ha) e~~y3 - nasa report, volume i television broadcast satellite systems prepared by satellite...

90
l I ELECTRICAL E N 0 L rer I < t tH Ha) .I· k- I Sepr ingced by ~JZ ~ R UDP:IV21 RBCEIViD %-.. C ' INPUT INCH'*"J NGINEERING EXPERIRION AUBURN UNIVERSITY AUBURN, ALABAMA rc'M' E~~Y3 0'~s ~ABRN, ALAedBAM .,r,,,~~~~~lT' CN C ~i 0 SEO~L II Et https://ntrs.nasa.gov/search.jsp?R=19720023526 2018-07-15T05:17:18+00:00Z

Upload: haduong

Post on 04-Jul-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

l IELECTRICAL

EN

0 Lrer

I < t tH

Ha)

.I· k- I

Sepr ingced by ~JZ ~

R

UDP:IV21 RBCEIViD %-.. C

' INPUT INCH'*"J

NGINEERING EXPERIRION

AUBURN UNIVERSITYAUBURN, ALABAMA

rc'M'

E~~Y3

0'~s

~ABRN, ALAedBAM.,r,,,~~~~~lT' CN C ~i 0SEO~L

I I

Et

https://ntrs.nasa.gov/search.jsp?R=19720023526 2018-07-15T05:17:18+00:00Z

Final Report, Volume I

Television Broadcast Satellite Systems

Prepared By

Satellite Communications Laboratory

E. R. Graf, Project Leader

Contract NASA-24818 e -/ /George C. Marshall Space Flight Center

National Aeronautics and Space AdministrationHuntsville, Alabama

Approved By: Submitted By:

E. R. GrafProfessorElectrical Engineering

C. C. Carroll.Professor and HeadElectrical Engineering

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE

BEST COPY FURNISHED US BY THE SPONSORING

AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CER-

TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-

LEASED IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.

FOREWORD

This is Volume I of two volumes, which make up the final report

of a study conducted by the Electrical Engineering Department under the

auspices of the Engineering Experiment Station of Auburn University.

This final report is submitted toward fulfillment of the requirements

prescribed in NASA Contract NAS8-24818.

Problems of system weight and picture quality are discussed for a

satellite television broadcast system in this first volume.

Volume II of the final report discusses coverage and weather atten-

uation in detail.

!Two other technical reports were submitted during the contract

period: Technical Report No. 1, "Receiver Antennas for Application in

a Television Broadcast Relay System," dated 30 January 1970; Technical

Report No. 2, "Television Broadcast Relay System," dated 30 November

1970.

ii

ABSTRACT

Empirical expressions are derived to account for various components

of the Television Satellite Broadcast System. Computer programs are

developed to determine the system weight in any general design. The

factors of picture quality, propagation losses and R. F. power require-

ments are discussed and determined for a particular case.

iii

ACKNOWLEDGEMENT

The authors wish to express their appreciation to the many members

of the group from the Auburn University Electrical Engineering Depart-

ment, both student and faculty, who contributed to the overall pre-

paration of the study.

In addition, we are greatly indebted to Mr. Grady Saunders of NASA

in Huntsville, Alabama, for his valuable assistance throughout the entire

project.

iv

TABLE OF CONTENTS

LIST OF FIGURES . . . . .. . . . . . . . .

LIST OF TABLES . . . ... . . . . .. . .

LIST OF SYMBOLS . . . . . . . . . . . .

I. INTRODUCTION . . . . . . . . . . .

II. ANTENNAS . . . . . . . . . . . . . . .

III. POWER SUPPLY .. . . . . . .

IV. OTHER SYSTEM PARAMETERS . . .

V. TOTAL SYSTEM WEIGHT . .. . . . . . . . .

VI. SATELLITE TRANSMITTER POWER REQUIREMENTS

VII. STATE-OR-THE-ART . . . . . . . . . .

REFERENCES

APPENDIX . . . . . . .

v

. . . . . . . . . . vi

. . . . . . . . . . vii

.......... ix

. . . . . . . . . . 2

. . .. 4. . . . . .. 25

40

. . . . . . . . . . 25

. . . . . . . . . . 32

. . . . . . . . . . 40

. . . . . . . . . . 58

60

LIST OF FIGURES

1. Antenna weight vs frequency for eight antenna weightfactors (1 - 4GHZ) ..... ... .... . .. . . . .. 8

2. Antenna weight vs frequency for eight antenna weightfactors (8 - 12GHZ) ..... . .............. . 9

3. Solar cell weight vs power frequency=l-4 GHZ . ... . . . . . 15

4. Solar cell weight vs power frequency=8-12 GHZ . ... ..... 16

5. Communication system weight vs power frequency-1-4 GHZ .... . 22

6. Communication system weight vs power frequency-8-12 GHZ .... 23

7. Attitude, orbit control and structure weight (1 - 4GHZ) . . .. 28

8. Attitude, orbit control and structure weight (8 - 12GHZ) . . . . 29

9. Total weight vs power (2GHZ) .................. 31

10. RF amplifier weight vs power . . . . . . . . . . . . . .. . 50

11. RF amplifier weight vs power .................. 51

vi

LIST OF TABLES

1. Antenna weight vs frequency for eight antennaweight factors (1 - 4GHZ). . . . . . . .

2. Antenna weight vs frequency for eight antenna weightfactors (8 - 12GHZ) . . . . . . .. . . . . . . . . .

3. State of the art of silicon solar cells . . . . . . .

4. Low weight roll-up solar array developments . . . . .

5. Solar cell array weight vs power for 1-4 GHZ . . . .

6. Solar cell array weight vs power for 8-12 GHZ . . . .

7. Communication system weight vs power (1 - 4GHZ)

8. Communication system weight vs power (8 - 12GHZ)

9. Attitude, orbit control and structure weight(Freq. 1 - 4GHZ)

10. Attitude, orbit control and structure weight(Freq. 8 - 12GHZ) . . . . . . . . . . . . . . . . .

11. Total weight of satellite . . . . . . . . .

12. TASO picture quality grades . . . . . . . . . . . . .

13. FM broadcasting at 2.5 GHz. Transmitter power pervideo-channel . . . . . . . . . . . . .. . . . . . .

14. FM broadcasting at 12 GHz. Transmitter power/videochannel . . . . .. . . . .

15. RF amp parameters vs power . .. . . . . . . .

16. RF amp parameters vs frequency . . . . . . . . .. .

17. RF amp parameters vs gain . . . . . . . . . . . . . .

18. RF amp parameters vs weight

vii

. . . . . . 6

. . . . . . 7

. . . . . . 11

. . . . . . 13

. . . . . . 17

.. . . .. . 18

. . . . . . 20

.. . . . . . 21

. . . . . . 26

27

30

33

. . . . . . 38

. . . . . . 39

. . . . . . 42

. .. . . . 44

. . . . . . 46

48

. . . . . .

. . . . .

19. Solar cells data from the Boeing Company . . . . . . . .

20. Solar cells data from Fairchild Industries . . . . .

21. Solar cell array data from the Boeing Comapny . . . . .

22. Solar cell array data from Fairchild Industries . . . .

23. Nickel cadmium battery specifications from theBoeing Company . . . . ..................

24. Nickel cadmium battery specifications from FairchildIndustries . . . . . . . . . . . . . . . . . . . .

. . . . 52

. . . . 53

* . . . 54

. . . . 55

. . . . 56

. . .. 57

viii

SYMBOLS

W = total system weight (lbs)

WA = antenna system weight (lbs)

WS = solar array system weight (lbs)

WTR = weight of transmitter (lbs)

WpS = weight of electrical power subsystem (lbs)

WTh = weight of thermal control (Ibs)

WT = WTR + WPS + WTh

WAO = weight of attitude and orbit control (lbs)

WAST = weight of antenna, solar array, transmitter, power subsystem andthermal control

WST = weight of structure (lbs)

K1 = antenna weight factor (lbs/sq ft)

K4 = solar cell array weight factor (lbs/kw)

K5 = efficiency of transmitter

K2, K3 = constants that determine the weight of transmitter, powersubsystems and thermal control equipment

K6 = constant that determines weight of attitude, orbit control andstructure

3 x 1010C = velocity of light 30.48 ft/sec

AS = area of coverage on earth (sq. miles)

S = distance between transmitting and receiving antennas (miles)

ix

f = frequency (Hz)

P = transmitter output power (kw)

x

Television Broadcast Satellite SystemsS. G. Chandra, H. V. Poor, D. G. Burks, E. R. Graf

I. Introduction

The television systems around the world have seen a very rapid growth

in the last few years. The effects of television have been numerous.

Most of the countries have adopted television as a means to achieve

national unity, and mass communication.

The most important problem in any country, is that of ensuing a

good ground coverage of the broadcasting signals so that the percentage

of homes which can receive television without complex aerials or ampli-

fying equipment approaches 100%. At the present time, to achieve close

to 100% coverage with ground links requires a very large number of con-

ventional transmitting stations and the increase in distribution costs

to achieve this coverage would be very much higher than the increased

revenue that would result. The most attractive alternate to this is to

have one ground transmitting station for each channel and beam its output

to a geostationary satellite and for the satellite responder to relay the

signals direct to the home receiver. A geostationary satellite (altitude

about 35870 km above the equator) would permit a continuous broadcast

service to areas as small as individual countries or as large as continents

up to about 1/3 of the earth's surface. A geostationary satellite also

permits the use of a fixed receiving antenna of very high gain.

