l10 roof dsgn

Upload: chakfarmer

Post on 11-Oct-2015

48 views

Category:

Documents


0 download

DESCRIPTION

L10 Roof Dsgn

TRANSCRIPT

  • < Types of Roof

    < Bracing of Truss

    < Loading on Truss & Purlin

    < Secondary Truss

    Timber and Steel DesignTimber and Steel Design

    Lecture Lecture 1010 Roof Design

    Mongkol JIRAVACHARADETS U R A N A R E E INSTITUTE OF ENGINEERINGUNIVERSITY OF TECHNOLOGY SCHOOL OF CIVIL ENGINEERING

    Types of RoofTypes of Roof

    (a) Flat roof

    (d) Gable

    (b) Lean to

    (e) Hip

    (c) Butterfly

    (f) Curve

  • RoofRoof RafterRafter

  • (RUN)

    (SPAN)

    (RISE)

  • ..

    1.0 1.2 .15 ../..10, 15, 20 ()

    0.32 0.34 .50 ../..30 - 35 ()

    1.0 2.0 .5 ../..MIN. 1 - 2 (Metal sheet)

    (RUN) (SPAN)

    (RISE)

    P/2P

    PP

    P/2 RR

    RL

  • 10-1

    4 m0.8 m 0.8 m

    1.2 m

    = 30 ../. = 50 ../. = 80 ../.

    0.8 m

    0.8 m

    2 m

    2 m

    1 .

    1 .

    1.0 1.0 = 801.0 = 80 ../. = 10 ../. = 90 ../.

  • 2 . 0.8 .

    0.8 m RL RR2 m

    w = 90 kg/m

    72 kg 75.6 kg

    104.4 kg

    0.84 m

    31.8 kg-m

    28.8 kg-m

    RL = (1/2) (90) (2.8)2 / 2.0 = 176.4 ..RR = (90) (2.8) 176.4 = 75.6 ..

    Mmax = 31.8 ..-.Fb = 0.60(2,500) = 1,500 ../.2

    S = Mmax/Fb = 31.8(100)/1,500 = 2.12 .3

    5025 .. 1.6 .. (Sx = 2.81 .3)

    10-2 1

    4 m

    4 m

    0.5 m

    0.5 m

    4 m 4 m0.5 m

    0.5 m

    90 ../..

    L

    L

    45

    2 24 4= + = 5.66

    2 20.5 0.5= + = 0.707 L = 4.0/2 = 2.0

  • wmax = 2L() = 2(2.0)(90)= 360 ../.

    = 3(0.5)2(90) = 67.5 ..= (0.5)2(90) = 22.5 ..

    :

    :

    RRRL5.66 m0.707 m

    wmax = 360 kg/m67.5 kg

    RRRL5.66 m0.707 m

    wmax = 360 kg/m22.5 kg

    RoofRoof TrussTruss

    Truss

    Free Support

    Purlins

    Top chord

    Bottom chord

    Sag rod

    Truss

    Fixed Support

  • Types of TrussesTypes of Trusses

    King Post Truss Pratt Truss

    Howe Truss

    Fink Truss

    Fan Truss

    Howe TrussPratt Truss

    King Post This is the most basic truss type. Primarily used for simple structures with short spans.

    Fink Capable of longer spans than the King Post, adding further design flexibility.

    Flat - Using this truss can reduce the amount of wall area that needs to be sheathed.

    Double Pitch or Dual Pitch An asymmetrical truss used where the designer wants a change in roof appearance.

    Gambrel This truss is often used in agricultural buildings and barns.

    Hip This is one section of a hip roof system.

  • T-2

    Sag rodPurlins Bracing

    T-1

    Bracing of TrussesBracing of Trusses

    Roof Plan

    1 25.00

    35.00

    45.00

    55.00

    65.00

    75.00

    85.00

    95.00

    105.00

    A

    B

    10.0

    0M

    C

    10.0

    0M

    Loading on TrussesLoading on Trusses

    Purlins

    Prim

    ary

    Trus

    sS

    econ

    dary

    Tru

    ss

    Trib

    utar

    y A

    rea

    =5

    x 20

    =10

    0S

    q.M

    .

  • Loading on Loading on PurlinPurlin

    s s

    Primary Truss

    C Purlins

    L

    s

    s

    s

    Tributary Area

    + = ./.

    s L

    = x s ./.

    = 6 ./.

    q

    q

    sin,8

    ,

    cos,8

    ,

    2

    0

    2

    wwlwMSM

    f

    wwwlw

    MSMf

    xx

    yy

    yby

    yy

    xx

    xbx

    ===

    +===

    0.175.066.0

    +=+y

    by

    y

    bx

    by

    by

    bx

    bx

    Ff

    Ff

    Ff

    Ff

    q

    wwy

    wx

    Design of Design of PurlinsPurlins

  • Secondary TrussSecondary Truss

    Primary Truss under Loading

    Lower chordin Tension

    Upper chordin Compression Lateral Buckling of upper

    chord in primary trussLa

    tera

    l win

    d lo

    ad

    Secondary Truss helps Primary Truss for

    - Lateral wind load

    - Lateral buckling of upper chord

    - StabilityL

    L

    L/r

  • : = 30 ./.

    = 14 ./.

    = 44 ./.

    1.0 5.0

    = 44 x 1.0 = 44 ./.

    = 6 ./.

