indicators of ecosystem development in resaca restoration...

25
Leah McIntosh and Alejandro Fierro-Cabo Biological Sciences Department The University of Texas at Brownsville INDICATORS OF ECOSYSTEM DEVELOPMENT IN RESACA RESTORATION BASED ON THE MACROINVERTEBRATE COMMUNITY

Upload: lyanh

Post on 29-Aug-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

Leah McIntosh and Alejandro Fierro-Cabo

Biological Sciences Department

The University of Texas at Brownsville

INDICATORS OF ECOSYSTEM

DEVELOPMENT IN RESACA

RESTORATION BASED ON

THE MACROINVERTEBRATE

COMMUNITY

�Monitor resaca ecosystem development

through the macroinvertebrate community

�One resaca monitored from day zero of

re-flooding

�Use the macroinvertebrate community

composition to assess indicators of

ecosystem development

PURPOSE

� Remnan t s o f R i o G rande channe l ( oxbow l akes )

� Ar t i f i c i a l l y ma in ta i ned w i t h wa te r

� Prov i de va l uab l e f r e shwa te r hab i t a t

� Min ima l r e sea rch on ecosy s tem func t i on

RESACAS

� Powerful tool to assess health and stability of aquatic

ecosystems (Kash ian and Bu r ton , 2000 ; S tewar t and Down ing , 2008; Ta l l e t a l . , 2008)

� Central role in energy flow through aquatic ecosystems (Bu tkas et a l . , 2010)

� Remain in original habitat with short l ife span (US EPA , 2002)

� Sensitive to changes in environmental conditions (Rader e t a l . ,

2001)

MACROINVERTEBRATES

�Resacas in early stages of development have

a different macroinvertebrate community

composition than resacas in later stages of

development

�Macroinvertebrate community can be used as

an indicator of the successional stage of

restored resacas

HYPOTHESES

� Verify if the composition of the macroinvertebrate

community in resacas reflects the continuously

flooded lifetime

�Determine which macroinvertebrate community-

derived metrics are the best site discriminators

OBJECTIVES

STUDY AREA

STUDY AREA

�New Site

�One year flooded

Google Earth Image

STUDY AREA

� Intermediate Site

�Four years flooded

Seth Patterson

STUDY AREA

�Old Site

�>10 years flooded

Google Earth Image

� Samples collected from entire community

� Sweep net

� Benthic corer

� Resacas sampled monthly for one year

� Sample location selected randomly

� 5 replicates with 3 subsamples per replicate

� Samples sorted and enumerated to lowest taxa possible

� Water parameters

METHODS

– Temperature

– Specific

Conductivity

– DO

– pH

– Turbidity

(Secchi)

– Chlorophyll-a

– Total P

– Nitrate

– Nitrite

– Ammonia

SEDIMENT CHARACTERISTICS

Site Secchi (cm) pHConductivity

(µs/cm)DO (mg/L) Temp (°C)

New21.6 ± 1.4 8.1 ± 0.1 1216.0 ± 72.4 7.2 ± 0.7 25.4 ± 1.4

Intermediate41.1 ± 3.6 8.3 ± 0.2 1314.6 ± 71.4 9.4 ± 1.0 26.3 ± 1.7

Old26.1 ± 2.1 7.9 ± 0.2 1263.0 ± 47.3 6.6 ± 0.6 24.1 ± 1.7

ENVIRONMENTAL DATA

Siteug chl-a

10cm-1 Carlson's TSI

New 43.0 ± 5.5 66.2

Intermediate 48.2 ± 10 66.5

Old 40.4 ± 3.6 66.5

ENVIRONMENTAL DATA

SiteNew

Intermediate

Old

-6 -4 -2 0 2 4-4-2024-4

-2

0

2

4

secchi

pH

ug chla / 10cm

CondDO

Temp

Phosph

Nitrite

Nitrate

Ammonia

OM

INVERTEBRATE COMMUNITY

OrderOrderOrderOrder FamilyFamilyFamilyFamily SubfamilySubfamilySubfamilySubfamily GenusGenusGenusGenus SpeciesSpeciesSpeciesSpeciesNew TotalNew TotalNew TotalNew Total