The development of a Television Broadcast Satellite (TVBS) is now

accepted as technically feasible and economically profitable. Such as

1

2

satellite system includes a large number of subsystems interrelated in a

complex fashion. A number of different system configurations are possible

and for each system, the design involves an examination of the interre-

lations among and the choice of a set of subsystems to optimize in some

sense the resulting system.

The system weight is an important design consideration and an effort

is made in this report to give simplified relationships for the subsystem

weights, considering all possible variables. Also state-of-the art of

the system components, attenuation of the signal and picture quality are

discussed.

II. Antennas

An ideal television broadcast satellite transmitter antenna requires

a minimum RF power to provide the required field strength over the entire

area to be covered. Other aspects affecting the antenna design are side

lobe level, beam pointing accuracy, power handling capability, multiple-

beam capability, deployment and compatibility with satellite weight and

size. Detailed analysis of these factors have been made in various

reports [1,2,3,4].

Most high gain directional spacecraft antennas have been parabolic

reflectors because they are simpler in design and lighter in weight for

a given gain. They may be divided into two categories. Small antennas

which can be launched in operating position and large antennas which

due to shroud limitations must be folded for launch and then deployed in

space.

3

An antenna diameter of approximately 10 ft. divides the two classes.

This means that for all bandwidths at 0.9 GHZ and for bandwidths less

than about 30 at 2.5 GHZ, a deployable reflector is required.

Deployable parabolic antennas may be classified into three groups:

(1) Flexible reflector surfaces

(2) Rigid reflector surfaces

(3) Inflatable structures

Many concepts for deployable antennas have been described in the

literature and a few typical of these are compared in Tables 1, 2, and

3 of Chapter IV in reference [1].

A flexible reflector surface such as metallized film or wire mesh

can be supported by a system of ribs or cables which define and maintain

the required parabolidal shape. For frequencies up to approximately

5 GHZ, antenna surface qualities and deviations from a true parabolid

required to minimize reflector losses are such that a flexible reflector

is preferred. The minimum weight design of such an antenna we found to

be "Elastic Recovery Umbrella", a 6 ft. size model developed by TRW

Systems, with a unit weight of 0.04 lbs/ft2. The maximum weight design

is an umbrella type reflector, 10 ft. model developed for solar concen-

trator by NASA Langley, with a unit weight of 0.312 lbs/ft2, other devel-

opments are with unit weights of 0.1, 0.13, 0.2,and 0.25 lbs/ft2.

A rigid reflector antenna is an assemblage of rigid segments of a

circular paraboloid. These surfaces provide more accuracy, but are

heavier and costly. Models varying from size of 4 ft. diameter to 52 ft.

4

diameter have been developed for frequencies up to 10 GHz. The unit

weight varies from 0.26 to 0.96 lbs/ft2 for these designs.

Inflatable antennas consist of a circular membrane that assumes

the shape of a paraboloid of revolution when subjected to a uniform

radial tension combined with uniform lateral pressure. Using thbs

principle antennas up to 20 ft. in diameter have been constructed, with

unit weight of the system varying from 0.4 to 2 lbs/ft2 . It is inter-

esting to note in Table 3 of reference [1], about the design of a 200-

400 ft. size inflatable reflector, with a unit weight of only 0.03 lbs/

ft2 , for use at frequencies 10-30 MHZ. Many problems are yet to be

solved in these designs, and hence the application of inflatable struc-

tures to spacecraft antennas is beyond the current state-of-the-art.

It is expected, however, that by 1975 some of the large deployable

reflectors will have been successfully demonstrated in spacecraft appli-

cations.

At lower frequencies (say 0.9 GHZ), the active phased array antenna

appears to be an attractive alternate to the reflector antenna, especially

for multiple beam capability, TRW Systems [1] have developed a 30 foot

array, with a total system weight of 396 lbs., resulting in a unit weight

of 0.56 lbift2. However, their complexity, heavy weight and difficulty

in meeting launch vehicle fairing constraints have prevented their

extensive use on spacecraft to date.

For frequencies above 8 GHZ, (max. size about 10 ft. diameter) the

parabolic reflector offers the most promising design. A variety of small

5

antennas have been used in space and pose no major technological problems

for the broadcast satellite. The.weight of the antenna system is no more

significant in this case, and the typical system unit weight varies from

about 0.7 to 1.13 lbs/ft2.

The antenna system weight has been computed for all possible types

by using the relation derived in [5].

c2s2

WA = lf2

where WA = Antenna system weight in lbs.

Figure 1 [Table 1].is a.family of Curves of antenna system weight

for the frequency range 1 to 4 GHZ, and for 8 antenna weight factors

ranging from 0.04 to 0.635 lb/ft

Figure 2 [Table 2] is a similar plot for the frequency range 8-12

GHZ and for 8 weight factors ranging from 0.13 to 1.13 lb/ft2 .

III. Power Supply

Reliability, long life and efficiency are the three

be considered in the design of a satellite power system.

vision broadcast satellite must operate for many months,

reliability becomes important. Power supply efficiency,

per pound, is a continuing goal because of the high cost

orbit.

major factors to

Since the tele-

the system's

measured by watts

per pound in

Three sources of energy may be exploited in a spacecraft; nuclear

reactor, radio-isotope thermo-electric generator, and solar cell array.

6

TABLE

ANTENNA WEIGHT VS FREQ FOR EIGHT ANTENNA WEIGHT FACTORS (1 - 4GHZ)

Frequency Antenna Weight Factors (lbs/sq. ft.)

(GHZ) 0.04 0.10 0.13 . 020 0.25 0·.31 0.56 0.635

1.n L ). . 5.7 1 · 77,62 11.9.41. 149. 2o lb5.09 334 35 3 79.13

1. 5 L ..j1 2.5,' 4 5() , 53-.07 66.34- 82.26 148.60 168.50

?.( i7 14 .'3 1i.40 29. 5 ' 37.32 46.27 83.59 94.78

.. 3." 2 .5 12.4 I 2i.4 1.11 23.8 293.61 53.50 60.66

2. 6 6.e3 8.,6 e 13:.271 , 5 2 C .5 7 37. 15 42.13

. ':~ m .4.87 6.34 9..75 12.1 15.11 27.29: 30.95

' .(; 1.4 C 2'.73 4 r8i 7.46. 9. 33 . 1 1.57 20.0 23.70,

7

TABLE 2

ANTENNA WEIGHT VS FREQ FOR EIGHT ANTENNA WEIGHT FACTORS (8 - 12GHZ)

Frequency Antenna Weight Factors (lbs/sq. ft.)

(GHZ) 0.13 0.20 0.25 0.31 0.56 0.635 0.70 1.13

1.21 1. 7 2.33 2.89 5.22 5.92 6.53 10.54

P.5 :I .07 1.65 2.C7 2.56 4.63 5.25 5.78 9.34

C C .96 1.4 7 1 . '4 2.29 4.1 H 4.68 :5.16 8.33

.5 C.86 i.2 L [. 2.0C 5 3. 70 4 .20 4.63 1.48

10.0 C.78 1-.19 1.4Y I1.5 1.34 3 .9 - i . 18 6.75

10.5 C.7C I1.CP 1 .35 1.e£ 3.(C3 3.44 3.79 6.12

11.0 (C.64 u. 9 1..23 1. 53 2.76 3.13 .3.45 5.58

11.5 C 5.'; C cc . 13 14C 2. 3 2.87 3.16 5.10

8

Antenna Weight Factors (lbs/sq. ft.)

A - 0.04O - 0.10A - 0.13+ - 0.20X- 0.25v - 0.31# - 0.56X - 0.635

1- .1, i .l r( C . Li CJ ' . C( (!FI E r(-[{NC Y I N ! r-~

qJNT ENNq; iT I'- FRE(-r', QU NC'

FOR F El T H NT NTEiNNq H!T F'Cq(;T - ' . (1 - 4GHZ)

Figure 1

(~Dc}

C)-

c _ir I

LD

. _ ),C_:i

CD,. I

J

C--IL

- -

L · I. .I .

9

Antenna Weight Factors (lbs/sq. ft.)

0- 0.130- 0.20A- 0.25+- - 0.31X - 0.56

0 - 0.635+ - 0.70X - 1.13

. ! t , 3, 4, 0 {-I .3 tW

FiNTEII Nc, V -j F

- 'UNC F

C'R E'- 'T iNTNNq NT F iT r-;

iI

i ('. C4 I 1

(8 - 12GHZ)

Figure 2

-- ,

.9 -1 0 c? I'

C;

, I.7- j

10

Nuclear reactor systems offer the greatest potential in terms of

gross power capability. A growth potential for this system is projected

up to 300 kw. The main problems associated with these systems are limited

lifetime due to generation of helium in fuel casing, heavy shielding

requirements in conversion equipment and low efficiency.

Isotope thermo-electric generator systems have been well researched

and several low powered systems have been developed and flown. However,

the technology base is.still inadequate for the power range of interest

in the TVBS systems.

The technology of solar cell systems is well in hand, primarily

because of their continued use throughout the space program. In fact

it appears that they offer the best source for an efficient, practical

system for long durations.