    = 44 + 6 = 50 ./.

    m-kg1538

    549kg/m,4904.14cos50

    m-kg388

    512kg/m,1204.14sin50

    20

    20

    =

    ===

    =

    ===

    xy

    yx

    Mw

    Mw

    3cm27.9)500,2(66.0

    )100(153===

    bx

    xx F

    MS

    C125x50x20x2.3 . (Sx = 21.9.3, Sy = 6.22.3, Ix =137.4, Iy=20.6.4, 4.51./.)

    x :

    y :

    2kg/cm 6.6989.21

    )100(153===

    x

    xbx S

    Mf

    2kg/cm 9.61022.6

    )100(38===

    y

    yby S

    Mf

    OK( ) ( ) 0.175.0500,275.0

    9.610500,266.06.698

    75.066.0=+=+

    y

    by

    y

    bxF

    fF

    f

    :)137)(101.2(384

    )500)(100/49(53845

    6

    44

    max

    ==DEI

    wl

    OK

    ==

  • = 60 x 5 x 0.5 = 150 .

    T-1:

    T-1 = 5

    = 30 ../.

    = 14 ../.

    (+) = 6 ../.

    () = 10 ./.

    = 60 ../.

    = 60 60 1 = 300 .. 150 ..

    300 ..

    (.) (.)L1L2 = L12L13 0 1.00L2L3 = L11L12 2200(T) 1.00L3L4 = L10L11 3000(T) 1.00L4L5 = L9L10 3240(T) 1.00L5L6 = L8L9 3200(T) 1.00L6L7 = L7L8 3000(T) 1.00

    U1U2 = U12U13 2267(C) 1.03U2U3 = U11U12 3092(C) 1.03U3U4 = U10U11 3339(C) 1.03U4U5 = U9U10 3298(C) 1.03U5U6 = U8U9 3092(C) 1.03U6U7 = U7U8 2783(C) 1.03

    Lower Chord:

    Upper Chord:

  • VerticalBracing:

    DiagonalBracing:

    (.) (.)

    L1U1 = L13U13 1800(C) 0.50L2U2 = L12U12 1100(C) 0.75L3U3 = L11U11 600(C) 1.00L4U4 = L10U10 240(C) 1.25L5U5 = L9U9 50(T) 1.50L6U6 = L8U8 300(T) 1.75

    L7U7 1050(T) 2.00

    L2U1 = L12U13 2460(T) 1.12L3U2 = L11U12 1000(T) 1.25L4U3 = L10U11 339(T) 1.41L5U4 = L9U10 64(C) 1.60L6U5 = L8U9 360(C) 1.80L7U6 = L7U8 604(C) 2.02

    L4L5 L9L10 = 3240 . (T) 1.0

    , Ft = 0.60Fy = 0.60(2,500) = 1,500 ./.2

    , Ag = 3240/1500 = 2.16 .2

    L50 x 50 x 4 . (Ag = 3.89 .2, rmin = 0.98 .)

    A307 12 .

    , Ae = 0.85Ag = 0.85(3.89) = 3.31

    = 0.5FuAe = 0.5(4,000)(3.31)

    = 6,620 . > 3,240 . OK

    , L/r = 100/0.98 = 102 < 300 OK

    :

  • U3U4 U10U11 = 3,339 ..() 1.03

    , Fa = 1,000 ../.2

    , A = 3,339/1,000 = 3.34 .2

    L50 x 50 x 4 . (A = 3.89 .2, rmin = 0.98 .)

    , L/r = 103/0.98 = 105

    , Fa = 876.2 ../.2

    = (3.89)(876.2) = 3,408 .. > 3,339 .. OK

    :

    L2U1 L12U13 = 2,460 .. 1.12

    , Ft = 0.60Fy = 0.60(2,500) = 1,500 ../.2

    , Ag = 2460/1500 = 1.64 .2

    L40 x 40 x 3 . (A = 2.35 .2, rmin = 0.78 .)

    :

    A307 12 ..

    , Ae = 0.85Ag = 0.85(2.35) = 2.00

    = 0.5(4,000)(2.00) = 4,000 .. > 2,460 .. OK

    , L/r = 112/0.78 = 143.6 < 300 OK

    1) :

  • L7U6 L7U8 = 604 . 2.02

    L65 x 65 x 6 . (A = 7.53 .2, rmin = 1.27 .)

    = (4.70)(387.7) = 1,822 . > 600 . OK

    L/r = 202/0.78 = 259 > 200 NG

    2 L40 x 40 x 3 . (A = 2(2.35) = 4.70 .2)y

    y

    x x

    Ix = 2 ( 3.45 ) = 6.90 .4

    Iy = 2 ( 3.45 ) + 4.70 ( 1.07 )2 = 12.28 .4Control

    min 6.90 / 4.70 1.21 cmr = =

    L/r = 202/1.21 = 167 < 200 OK

    , Fa = 387.7 ./.2

    2) :

    150 kg300 kg

    300 kg300 kg

    300 kg300 kg

    300 kg

    150 kg300 kg

    300 kg300 kg

    300 kg300 kg

    12 m

    FIXFREE

    Max. Deflection:

    From analysis,

    Dmax = 1.64 cm

    < [1200/300 = 4.0 cm] OK

    Free (Roller) Support Design:

    slot

    = 12

    a = 1210-6 /oc DT = 40 oCaDTL = 1210-6401,200 = 0.576 cm

    Slot length = 2 0.576 + 1.6 = 2.75 cm USE 5 cm

    BOLT 16 MM

    5 cm

    2 cm