multiple modular blocks. A dimmer modular block. Wireless sync function

◦ Base station: User can input preferences and schedule for HPS algorithm. Receives data from multiple motion/light sensors

◦ Sensors: Multiple wireless deadbolt and motion/light sensors

Page 9: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

Current Budget

Part Quantity Needed

Price

Relays 12 2.64Current Sensors 12 2.91

Dimmers 2 16

Light/Motion Sensors 2 25

MSP430’s 2 20

Xbee’s 2 10

Linx TRM433 3 17.5

LCD 1 50

General X 100

PCB’s X 250

Demo Materials X 250

Shipping X 50

David FiedeldeyTotal 961.1

Page 10: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

Updated Division of Labor

David Fiedeldey

Peter

• Hardware: Power Supplies, Base Station PCB• Software: LCD Driver, Xbee Driver, External Memory Interface

Mike K.

• Hardware: Strip Sensor, Strip Power, Strip PCB, HPS Sensors, Enclosures

• Software: HPS Lookup Table, Current Data Processing

Mike B.

• Hardware: Home Presence Sensors, Xbee, Linx TRM433, Enclosures • Software: Linx driver, HPS Lookup Table, Sensor/Button Interrupts

David

• Hardware: Power Supplies, Strip PCB, IO Expander • Software: Base Station Interface, IO Expander

Tenzin

• Hardware: Xbee, Linx TRM433, Base Station PCB • Software: LCD Driver, Xbee driver

Page 11: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

Gant Schedule/Desired Timeline

David Fiedeldey

Page 12: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

Home Presence Sensing

Michael Badaracca

Page 13: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

- HPS detects if a house is occupied or not- User configurable algorithm- Minimal user interaction after setup- Sensors can be easily installed in any home

Home Presence Sensing Overview

Michael Badaracca

Page 14: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

Transceiver Transcoder

Small: 0.619”x0.630”x0.125” Low Power: 2.1 V Min Simple – CPCA modulation

Small – 0.309” x 0.284”x0.125” Low Power: 2 V Min Simple – 8 GPIO pins allow easy

interfacing with processor

Wireless Components

Michael Badaracca

Page 15: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

General Sensor Circuit

Michael Badaracca

Page 16: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

Deadbolt Sensor

- Detects if deadbolt is locked- Easy installation into doors- Replaceable 3V battery- LED indicator

Michael Badaracca

Page 17: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

Motion Sensor/Light

- Detects human motion (PIR)- Detects light above or below

threshold- Replaceable 3V battery- LED indicator

sZEPIR0AAS01SBCG

Michael Badaracca

Page 18: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

Home Presence Sensing Algorithm

Michael Badaracca

Page 19: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

Base Station/Software

Michael Badaracca

Page 20: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

Base Station: Level Zero

MSP430F169

Requires 5v DC

Multiple 3.3v Output

Integrated UART

MSP430F169

Buttons

Linx

Timer

X-Bee (Data)

LCD (SPI)

X-Bee (Commands)

5v DC Power

Peter Brehm

Page 21: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

User Interface

LCD

• Crystalfontz CFA-634• 120 x 32 pixel resolution• Requires 5v DC• Communicates using SPI• MSP430 is the master and LCD is the slave.

Buttons

• Number pad, Select, up/down, and Back• Text Based Navigation of the Menu

Peter Brehm

Page 22: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

The Menu Screen

Peter Brehm

Page 23: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

Base Station Software/Interrupts

Main function drives the LCD Interrupts

◦ 1st Timer Timer Register Overflow increments global timer variable to keep

track of the schedule and the time.◦ 2nd Buttons

Directly hardwired to I/O pins on the MSP430◦ 3rd Linx Communication

Sensor input◦ 4th X-Bee communication

Data from the strip After each interrupt the Base Station will check the

state table, and if necessary send commands to the strip.

Peter Brehm

Page 24: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

Trends, Profiles and Memory

Power readings of each outlet are saved and averaged every fifteen minutes.

Plotted for the power consumption trends option.