Silicon solar cells have been commonly used and the manufacturing

techniques for this material are far enough advanced. Silicon cells of

polarity N-on-P are preferred to P-on-N because they are more radiation

resistant and are readily available. These cells may be obtained in

1 x 2, 2 x 2, 3 x 3 and 2 x 6 cm sizes. However only 2 x 2 cm cells are

mostly considered so far because of their cost advantage. The current

state-of-the-art in silicon solar cells with some projections for 1975

and 1980 are given [2] below in Table 3.

11

State of theTable 3

art of silicon solar cells rl1......... Parameter 1970 ...1975 1980LI

Parameter 1970 .1975 '1980

Size/type 2 x 2 cm 2 x 6 cm 4 x 6 cm

N/P Silicon N/P Silicon N/P Silicon

Power/cell 72.8 mw 225 mw 450 mw

Weight* 48 w/lb 55 w/lb 60 w/lb(21 lb/kw) (18 lb/kw) (16.7 lb/kw)

(* Not including Substrate/Structure)

Cadmium sulfide solar cells have also been found to be the most

promising in the thin film category. They seem to offer several advan-

tages in the areas of cost, storage efficiency and radiation resistance.

The following are their typical characteristics:

Power/cell 157 to 252 mw

Power/area 3.78 to 2.35 w/ft2(40.7 to 25.3 w/m2 )

Power/weight 37 to 75.7 lb/kw(16.7 to 34.3 kg/kw)

However, the disadvantages of these are larger area, low stability

and are not readily available.

Many schemes have been considered for mounting assemblies of solar

cells on a spacecraft. They may be mounted directly on the satellite

body, but the disadvantage is low efficiency and difficulty in maintaining

adequate temperature control, since the spacecraft interior needs to be

kept close to 200 C and the solar cells below 0°C. The weight factor of

such arrays is of the order of 60 lbs/kw.

12

Further as the spacecraft increases in size, the amount of electric

power that can be supplied by surface mounted cells does not increase at

the same rate as the payload volume. To keep power and size in step,

certain deployment schemes have been proposed. The two important methods

of deployment are roll-out and fold-out. The roll-out method differs

from the fold-out scheme only in the manner in which the array/substrate

is packaged. The roll-out winds the array on a drum approximately 10

inches in diameter, similar to a window shade. The fold-out method

"zee" folds the array into a flat pack against the spacecraft body.

The best method from an efficiency standpoint is to mount the cells

on a flat panel which is continuously oriented to face the sun. The

oriented flexible solar array is a highly promising concept for large

spacecraft power requirements (1 to 100 kw) in the 1970's. This fulfills

a critical need for a reliable, low weight, low volume and high power

electric power source.

NASA has concluded many study contracts about the feasibility of

30 watt/lb roll-up solar arrays and the results are encouraging. Typical

characteristics of these and other developments [6,7,8,9] are given

below in Table 4.

A GE study indicates that the utilization of 2 ohm-cm cells results

in a calculated max. power of 2523 watts at 102 volts, where as for 10

ohm-cm cells this results in a max.power of 2294 watts at 90 volts. Based

on this it is concluded that cells with a 2 ohm-cm base resistivity are

required to meet the requirements of 10 watt/sq ft of module area.

13

Low weightTable 4

roll-up solar array developments

Hughes[6] Fairchild Hiller[7] Boeing[8] GE[9]

Type of cell 2 x 2 cm 2 x 2 cm silicon 2 x 2 cm 2 x 2 cmN/P 2 ohm- cell 8 mil thick 8 mil thick 8 mil N/Pcm 7.2 mil 2 ohm-cmthick

Power/cell 49.5 mw

Panel area 88 sq ft 277.4 sq ft 29 sq ft

Number of 34500 61,920 6480 55, 176cells/panel

Power/panel 1500 w 2760 w 290 w 2469 w

Power/weight 21.5 w/lb 34.49 w/lb 20.6 w/lb 32.3 w/lb

Remarks A 500 w model A full scale mechan- Total powerdeployment ical functioning of 1160 wattsand orienta- model has been fab- for 4 panelstion system ricated and has suc- is achieved.has been ver- cessfully demonstra-ified. A ted its ability to1500 w model deploy and retract.under devel-opment in1970.

14

However, TRW Systems [1] select 10 ohm-cm cells over 2 ohm-cm cells,

because of their higher end-of-life performance.

From the above, it may be seen that the weight factor of the solar

cell array varies from about 33 to 60 lbs/kw. Power system weight was

computed for these weight factors and is given with respect to the trans-

mitter output power (P). An efficiency of 65% is assumed for the trans-

mitter in the 1-4 GHZ range and 58% for the 8-12 GHZ range. Futher it is

assumed that the auxiliary power requirement of the spacecraft is 23% of

the transmitter output power. Hence we may write

Ws = K4 ( + 0.23P)K5

where Ws = Solar cell array system weight (lbs)

The computed results are indicated in Figures 3 and 4, and also in

Tables 5 and 6.

IV. Other System Parameters

1. Communications Electronics

The complexity and magnitude of the problems encountered in generating

and transmitting high RF power levels in a space environment have been

discussed in various reports. Useful discussions are made in [10] about

the television broadcast satellite requirements and constraints, and their

impact upon transmitter designs. It is anticipated that future trends

will be toward multiple beam, multiple repeater configurations that

generate sufficient power to allow the use of low-cost terrestrial

D

15

Solar Array Weight Factors (lbs/kwy

ci·1' - 33.0

acn I 0 - An n

A - 50.0+ - 60.0X - 100.0

P(:4 9 TNI\ KWP ~ ~ ~ ~ v ~ ~ ~ ~ F H ~L _ ;k~ V

S( 1 LF- CF LL NE-E CHT V FP-' !L- D

F Er.: i--L ;HZ

Figure 3

crJ

r

_J

.iX -e

(:i

L:. j C,

I i , i L

I'

-1(o

16

Solar Array Weight Factors (lbs/kw)

0 - 33.00 - 40.0A - 50.0+ - 60.0X - 100.0

I I 2 .! " -:r :i; . ,' ! ' pn .t K i,,- I .,

.i.... T ,.: 1 \.i

VF--,R CStL L L ,- T H T V, r-2 , -lC

FR k -1 2 'HZ

Figure 4

c,

2D_

.-

,-

kD -

Ui~r..,

'ZDOJ_

>J I-

('\ .,

EJ

r_

t '

c3

CD

- 1 i

17

TABLE 5

SOLAR CELL ARRAY WEIGHT VS POWER FOR 1-4 GHZ

KW Solar Array Weight Factors (lbs/KW.)

33.0 40.0 50.0 60.0 100.0.~~~~~~ . -- I I -..

2 'j . 1 7? 6

'8I. 3 59 '

8I 7 . -3 R

1]I . 7 184

I 5. * O3 i

* I 1) . 4 3 ,52

/,)0 . -, 144

4 37 .694 1

4 6. 5 32

5 5 2. 232 9

554.4 12

S5 ~ 3 . 59 1 8

3 5 . 36 2

7(:. 7 M'i4

IUCt. C '/6

14 i.4I/f4-

2L2. 2i53

247 .5 846

2 2 , 9 536

.418 3. 3230

353.b6'921

3 ; ( . () (1

, 2 4 · 43 C 7

4 53 . 7 73S

4 495. 1 92

53, 3I; . 5 3' 3

565i.'JC 75

6 C r . 27 -

672.01 54

7 7. 3 4

44.2115

88.4230

1 2.6345

1 7 .ii 61

22 1 ; 75 ,

2 65.26' C

'C9 . 48407

- ;3 . 602 i

397. 9036

442. 1 152

4,6 . 3267

'530. 53 'f!7

574. 749X

6 L8.9 614

'63. 17232

7C70 7. Tbg

75 1. * 59- ?

795. 076

84. 23 'C0

5 1. 053 8

1b. 1C76

15'. 1f15

212.2153

26 . 2690

31..3230

371.3 767

424.43 J7

4 7 /. 4 P4 4

I,3,0. 538 3

5F8 '. 5 92

63 6.646()

742.7537

7 5 . 07 6

9 4 8 . :3 1.i 3

901. 91 5 3

954. 9690

1C; . C22q

lC6 1 . C759

88.4231

176. 8460

6 5 . 2 6'3 ()

'4 2. I 152

530. 383

18 . 9614

707. 3 4 3

795. P074

d84 .2305

72 . 6536

106 1. (76 7

1149.499,

1237.S229

1 326 . 3459

1414.76')90

1 '03. 1 921

1591 .61f,52

1:,8C.0383

1 I7 .t * 6;

0. 5

1. . 5I.C

2.

3.5

7. 0

4.5

5.C

5.5

7. 0

7.5

1.C9.0

LC.,L I I

-r

.L

-r7

J.L-L.

18

TABLE 6

SOLAR CELL ARRAY WEIGHT VS POWER FOR 8-12 GHZ

Power KW Solar Array Weight Factors (lbs/KW)

33.0 1 40.0 1 50.0 1 60.0 100.0

30 .9233

61. : 465

92 7 69 8

1 3 6 93 i

154 .16 3

185. 5396

2 16 .4 61

247. 352

27/8.3 37.