Intermediate Intermediate Intermediate Intermediate

TotalTotalTotalTotalOld TotalOld TotalOld TotalOld Total

Diptera Chironomidae tanypodinae tanypus 156 340 44

Tubificidae Naididae Tubificinae 140 239 160

Diptera Chironomidae 90 238 55

Diptera Chironomidae Chironominae 89 155 137

Diptera Ceratopogonidae Probezzia37 140 17

Thiaridae Melanoides tuberculata 1 119 699

Amphipoda Hyalellidae Hyalella 0 68 0

Ephemeroptera Baetidae 0 18 0

Diptera Chironomidae tanypodinae 6 17 2

Planorbidae 0 15 0

Planorbidae 0 11 0

Gordioidea Gordiidae Gordius 1 10 0

Hemiptera Corixidae 13 9 0

Odonata Coenagrionidae 1 9 1

Diptera Ceratopogonidae Bezzia0 6 0

Physidae 9 5 0

Planorbidae 0 5 0

Rhynchobdellida Glossiphoniidae 4 3 9

Diptera Ceratopogonidae2 3 0

Hemiptera Corixidae 0 3 0

Planorbidae 0 3 0

Odonata Corduliidae 1 2 0

Coleoptera Haliplidae 0 2 0

Decapoda Palaemonidae 0 2 0

Diptera Chaoboridae Chaoborus 18 1 1

Ephemeroptera Caenidae 3 1 0

Nematoda 2 1 27

Diptera Culicidae 0 1 0

Hemiptera Corixidae 0 1 0

Mysida Mysidae Taphromysis 20 0 16

Lumbriculida Lumbriculidae 6 0 12

Enchytraeidae 2 0 0

Odonata Gomphidae Aphylla 1 0 0

Coleoptera Chrysomelidae 1 0 0

Fredericellidae 1 0 0

Naididae 1 0 2

Trichoptera Phryganeidae 0 0 1

Coleoptera Curculionidae 0 0 1

Basommatophora Ancylidae Hebetancylus0 0 1

Veneroida Sphaeriidae 0 0 3

Poduromorpha Poduridae 0 0 1

Lumbriculida Lumbriculidae 0 0 1

Arhynchobdellida Erpobdellidae 0 0 2

INVERTEBRATE COMMUNITY

� There were dif ferences in the biotic communities among the

three resacas (R=0.369; p=0.001)

Transform: Fourth root

Resemblance: S17 Bray Curtis similarity (+d)

SiteNew

Intermediate

Old

2D Stress: 0.17

INVERTEBRATE COMMUNITY

� Environmental variables were not a significant driver for

dif ferences between the biotic communities (ρ=0.304;

p=0.1)

SiteNew

Intermediate

Old

-6 -4 -2 0 2 4-4-2024-4

-2

0

2

4Transform: Fourth root

Resemblance: S17 Bray Curtis similarity (+d)

2D Stress: 0.17

TAXA DOMINANCE

1 10 100

Species rank

0

20

40

60

Dom

inance %

New

Intermediate

Old

COMMUNITY METRICS

Diversity Indices

Margalef's Richness (d') Pielou's Evenness (J') Shannon Diversity (H')

Va

lue

s

0.0

0.5

1.0

1.5

2.0

2.5

New

Intermediate

Old

Metric New Intermediate Old

Total Abundance 605 1427 1192

Taxa Richness 24 29 21

Family Richness 19 19 16

Diptera taxa 7 9 6

% Chironomidae 56 53 20

% Predators 40.0 38.2 8.6

% Gatherers 54.7 50.4 30.9

% Filterers 3.5 0.1 1.6

% Scrapers 1.7 11.1 58.7

% Shredders 0.2 0.3 0.2

COMMUNITY METRICS

Metric New Intermediate Old

Total Abundance 605 1427 1192

Total taxa 24 29 21

Family Richness 19 19 16

Diptera taxa 7 9 6

% Chironomidae 56 53 20

% Predators 40.0 38.2 8.6

% Gatherers 54.7 50.4 30.9

% Filterers 3.5 0.1 1.6

% Scrapers 1.7 11.1 58.7

% Shredders 0.2 0.3 0.2

COMMUNITY METRICS

COMMUNITY METRICS

Metric NewInterme

diateOld Expected

Richness 24 29 21 ↑↓Ruhi, 2012; Horn, 1974;