Additional external memory chip ◦ EEPROM

Non Volatile Memory Past Power Consumption Data

Peter Brehm

Page 25: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

Strip Software Functionality

Regular interval timer interrupt Checks ADCs from all outlets Converts the Signal to packet form Sends data to the Base station via X-Bee Repeat

MSP430F169Timer

X-Bee (Commands)

Relay Control

X-Bee (Data)

120 v AC Power

Current Sensors

Peter Brehm

Page 26: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

Strip Interrupts

1st Commands from the Base Station◦ Output Multiplier◦ Control individual outlet relays

2nd Timer Flag Registers◦ To accurately keep track of regular intervals

Peter Brehm

Page 27: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

Power Strip

Micahl Keltner

Page 28: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

Primary Block

Major Features

• Processor (MSP430)

• 4 Outlets• 4 Current

Meters

Inputs

• XBee/MSP430 Base Station

• Wall 120VAC• Comm. Override

Outputs

• 4x Current Sensor Vout

• 120V AC x4 On/Off

Micahl Keltner

Page 29: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

Extension Blocks

Micahl Keltner

Page 30: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

Variable Voltage Blocks

Dimmer Operation• Chops up the sine wave, twice per cycle, off/on 120times a second• The variable resistance controls gate voltage, determines duty cycle

for off. • Inductor and C1 act as a filter, storing charge , reducing the

“buzzing” effect

Micahl Keltner

Page 31: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

Connections/Control

• 120VAC +/-, Earth GND, GND, 5VDC, Short, NxVsensor, NxCOM, Res. Line (6+2N total)

Total Lines – N Outlets

Micahl Keltner

Page 32: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

I/O Expander•SCL – Baud rate to match data busClock

•SDA – Byte segments; sets a read/write operation, device address, etcData Bus

•Determine a write or read (8 bits)•What port being written/read (8 bits)•Data sent or received (8 bits)

Order of Operations

Micahl Keltner

Page 33: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

Power Monitoring

2.5 2.505 2.51 2.515 2.52 2.5250

0.05

0.1

0.15

0.2

0.25

0

0.041

0.0830000000000001

0.126

0.171

0.214f(x) = 10.9177667224903 x − 27.3367011747608

Vout vs Iload

Vout vs ILinear (Vout vs I)

0 0.05 0.1 0.15 0.2 0.250

0.5

1

1.5

2

2.5

3

f(x) = − 14.6147265245809 x + 3.32490840762976

Measured Power %Error

Series1Linear (Series1)

% Error Measured vs. Real

Pow

er

(Watt

s)

Allegro Microsystems• 10A Range Sensing• 1250V Isolation• Linear Behavior

Page 34: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

The Big Picture

Micahl Keltner

Page 35: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

Communications

Tenzin Choephak

Page 36: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

XBee wireless interface

Tenzin Choephak

Page 37: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

• Current meter will relay current data to the on board msp430 for display.

Current

• Average current usage over hour, day and month.

Average Current

• Average power consumption reading for hour, day and month.

Power consumption

Data collected/computed

Tenzin Choephak

Page 38: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

UART Data Packet/Encoding

Command packets from base station to strip

Strip data packets from strip to base station

24 bit Data packet will consist of three 8 bit sub-packets

Packets are encoded depending on if it’s a command packet or strip data packets

Tenzin Choephak

Page 39: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

Data Packet/encoding cont

16 bit example packet from base station to strip:

24 bit data packet from strip to base station example:

Strip ID(4)

Outlet ID(7)

Cmd ID(4)

Other(2)

Ack & Checksum(2-3)

Strip ID(4)

Block ID(4)

Data(14)

Ack & Checksum(2)

Tenzin Choephak

24

24

Page 40: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

Schematic

Dout

Din/CONFIG

Dout_EN

RESET

PWM0/RSSI

Reserved

Reserved

SLEEP

GND

Vcc

AD0/DIO0

AD1/DIO1

AD2/DIO2

AD3/DIO3

RTS/AD6/DIO6

Assoc_Ind/AD5/DIO5

VREF

ON/SLEEP

CTS/DIO7

RF_TX/AD4/DIO4

XBee Module

XBee RF

GND

VCC

GND

VCC

UART_IN

UART_OUT

VCC

GND

*B

Component_1

Tenzin Choephak

Page 41: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

Few challenges ◦ XBee too big for deadbolt sensor◦ Not enough I/O on board for strip◦ May not have enough on board memory

State of Progress◦ Have simple initial test design working with

button on dev board controlling the relays◦ XBees settings programmed and tested working ◦ Begun programming the MSP430

Conclusion

Tenzin Choephak

Page 42: POWER BLOCKS David Fiedeldey Michael Badaracca Peter Brehm Micahl Keltner Tenzin Choephak

Display deadbolt sensor controlling a relay through the MSP430

Demo/Question?

Tenzin Choephak