]tj . 2 27

34C. 156I f

371.2 791

4C2 .C024

4 3 2.*257

463.5 49

494.7722

525. e956

6 1 8 7

5 F 7 . 5i 1

6f: 1 .44 4

3 7.428:

714 .9655

1 12. 4482

149 .93 31

187.4 137

224.8965

2 2. 3 792

2 9.6 :I

13 7. 3447

314.82 14

412. 31 C 3

44 . 7930

4 7. 2756

524. 7585

562.2412

599.7241

637.2Ct8

7 4 *.6 892

7 i 1 71 6

74 q . ,5 45

46. 5'34

93. 7068

1 4 C. 5603

187.4 13

234.2612

2 1. 12C6

32 7.9 13-)

374. ,2 14

42 1 .6 C

z43 . 53, 2

51 5. 377

5(62.2412

t1:9 . (C -4 -t

6t 5 .948 o

7C2 .8i0 1

74 . 6'35 5

7 6 5C I

84 3 * jb 1.

F 90 . 1 44

9- 7, c 9 1

- 6. 2241

112.4482

163.6723

224. ')6 5

2;l. 1206

3 3 1. 34: 7

393. 5688

449. 7 (30

5 r 2 2 12

6 1 8 . 4 5 3

674. 6 895

730.9136

787. 1377

4 3. 3 I

,c9. 5862

955. 8103

10C12.337

lC,. *2573

I l 4. i 4s 7

93. 7069 (

I 8 7.4 13 1

2:1. 1204

3 74 . 2 74

468.5342

562.2412

655. "-48

174' 550

8 43 .3. 1I

9)37.C686

I C30.7756

Il124.48327

1218. 16895

I 311 .89,62

1 4 u 5 6 (* , 3 3

1499.9 3103

l193.C171

1lE:6.7231

1780.4290

1.874. 1362

I1.0

1.5

2. C

3.C

3.5

4. i]

4.'

, . S

7. 5

7. 5

c ;

.J5

-, .

,5. '

I-ri

I I . ~ ~ ~~~~~III I

7

iAI ,.1

19

receiving systems. Details with regard to state-of-the-art of the RF

amplifiers is discussed in another chapter.

An approximate weight of the communication system may be determined

by the following relations derived from the curves given in [2]. For

1-4 GHZ range WTR = 28 + 7.5P and fro 8-12 GHZ range, WTR = 23 + 7.8P

where WTR = Weight of the transmitter (lbs).

2. Electrical Power Subsystem

This corresponds to the power conditioning equipment for housekeeping

loads and for power amplifiers, batteries and battery control, power

cables, and slip ring assembly. The weight of each of these components

depend on the transmitter output power. From the relations given in

[1], a simple formula may be approximated to obtain the power subsystem

weight as below:

WpS = 62 + 16.14P

where WpS = Electrical power subsystem weight (lbs).

3. Thermal Control

The temperature of the spacecraft is affected by natural and induced

environment, orientation and internal heat dissipation. Several thermal

control concepts have been investigated. The weight of thermal control

equipment in lbs may be assumed to be about 10 times the transmitter

power in kw.

The weights of transmitter, power subsystem and thermal control

equipment are computed as shown in Tables 7 and 8. The same are plotted

in Figures 5 and 6.

20

TABLE 7

SYStEM WI1GIGH VS POWER (1 - 4GHZ)

P WI R WPS WTH WT

31 . 7500

35. 5CC 0

3g,,5C0

4 3 C C C

46.. 75C0

5C. 5C CO

4 . 25C0

. CC C

C 175C0

e5. 5C CO

6eS 2CO

73 C C o

76. 75C (

E C . SC CO

84 25CO0

E8,CCC

i . 75C

55 . 5CCC

q9.25CO

1C3.CCCO

70 . 0700

7P, 1I4CC

54 ;28C0

1C2 35CO

1 10.42CC

1 18 49 CC

12 6 56C00

134. 63 CO

142.7000C

15 C .77CC

158.84'CC

166.91CC

174 .98CC

1E3.C5C0

191. 12C0

1SS. 19CO

2C7.26CC

6.2500

12.'5C00

i .7500

5.CCC;CU

31.25C0

37.5CCO

43. 750C

5C ;CCOC

56. 2500

62.5C00

68. 75CC

75 .C CCC

81.2500

87. 5C00

93 ;75CC

ICC;. CCC0

C6.25CC

112.5C000

215.33CC 118.7500

223.4CC0 125.CCOC

108.0700

126. 1400

144.21CO

162;.28C00

10EC 35CO

19 .42C0

2 1'6'49CO

234.56C00

252.63CO

27C.7C00O

2 8 .798

306.8398

324. 9099

342.SECO

361.C498

37 911 99

397;. 1F59

41 5.2598

433.3298

451.3599

CU M

0.5

1.0

1.5

2.C

2.5

3.0

?.5

4 .0

4.5

5.0

5.5

6.5

7.0

7.5

.C0

8.5

9 .o

1C .0

21

TABLE 8

C: i':q SYSTEM WtElGHT VS POWE;< (8 - 12GHZ)

| ,, | Wri:' | tPS | W[H W J!T2 6. 9 C 00

3C. 8CCO

34. 7CCO0

3*'.6CC0

42.5C00

46.4CC0

50. 3CCO

54. 2CCO

b5:. ICCO

62.CCC0

6 . ECC 0

'713.7CCO

77. CCO

F i. 5C C0

E8.4CCO

_3. 2CC0

-7.. ICO 0

IC .CCCO

70. 0700

78.14CC

86.21CC

94. 8CC

102. 5C0r

110.42CC

11 8.49CC

126. 5bCC

1 34. (,3C

142. rOCO

150. 77 C0

15P.;4CO

1 6 6.9 10CC

174.98CO

183.05C0

191 . 12C0

1S%. 19CC

2C07. 26C0

215. 333C

2 2 3.40 C 0

*5. 0000

IC.CC00

15. C00CO

20. CCOO

25. CC00

3C .0 C

35. CC 00

4C.CCOC

45.0C 0

5C . CO0

55. CCO0

60 . 0000

65. CC.OC

7C . CCOC

7 ' .COO30

eC. o0000

85.CCO0

90.0()00

9s5.CCOC

1ic). OCo

10 1. 970)

1 18.94 0O

135. )100

1 52,tP 800

169 .85C0

l 6. 8200

203.79C0

220. 7600

237. 1300

254. 70C00

2 7 1. 669

305 . 6099

322.5798

339. 5498

356.5198

373./ 43-)7

390. '46CO

407.4 299

4 24. 3 99

!). 5

I. C

1.5

? .

2.5

3.0

3.5

4.0

i. c

5, r}

5.55 . 5

7 .57 .*

7.5

9 * 5

-) . 5

I C .,~~~~ . IIL-I

22

CDO - WTRO - WPSb - WTH

r:+ - WT .'

_

-y

CJ

H-/

_J

F 1 - GHZ

C. "MM :);STEM St T-,.HT VS F"':z tL

FF(.EC,- 1-L C;HZ

Figure 5

23

.- , C - WTRO - WPS- - WTH+- WT

C_

,? I /

-- J J

A--M-- '3 CHT Vw AE

F .: EUj- 2 GHZ

+~t , -- -~---------~------- , - T t _

P-: -,,^ E r I1 K W

C:iHMY '3 (:3i-E:;l NE i .'HT VSj F-"ON'- ~

F-',E('.S-- '. 2 C!-iz

Figure 6

24

4. Attitude, Orbit Control

The communication satellite, after it is in orbit, is still to be

controlled to derive certain advantages. Two types of control are

required: (1) Control of the location of the satellite in orbit, which

in turn means the control of its orbital velocity, and (2) control of

the attitude of the satellite which means having the capability of main-

taining or adjusting the orientation of the satellite in a precise way

with respect to one or more of three axes.

Various means of control have been discussed and from the information

given in [1] and [11], we may write,

WAO = 0.234 WAST for 1-4 GHZ

WAO = 0.2 WAST for 8-12 GHZ

where WAO = weight of attitude and orbit control WAST =.weight of antenna,

solar array, transmitter, power subsystem and thermal control.

5. Structure

A number of factors influence the size and shape of the satellite.

The desired antenna, housing for the equipment and propulsion system,

the interface with launch vehicle and fairing, type of attitude and

thermal control used, mounting and deployment of solar cells, are the

main factors that determine the type of structure. Hence the structure

weight depends on all of the above factors and from the plot given in

[11] a relation is derived as follows:

WST = 28 + 0.272 WAST for 1-4 GHZ

25

WST = 28 + 0.464 W For 8-12 GHZ

where WST = weight of structure in lbs.

The weights of attitude and orbit control and structure are given

in the following Tables 9 and 10 and also in Figures 7 and 8.

V. Total System Weight

Combining all the previously derived relationships, the total satel-

lite system weight may be obtained by the following relationship:

C2 s2

K4w = 28 + (1 + K6 ) Kl-X m+ K2 + P(K3

- + 0.23K4)

where W = Total system weight in lbs.

A general comupter program is written for the above and is included

in the appendix. A particular system example is choosen as follows to

verify the program.

f = 2.5 GHZ

AS = 1000 miles diameter

K1= 0.2

K4 = 40

The total system weight is computed as a function of transmitter

power and is given in Table II and also in Figure 9.