Barnes, 1983

% Chironomidae 56 53 20 ↓Canedo-Arguelles &

Rieradevall, 2011;

Barnes, 1983

% Predators 40.0 38.2 8.6 ↑Ruhi et al, 2012; Batzer

& Wissinger, 1996;

Bloechl et al, 2010

% Gatherers 54.7 50.4 30.9 ↑Ruhi et al, 2012; Batzer

& Wissinger 1996

% Filterers 3.5 0.1 1.6

% Scrapers 1.7 11.1 58.7 ↑

% Shredders 0.2 0.3 0.2

� Community differences do not appear to be driven by environmental

factors

� New and intermediate sites are most similar

� Time?

� Metrics that may discriminate between resacas

� Species dominance

� Trophic status

� Decrease in predators, increase in detritivores

� Strongly influenced by exotic gastropod

� System trends toward simplification of the community

� Further research on ecosystem function

CONCLUSIONS

� Special thanks to the Gorgas

Science Foundation for

supporting the resaca

restoration at Sabal Palm

Sanctuary

ACKNOWLEDGEMENTS

� Thank you to fellow students who have provided

valuable field and lab assistance: Rachel Arney, Guillermo Aguilar, Ricky Alexander, Mike Bollinger, Maria

Cooksey, Monica Delgado, Catheline Froehlich, Victor

Garza, John Gray, Liana Lerma, Crystal Martinez, Mario

Marquez, JonRoss Rodriquez, Lydia Roush, Paloma

Rodriguez, Jessica Sahu Teli, Claudia Tamez, Aaron White

� Butkas , K . J . , Vadeboncoeur, Y. and Vander Zanden, M. J . (2010) . Est imat ing benthic inver tebrate product ion in lakes : a comparison of methods and scal ing f rom ind iv idual taxa to the whole - lake level . Aquat . Sc i . 73, 153–169.

� Barnes , L . E . (1983) . The co lonizat ion of bal l -c lay ponds by macroinver tebrates and macrophytes. Freshw. Bio l . 561–578.

� Batzer, D . P. and Wiss inger, S . A . (1996) . Ecology of insect communit ies in nont idalwet lands . Annual Rev iew of Entomology 41 , 75 -100.

� Canedo-Arguel les, M. and Rieradeval l , M. (2011) . Ear ly success ion of the macroinver tebrate community in a shal low lake: Response to changes in the habi tat condi t ion . Limnologica 363–370.

� Kashian, D . R . and Bur ton, T. M. (2000) . A comparison of macroinver tebrates of two Great Lakes coasta l wet lands: test ing potent ia l metr ics for an index of eco logica l integr i ty. J . Gt . Lakes Res . 26, 460–481 .

� Rader, R . B . , Batzer, D . P. and Wiss inger, S . A . (2001) . Bioassessment and Management of Nor th American Freshwater Wet lands . New York : Wi ley.

� Spat ial and temporal pat terns of p ioneer macrofauna in recent ly c reated ponds : taxonomic and funct ional approaches. Hydrobiologia . 61 , 137-151 .

� Stewar t , T. W. and Downing, J . A . (2008) . Macroinver tebrate communit ies and env i ronmental condi t ions in recent ly constructed wet lands . Wet lands 28, 141–150.

� Tal l , L . , Méthot , G . , Armel l in , A . and P inel -A l loul , B . (2008) . B ioassessment of benthic macroinver tebrates in wet land habi tats o f Lake Saint -Pierre (St . Lawrence River ) . J . Gt . Lakes Res . 34, 599–614.

� US EPA (2002) . Methods for evaluat ing wet lands condit ion : #9 Developing an inver tebrate index of b io logica l integr i ty for wet lands.

REFERENCES