26

TABLE 9

ATTITUDE, ORBIT CONTROL AND STRUCTURE WEIGHT

(FREQ. 1 - 4GHZ)

4A ST Xa fST WA<S T

0.0n 0~oo ' . 28.C00C 2.CO)

lCCCCC 2.34.CCC 3CC.CCc .534.CC':

2CCC.COC 46P.CCC 572.CCO 1040.000

3CCCvCGC 7/C2.C((O 44.OCO 1546.CCO

4CCC.CCC. 936.CCC 1116.CCO 2052.CCO

27

TABLE 10

ATTITUDE, ORBIT CONTROL AND STRUCTURE WEIGHT

(FREQ. 8 - 12GHZ)

hWASI C. QST. WAOST

0.C C.C - 23.000 28.000

5CC.CCC ICC.CCC 16C.CCC 260.C00

ICCC.CCC 2CC.CCO 2G2.0C3 492.CCO

15CC.CCC 3CC.CCC 424..CCC 724.CCC

2CCC.COC 4CC.;CCC 556.CCC 956.CCC

28

C-I-_,

( I

-- , j

-< * i, ...

Lr!

* i

C ,-L ., -.

, . ~ .~ r ' ,_ AND.

O- WAOA- WST '+- WAOST

. ) _d I

(7-- 1I~ I

C--'*, ICD I

J I

..

U'_. _L-, s

._I

!,- ft i--- i i

f,_, I

C) z .Ir1 C-D i

. i

'TT' TUrtlI, I ,iD L

Figure 7

I

j-,

'- j ', TTI .7 (1 - 4GHZ)

29

CJ.

o-.WAOA - WSTA-- WAOST

I-

i//

I- C /

. . 0\

LT T - ,:D IT C JdTN'(. tND , | or. ( 8 . . .2.

Lr: ~ ~ ~ ~ ~A r ~'0qT:U-" RR'C';

M' b'

~_,c ~ ~~~~~, ~,5_A[ 5 uT:H(-1GZ

Figure 8

TABLE 11

TOTAL WLIC;HT (F SATCLLITE

Xr IT TC PFC aN1LtNNA IN MilL'S

FRECLtkCY IN C-Z

rCIAMEIER F F CCVEHAGE Ik I"ILt::S

CCVcRAGE APFA IN SC MILctS

PChEPR IN vl

ANrTENNa hT FACTCH tN LIS/S.. Fl

ELECTRICAL ANE ELECTRC\IC ECUlPmEfT T WT FACTCR

ELECTRICAL ANC THERmAL CrNTROKIL WT' FACTCR

9CLAtR CELL PRRAY WT FACTCi iNl LCLS/KW

A.t IT IER EFFICIENCY

alTIILCE rCINTPCL ANC SIRLCR TLUR: T FZACC,

TCIAL hEtlrT CF SaTELLITIt

IC TAI Ii- Tl;.I fCh DfIV 1'L:,

7 2CCC. CL CO

2.CCCO

- 1 ~6349..

C C CO= 'OC.CCCO

= 3'6 . 14qo

- 4C.CCCO

:= · C. 5(60

- 1148. 1477

I I L ' 11 JL U ' I V V F: r ILV L

PCWEP I N

PClhQ I N

FCE.ER INPC1~ER II\

FClER tN

KW=

K IA =

K W =

K%,=

KWt=KW=

Fk=

KW=

K k =

h =

I ;')CO0

2 CCCC

3 c CC

4 . C C CC

5.CCCC,

t.CCC

7; CCCC

C;CCtC

IC .. C C Cc

TOTAL WL IGHT=

'ICTa L ,'E C- t-T =

ICTAL WEIGFT=

TCT4L h IGFT=:

T C TA AL F I G F T =TCTAL WEIGd-T-

1C rAL WE [IGT=

TC T iL WIt I GFT=

'C TAL WL I GFT=

IC aL wt EG r=

30

5C4. 3123

C86 5 . 2 2CC

97. g189C

1 4 F . 14 7 7

1 3~C9. 1067

1470. C654

1631. C247

17S 1.9834

1952. $7424s

3

31

CD2::

-LI

LI

-i

--

/,_1

I .'

C._ I

LOuC. -4 L, -*.3

Pli E TI N K !

T@Tr."L WN t.HT V, r'4E' (2GHZ)

r: n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

rlgure 9

VI. SATELLITE TRANSMITTER POWER REQUIREMENTS

1. Picture Quality

The ultimate objectives of any TVBS System is to provide the re-

quired picture quality by the most economical system for the entire

coverage area.

Quality of picture and sound is a subjective concept, since it is

a measure of the degree to which deficiencies in the received signals

are experienced by the viewers. The relation between this subjective

quality and signal deficiency is, of course, an issue of vital importance.

Noise performance requirements on broadcast transmissions have in the

United States been the subject of extensive investigations by the TASO

[12] established by the FCC in the last decade.

In the final report of TASO, the level of television service has

been characterized by specifying the level of picture quality to be

achieved or exceeded. The typical values shown in Table 12 represent

the grade of service for random noise interference.- (Based on 75%

observers)

The numbers (C/N) TASO represent input carrier to noise ratio. Also

they were made in conjunction with an AM-VSB receiver. Since only FM

transmission is to be considered for satellite case, because of the lower

power requirements, the numbers in Table 12 are to be suitably converted

32

33

to determine FM signal level requirements. In this process, the carrier-

noise ratio is first converted into weighted video signal-to-noise-ratio

at the picture tube. TRW Systems [1] have derived analytically equiv-

alent weighted picture-to-noise-ratios for the TASO grades, considering

the effect of camera noise. These are shown as (S/N)wdB in Table 12.

Table 12. TASO Picture Quality Grades

Grade Name (C/N) TASO (S/N)w C/T

1 Excellent 46 49.5 -

2 Fine 38 40.3 -139.6

3 Passable 31 32.2 -141.2

4 Marginal 25 25.9

5 Inferior 19 19.9

Next, considering FM transmission, the required power and band-

width are derived for cases of fine and passable picture quality. These

values are given as (C/T) dBw/OK in Table 12. They correspond to 525

line, color receiver, with a video bandwidth of 4.2 MHz. The required

R. F. bandwidth is found to be 19.8 MHz for fine quality and 13.8 MHz

for passable quality.

-dB dB dBw/uKA n

I - I

j -

I I

.r tO..

34

2. Propagation Medium

Attenuation of the signal results due to a variety of factors in

the propagation medium from satellite to earth.

(a) Free space-loss depends on the frequency and the slant range.

This may be expressed as follows:

LFS = 92.5 + 20log0F

F + 201ogl0 RS

where LFS = Free space loss in dB.

F = Frequency in Hz.

RS

= Slant range in Km.

For synchronous satellite, the slant range is expressed in

terms of a, the zenith angle of the ground antenna [13], as

gS = 44,100 sin[a-sin 1 (0.193sina)]sine

(b) At the frequencies of interest, viz 2.5 GHz and 12 GHz, the

ionospheric effects are of no significance [14].

(c) The effects of atmosphere on the signal are discussed in [15].

They may be summarized by the following equations.

(i) Attenuation due to oxygen and water vapor.

A1 (F) = 1.4 + 0.09x10 9F - 1.6exp(-2.1xlO 9xF)

35

20

A2(r) = 1-exp(-0.00545 in)

A3(0) = exp(-100)

and Ag A(F).A2 (r)'A3(0)

where Ag = total attenuation due to oxygen andwater vapor in dB.

A1 (F) = frequency dependent component of Ag.

A2 (r) = component of Ag dependent on length of ray path

A3(0) = component of Ag dependent on elevation angle

F = frequency in Hz.

a = elevation angle in radians.

(ii) Attenuation due to clouds and fog is given by the follow-

ing:

AC = kpr

where AC = attenuation in dB

k = coefficient in dB/km/gm/m3 .

p = liquid water content (0.3 gm/m3)

r = e (vertical cloud distance is assumed as6km for temperate regions)

36

(iii) Attenuation due to precipitation may be expressed as

follows:

Ap =qpR

where Ap = attenuation due to precipitation in dB.

q = coefficient (assumed lx10-4 for 2.5GHz and3x10-2 for 12GHz)

p = rainfall rate in mm/hr. (assume lOmm/hr)

and R is determined as follows:

Assuming that constant rainfall state of 10mm/hr. over

a hypothetical area, the linear extent of that area may be

obtained as,

E = 41.4 - 23.51og1 0p = 17.9Km.

Further, the height at which the precipitation begins

in temperate zones may be taken as 3km and the length of the

3ray path is then (Bs-n)'

Then R is taken to be the smaller of the two values

(17- ) and (3cose sinO

The total attenuation in the propagation medium is then

the sum of all of the above factors. This is computed for

frequencies 2.5GHz and 12GHz, and for elevation angles of

900, 700, 500, 300, and 100

37

3. Transmitter R. F. Power

The value of satellite transmitter R. F. power

channel at 2.5GHz and at 12GHz is computed as shown

14, for the five elevation angles. The assumptions

putations are:

(1) Fine quality picture (TASO 2) at the edge

area.

required per video

in the Tables 13 and

made in these com-

of earth coverage

(2) Receiver system noise temperature of 800°k for 2.5GHz, for an

adapter with preamplification by one bipolar transistor stage,

and 1300°k for 12GHz assuming the noise figure attainable by

1975 to be 7 dB for a-dual mixer with Schottky-barrier diodes

in the receiver adapter, without R. F. preamplifier.

(3) Half-power beamwidth of 30 for the satellite transmitting

antenna.

(4) Parabolic receiver antenna of 1 meter diameter, at the top

of building.

(5) Uplink noise of 0.3 dB.

(6) Polarization loss of 0.5 dB.

(7) Circuit losses of 1.5 dB.

(8) Satellite antenna on-axis gain of 35 dB.

From the results, it may be seen that at 2.5 GHz, the required

peak transmitter power is of the order of 310 watts/video channel, in

most of the cases. For 12 GHz transmission, this is found to be

about 700-750 watts/video channel.

I~~~~u I~

I

I

£ o ^

e oo

~~~~~~ 's

u)

q)

~~~~~L

\ n

:~~O

C

) ~~~CV

cn) 00

r-4 C

'J U

, '0

,-o0

Lf)-C

m

m4

C

c C

cL

) -

C)

U,

4 v-

C4 -

I -I I

I' s

1 7

I I

.-~

o

'IO

0 CY)

C,, 00

-4. C

) U

,) --,

CD

0 v-I I

-~

+

-v

+

+

I +

0

£ ^.

o *r

~ * a

uz O

oC.

O~

O

~ O

'"l

0 ~

o ~

o.,

* -. ,-1'

I-I I

I I

I -I

aJn

(Y

C 14

m

I L

f C

V)

s uX

<

l

H

~~

~~

~

~ ~~~~~~~~+

+

+

+

bO

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~c

00

'IC

CD

M

C

yl C

O

'- C

) U

, C

0 *

* *

* *

U

· ,

co c

I ,it

Cl

M

o'

I u

CY -

ClN 0

0 v-4

t- I-

+

"1 ,

+

+

, +

-I

Cd

CV

)~~~~~C

C

l '

1 0 0

C~ C

') O

v-I

C

c -

, 1

1 1

Cb0

;r

xD

O

n n

qo

~~

~~

~

~ o

·n i.

.y

a 0

.*

..

..U

,. .

OO

00~

0o

) O

O

U

, '.m

O

N

C

O)

U,

Cs

* C

.e

-4~ C

V

C-I

1I v-I

Cl

Cn m

I

, C

_

I C

S O

JJ

v-I I

v-I

+

v-i 1y

+

+

I +

_I

I I

I I

~

tL)~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~Y

-4~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~4

Lr).

0 o C

C

a

-C

o -r

0 0

· C

4O

* *

* *

.0

..

.

Cal

0 0l

0 o)

U,

Z

-O

U

l- I

v-I +

v-

I +

+

*

+

vlIO

O I

I I

I -

0

w ~ ~ ~

~ ~

~ ~

~~

4i ~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~4~

~~

~-

C.4

:3

,1

-. 3

-m

:

1

4-i

-a )

-41

cS o t

t r

.43

X

u

0 (~

oor ~~~~~~~~~~~~~~~~~~H

P4..

.H ~ ~ ~

~ ~

~ ~

~ ~ ~~~

v

a U

~

~4) ,

o-4 .o

-Iii 3 ^

.~~

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~v-

I

00 O

9

I I

p-i *

-'~~

~~

~4

I c*

w O

r. ~

,,4~

- 0

X4

c o0

r 5 4

4- E4

O)

*ri -.

5.

I )

5-

.- I-i

-H

_j

o-

--

-o

c

E~~~~~~~~c >

s -

w

4iX X

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~r a)

a 0

v -

0 ·

., ·:4

l0 >

~

3E

v O

' E

~

~ ~~

~ ~

~~

~

~~z rl

>,

cu

OJ

>

U) 4.C

d

0I 0

P 0

0 0

0

v- QX

5 -*'H

a0 0

r H

o

E-4 bJ

44

.0

.v-.

-" 0

'

-a C~

to

*rI *v-

0 C

>

CU

U) U)

I-I

4-J C

4 a)

ct

4-J (1)

c C

a

p '"

"W

4CJ Z

CL

A0

z H

'-' _

0 *

CU CU

C

>

o .

-u

C

*c o

.C

H

H

U

U4. 0)

0 In

*

in. i-H

a)

0 U)

4 )

* X

0J

X'4 C

*

4.. 4)

*- '

q u2

.0

u-i.

D

Co

0 -H

0(ic

4 I t$

a) U)

4i

Q

0. -.

4C

U

a) U

) 0)

0) 1-4

U

>

H

>0

r1 0.

1 0,I

P

P- 0

0 ~

0-- 4..

0 q0

"0

1i a

0i 44

",0 IU

CU

U, 4..

p .

)0

0j ,,1

0v

0 P-v Y

0

*v- 4-

0 0

'4-4I-

eJ 1

3-

t'H

4- -4

*H

4-4 4-i

0 Q

~ ~ ~ ~

~ ~

~ ~

-'o

v-

o *H

Q

-4H

A:

X

-:4 P

4 E-4

4 4 U

P

o

¢

*v *,-

H

'x

>

>

*l

l *J

X

X4

-H

*H

*H

>'-

*,H *,H

,H >-

*H

*H

*H

_ X

H

*r4

Hv

'9

>

'S

~-.XH

38

0 O

· '

O

ay -

o C m

r-

c'i o

r) ei

-i en

o I

e -,..-

I ,.

C-I

I -

+ 1-4

C'4 +

+

I I

I I

Lr) cn

m'O

I Lf)

It V

I

1-4

'.0 ·

-C

e

'i rt

N

u. o

:1 'C

u

.o

.

o a'

, 0

co oN

r- 0

CO 1-4

e -i

0 0

c-inc

cf c

I 0

c -T

0O

I'

\0

%

I C

f4,

'I -l

+ _

I C

+

+ +

,I

I 'I

'

I ,

.

NZ.

i

0

b0 0

*0 a

4.I-

-H

U) >

0 04-

O

OU)

q) p

' -

EH

c00 00

'.0

_I

Lf C

1-.

L-

tU c

r-I I 1

_ +

+

+

v0 D cn

O

*;

· *

.

r- c)n

C') I

n O

I

) c

_I

I, *

1 +

r-I

C14 +

+

r,00-4*

+ L

n

rl ~ r.

I coC

( O

+

-4r-

n m

C

Y)

'0

,4

7 (N

u

) r-

,- I )

L

O

* -

' -4

0o

oo

a'Ci

1-

.o

oo

°

I c0

CY n

I 0

en

-I

o I

uLt) M

C

S

r)

I 4

+ ( C

+ +

+ II

I .0

I

*l * ~

l~

G

M

aC)~~~~~~~~~~.)

·

0

0 (Nj

:-

'o o

'~b

'SO

4 0

~'

' ''

m3~

~ 3

~ *

4.4 .a

)'d h

1

d 0 0

0

ctO

Xl

3 -

U

0

o

I

o

w¢C

e ~~

~~

~~

~~ E

v~

-C4

co-

0 0

* )

..-.

o J

[-

C·1)

M

) .M ~

.M

.M

,.-I .M

,-

=

..

U) O

F'

0 S

* '

*H CO

.

0rX o

co. o

4- 0 O

. *r

E-f -

O

>

v

* ,

..

0 a)

0 a

u h

'H

*H

U )

a u)

0 a4

, Jl

: 4 A

PL

0, 0

) 5

0 *

'· 4-4

Z

0 $J

la

w

C

IV

4-I d

0)

0a) 4-

a) Q

) P-

N

a) *H

4.. 0

0 O

D

Q

' H

0 0

*

: C

C

:

0 0)

V U

-I ~3

U

7 4-i

,-I O

i 4-i

44 >

>

0 0

0 O

0 0

O

0 0

' *H

0

O0

" D

P

H

P

u Q

u

C-)

i, -

·rSl~ ~

S_

.

H

*H

*,1 >

>

*>

*H

'H X

X4

*,1 *.4H

*4

>

_- .4

5-,

' >

H

'

'- X

'H

X

S -,

.r 5 * *

5 *r x

·-o

O

LI

a).~~

39

o0oi--

O

iIII

VII. State-of-the-Art of Components

In order to assess the present and future state-of-the-art of

system components for TVBS, questionnaires were sent to about 75

leading manufacturers of system components for space communications.

The format of the questionnaires are included in the appendix.

Although most of them replied, very few were able to given the type

of information required. After careful study of these, all important

information with regard to the state-of-the-art of R. F. amplifiers,

solar cells, solar arrays, and nickel cadmium batteries is compiled

in the following tables.

Tables 15 and 18 give parameters of space qualified RF amplifiers

that are being manufactured by four firms. In order to arrive at a

relationship between weight and power output of these amplifiers for

different frequency ranges, typical values are plotted in Figures 10

and 11. These reveal that in the extremely low power range from

1 - 10 watt, the Litton TWT's in the 8 - 12 GHZ range have a favorable

power to weight ratio. At power outputs of 20 - 100 watts, Litton

Klystrons operating in the 1 - 4GHZ range present good power to weight

ratios. Good power-to-weight-ratios for all power outputs above 100

watts are obtained with Sperry and Varian TWT's and Klystron's operating

in the 8 - 12GHZ range.

40

41

Tables 19 and 20 indicate the present and future state-of-the-art

of solar cells as furnished by the manufactures. Similarly Tables 21

and 22, give solar cell array data. Finally information about nickel

cadmium battery is given in Tables 23 and 24.

TABLE 15

RF- AMP PARAMETERS VS POWER

POWER FREQ RANGE( W ATTS) (GHZ)

GAIN WEIGHT( DB) (LBS)

COMPANY PART NO

7.0-11.0

8.2-10.0

8.0-14.0

1.0- 2.0

7.0-11.C

E.C-12.C

8.0-14.C

12.4-18.C

5.4-11.0

7.0-11.0

7.0-1 1.0

7.C-12.C

1.C- 2.C

2.0- 4.C

3.7- 6.5

4.0- 8.C

1.7- 2.7

2.3- 2.3

1.0- 2.0

4.0- 8.C

2.0- 4.0

12.4-18.0

2.3- 2.3

7.0-13.C

30.0

60.0

35.0

30.0

36.0

36.0

65.0

35.0

60.0

60.04C.0

30.0

33.0

36.0

33.0

30.0

20.0

30.0

33.0

33.0

33.0

29.0

43.0

1.5

1.5

1.2

0.0

1.5

i,5

1.5

2.0

1.5

2.5

2.5

2.0

3.0

2.5

2.5

2.5

3.5

2.6

3.5

3.5

3.0

7.0

5.0

7.0

LITTON IND

LITTON- IND

LITTON IND

KEL TEC

LITTON

LITTON

LITTCN

LITTON

LITTON

LITrON

L I T TON

LITTON

LI TTCN

LITTON

LI TTON

LI TTON

INC

IND

INC

INC

i N C

IN3

INC

IN-

INC

INC

INr

INOI!NO

.1N' C

SPERRY

LITTON !NO

SPERRY

L-5045

L-3972

L-5339

LR600- 1

L-3998

L-5C08

L-5322

L-5227

L-3957

L-3928

L-5043

L-5293

L-5036

L-50 I

L-5134

L-5011

L-5225

L_3910B

L-5155

L-50P3

L.-5160

STU-54312

L-5044

STX-5225

42

1.

1.

1.

1.

2.

2.

2.

2.

2.

10.

10.

10 .

!0.

I C.

20.

20.

20.

20.

70.

10C.

TWT

TWT

TWT

TWT

TWT

TWT

TWiT

TkT

ThT

TWTT W T

ThT

TkT

rhT

T h T

T h T

KLv

TWT

TWT

K i v

ThT

TABLE 15 (Cont'd)

FREQ RANGE GAIN(GHZ) (DB)

WEIGHT COMPANY(LBS)

14.5-15 .5

7.0-12.0

e 0-14. C

2.6- 5.2

5.C-10.C

7 . 0- 1 1 C

7.4- !1 .C

7.O-I1.Q7.C-11.07 * 0-11 1 C

7.C-13.C

7.0-13.C

2.5- 2.7

2.0- 4.0

8.C-12.0

7.9- 8.4

2.3- 2.3

5.9- 6.4

2.7- 2.E

5.9- 6.4

5.9- 6.4

3.1- 3.5

35.0 7.0

33.0 6.0

40.0 7.0

40.0 lC.0

4C.0 7.0

40.0 8.0

36.0 6.0

40.0 6.0

38.0 7.0

43.0 7.0

4C0.0 7.0

29.0 11.0

40.0 10.0

42.0 12.0

48.0 16.0

3C.C 12.0

46.0 55.0

30C.0 35.0

43.0 22.0

47.1 18.

48.0 120.0

43

SPERRY

SPERRY

SPERRY.

LI I TON IND

LITTON

LITTON

SPERRY

SPERRY

SPERRY

S ' E R R v

SPERRY

LITTON

LITTON

LITTOTCN

VAR I AN

LITTON

VAR I AN

VAR IAN

SPERRY

INC

IND

INO

INC

INC

STU-52271

STX-5224

STX-52270

L-5323

L-5324

L-5280

STX-5220

STX-5222

STX-52260

STX-52251

STX-52261

L5109

L-5281

STX-544CC

VA-914

L-51C1

VA-936C

L3668H

VA-9368

VA- 936

SAS5310 KLY

POWER(WATTS)

PART NO TYPE

100.

125.

125.

200.

2C0.

200.

2C00.

200.

200.

200.

200.

250').

250.

400.

500.

LCO) 0.

1100.

12CO.

3CC , .

5200.

8C00 .

TWT

TWT

TWT

TrwT

ThT

TiTWT

rWr

TkT

TVT

K L v

TT

KLV

KLV

KLV

KYv

'(lv

TABLE 16

RFAMP PARAMETERS VS FREOUENCY

PUOW tR FREQ -RANGE(wATrrs) (GHZ)

GAIN WEIGHT(CB) (LBS)

1.0-

1.0-

1. 0-

1. 7-

2.3-

2 . 3-2.3-

2 5-

2.7-

2.0-

2 . 0-

3. 21-

2 . -

-3.7-

4.0-

4 .0-

5 . 9-

5 .9-

5 . 9-

2.0

2. 0

2.0

2.7

2. 3

2.3

2.3

2.7

2 8

4.0

4.0

4.0

3.5

5.2

6.5

8.C

8.C

6.4

6.4

6 .4

5.0-10.0

7.9- 8.4

5.4-11.0

7.C-11.C

30.0

30.0

30.0

30.0

20.0

29.0

3C.0

29.0

3C.0

33.0

33.0

40.0

48.0-

40.0

36.0

33.0

33.0

46.0

43.0

47,.1

40.0

48.0

60.0

30.0

0.0

3.0

3.5

3.5

2.6

5.0

12.0

11.0

35.0

2.5

3.0

10.0

12C.0

10.0

2.5

2.5

3.5

55.0

22.0

18.0

7.0

16.0C

1.5

1.5

KELTEC

LI TTON

LITTON

LITTON

LITTON

LITTON

LITTON

LITTON

LITTON

L I T TCN

SPER R Y

LI T TON

LITTON

LITTON

LITTON

VARIAN

V A R AN

VAR I !N

LI I TON

VAR. AN

LI TTON

L I TO N

IND

IND

IND

IND

IND

INC

INC

INS

IND

IND

INC

INC

INC

I N 0

LR600-1

L-5036

L-5155

L-5225

L39108

L-5044

L-5101

L 51 09

L3668H

L-5010

L-5 160

L-5281

SAS5310

L-5323

L-5134

L-50S1

L-5083

VA-936C

VA-9368

VA- 36A

L-5324

VA-914

L-3957

L-5045

44

COMPANY PAR T No TYPE

1.

1 0.

20.

10.

20.

100.

250.

20.

250.

8CC0.

200.

IC.

10.

20.

1C00.

I.

TWT

TWT

TWT

TWT

KLY

KLY

KLY

KLY

KLv

T 'W TTWT

T'AT

KLY

T'nr

T 'AT

T'T

KLvl

K Lv

TWT

T'. T

T'AT

TABLE 16 (Cont'd)

POWER FREQ RANGE

(WATTS) (GHZ)

2. 7.C-11.0

10. 7.C-11.C

10. 7.0-li.C

200. 7.C-11.C

200. 7.C-11.0

I. 8.2-10.C

200. 7.4-11.C

10. 7.0-!2.0

125. 7.0-12.0

2. 8.C-12.C

100. 7.C-13.0

200. 7.0-13.C

200. 7.0-13.C

4CC. 8.0-12.C

1. 8.0-14.C

2. F.0-'4.C

125. 8. 9-16.C

100. 14.5-15.5

2. 12.4-18.C

70. 12.4-18.0

GAIN(DB)

36.0

40.0

60.0

40.0

40.0

38.0

60.0

36.0

40.0

33.0

36.0

43.0

43.0

4C.0

4236.0

43.0

4365.0

40.0

35.0

35.0

33.0

WEIGHT(LBS)

1.5

2.5

2.5

8.0

6.0

7.0

1.5

6.0

2.0

6.0

1.5

7.0

7.0

7.0

12.0

1.2

1.5

7.0

7.0

2.0

7.0

COMPANM

1 1 T TON

t'TTCN

LI TTN

L TTCN

SPERR Y

SPERRY

L IT TON

SPERRY

LITTON

SPERRY

L I TTON

SPERRY

SPERRY

SPERRY

SPERRY

LI T TON

LITTON

S ERRY

SPERRY

LTTTON

SPERRY

PART NO TYPE

INT I-3g98

INC L-3928

':N L-5 C4 3

INr L-5280

STX-5222

STX-52260

,N ' L-3972

STX-5220

IND L-5293

STX-5224

INC L-5008

STX-5225

STX-52251

STX-52261

STX-544C00

INC L-5339

INC L-5322

STX-52270

STU-52271

INC L-5227

STU-54312

45

T'NT

T h T

T 'A TT'T

ThT

TWT

ThT

TkT

rWT

T h T

ThT

TWr

TkT

ThT

TWT

ThT

T!4 T

y

·

TABLE 17

RFAMP PARAMETERS VS GAIN

POWER FREt) RANGE(WATTS) (GHZ)

GAIN WE IGHT(DB) ( LBS )

2.3- 2.3

2.3- 2.3

2.5- 2.7

7.0-11.0

1.0- 2.0

1.0- 2.0

1.7- 2.7

1.0- 2.0

2.3- 2.3

2.?- 2.8

2.0- 4.0

4.0- 8.C

4.0- 8.C

2.0- 4.C

12.4- 18.0

7.0-12.0

8.0-14. C

12.4-18.0

14.5-15.5

7.-1 I.C0

8.C-12.C

3.7- 6.5

7.4-11.C

20.0

29.0

29.0

30.0

30.0

30.0

30.0

30.0

3C.0

30.0

33.0

33.0

33.0

33.0

33.0

33.0

35.0

35.0

35.0

36.0

36.0

36.0

36.0

2.6 VARIAN

5.0 LITTON

11.0 SPERRY

1.5 KELTEC

0.0 LITTON

3.0 SPERRY

3.5 LITTON

3.5 VAR IAN

12.0 LITTCN

35.0 SPERRY

2.5 LITION

2.5 LITTCN

3.5 VARIAN

3.0 LITTON

7.0 VARIAN

6.0 LITTON

1.2 LITTON

2.0 LITTCN

7.0 LITTOCN

1.5 LITTCN

1.5 LITTCN

2.5 LITTON

6.0 L!TTCIT

VA-936C

IND L-3957

STX-5225

LR600-1

IND L-5225

SAS5310-

IND L-5083

VA-936e

INC L-5339

STX-52270

INC L-5323

IND L-5011

VA-936A

INC L-5324

VA-914

INC L-3928

IND L-5155

INC L5109

IND L-3998

IND L39108

INC L-5044

INC L-5134

INC L-3972

7.0-11.0 38.0 7.0 LITTON INO

46

COMPANY PART NO TYPt

20.

100.

250.

1.

L.

10.

10.

20.

1000.

1200.

10.

1C.

20.

20.

70.

125.

1.

2.

100.

2.

2.

10.

200.

KLY

TWT

TWT

TWT

TWT

KLY

TWT

KLY

TWT

TWT

TWT

KLv

ThT

KL V

TWT

KLY

T'~T

KLV

KLY

T' r

TW T

20.0. L-5293 TWT

TABLE 17 (Cont'd)

POWER FREQ RANGE GAIN

(GHZ) (DB)WEIGHT

(LBS)COMPANY PART NO TYPE

7.0-'1 I.C

7.0-12.0

.0-14.0

2.6- 5.2

5.C-10.0

7.0-11.0

7.0- 1 0

7.C-13.C

2.0- 4.0

8.C-12.C

7 .C-13.C

7.0-13.C

5.9- 6.4

5.9- 6.4

5.9- 6.4

7.9- 8.4

3.1- 3.5

8.2-10.0

5.4-11.C

7.0-11.0

40.0

40.0

40.0

40.0

40.0

4C.0

40.04C.0

42.0

43.0

43.0

43.0

46.0

47.1

48.0

48.0

60.0

60.0

6C.0

2.5 LITTON

2.0

7.0

10.0

7.0

8.0

6.0

7.0

10.0

12.0

7.0

7.0

22.0

55.0

18.0

16.0

120.0

1.5

1.5

2.5

LITTON

LITTON

LITTON

SPERRY

SPERRY

SPERRY

LITTON

SPERRY

SPERRY

L I TTON

SPERRY

SPERRY

LITTON

LI TTCN

SPERRY

SPERRY

LITTON

LITTON

LI TTEN

IN?

INC

INO

L-5O10

L-5281

L-5043

L-5280

STX-5222

STX-5226C

STX-5220

INO L-5008

STX-52251

STX-52261

INC L-5045

STX-5224

STU-52271

INC L-5322

INO L-5227

STX-54400

STU-54312

INO L-5036

INC L3668H

INC L-5160

T 'M T

TWTT'WT

ThT

TWT

ThT

r r

'TWT

TWT

TkhT

TWT

WT

TkT

' T

TWT

KL¥

2. 8.0-14.C 65.0 1.5 LITTON IND

47

(WATTS)

10.

L25.

200.

200.

200.

200.

200.

250.

4C0.

100.

200.

1100.

5200.

8000.

1.

2.

10.

L-5101 KLY

3

TABLE 18

RFAMP PARAMETERS VS WEIGHT

POWER FREQ RANGE(WATTS) (GlZ)

1. 1.0- 2.0

1. 8.0-14.0

1. 7.0-11.0

2. 7.0-11.0

2. 8.0-12.C

1. 8.2-10.C

2. 5.4-11.0

2. 8.0-14.C

2. 12.4-18.0

10. 7.0-12.C

10. 2.0- 4.C

10. 4.0- 8.C

1C. 3.7- 6.5

10. 7.C-11.0

1C. 7.0-11.C

20. 2.3- 2.3

10. 1.0- 2.C

20. 2.0- 4.C

10. 1.7- 2.7

20. 1.C- 2.0

20. 4.0- 8.C

lO(,. 2.3- 2.3

125. 7.0-12.0

200. 7.4-11.0

GAIN

30.0

35.0

30.0

36.0

36.0

60.0

60.0

65.0

35.0

4C.0

33.0

33.0

36.0

4C.0

60.0

2C.0

3C.0

33.0

30.0

3C.0

33.0

29.0

33.0

36.0

WEIGHT(LBS)

COMPANY

0.0 LITTON

1.2 LITTON

1.5

1.5

1.5

1.5

1.5

1.5

2.0

2.0

2.5

2.5

2.5

2.5

2.5

2.6

3.0

3.0

3.5

3.5

3.5

5.0

6.0

IND

IND

KELTEC

LITTON IND

LITTCN IND

LITTCN IND

LITTON INC

LITTON INC

LITTCN IN"

LITTCN IND

LITTON INC

LITTON IND

LIT TON INl

LITTON INC

VARAN\'

SPERRY

LITTON IND

LITTON !N9

VARIAN

VAR! N

LITTON INC

LITTCN INO

6.0 LITTCON INC

PART NO TYPE

L-5225

L-5155

LR600-1

L3910B

L-5044

L-5C36

L3668H

L-5101

L5109

L-5281

L-5323

L-5011

L-5134

L-5010

L-5160

VA-936C

SAS5310

L-5324

L-5083

VA-9368

VA-936A

L-3957

*-3928

L-3972

TWT

TWT

TWT

KLY

KLY

TWT

KLY

KLY

KLv

TWT

T'r r

TWT

KLv

KL v

T'AT

KLV

ThT

T IT

TWT

48

TABLE 18 (Cont'd)

POWER FREQ RANGE(WATTS) .(GHZ)

200. 7.C-Ll.C

70. 12.4-18.0

lCC. 14.5-15.5

200. 7.0-11.C

125. 8.0-14.C

200. 5.0-10.0

200. 7.0-13.0

100. 7.0-13.C

200. 7.0-13.C

200. 7.0-11.0

2C0. 2.6- 5.2

250. 2.0- 4.C

250. 2.5- 2.7

lcO0. 2.3- 2.3

400. 8.0-12.0

5CC. 7.9- 8.4

5200. 5.9- 6.4

3C00. 5.9- b.4

1200. 2.7- 2.F

1100. 5.9- 6.4

8000. 3. 1- 3.5

GAIN(DB)

40.0

33.0

35.0

3e.0

4C.0

40.0

4C.0

43.0

43.0

40.0

40.0

40.0

29.0

3C.0

42.0

48.0

47.1

43.0

30.0

46.0

WEIGHT COMPANY(LBS)

6.0

7.0

7.0

7.0

7.0

7.0

7.0

7.0

7.0

8.0

10.0

1C.0

11.0

12.0

12.0

16.0

18.0

22.0

35.0

55.0

SPERRY

VARIAN

LITTON,

LITTON

LI T TN

SPERRY

LITTON

LITTON

SPERRY

SPERRY

L TTONT

SPERRY

SPERRY

LITTON

SPERRY

SPERRY

LI TTON

SPERRY

SPERRY

LITTON

48,0 120.0 SPERRY

PART NO

.STX-5220

VA-914

INC L-3998

INC L-5293

INC L-5043

STX-5222

INC L-5C08

INC LL-5045

STX-5224

STX-52260

1N'C L-5280

STX-52251

STX-5225

!NC L-5339

STX-52261

STX-544CO

INC L-5227

STU-52271

TYPE

TWT

K L Y

TWT

TWT

rwT

T W T

TWT

TWTTW T

TIT

TWT

TWT

STX-52270 ThT

INC L-5322

SrT-54312 TWr-

49

50x

'5

'S

.4

0)sd

.1-44ri

mJ4bIa)

-Ia)swo n

$c -

a 2 °

JI

7t~0.''- s\

\ ''go \

0

I-Ul

300

-0 aw

-,0 4

~

'%

9G

I -

0 O

·

C4

a a o

a

iII .

-..

.I

.,. .?

..... s

... ...

I.r:

:.

A

I .

44. -

I'

i ;

.I

.i

( 54

a)

%

1V1)a3/V\

51

-.i

a to

IS

eV

-

--

(sei ) J.

I tW3ML

Lhi 43rw

I"I

W

"a

I

I r

4- Cs

0

P4

X00

CooO

:3.,

,-4

,-Ia)Co

P-

?-\

W

od3~

.'

0 Nu

O

I

i 15

:...

.I I .4 -

: .-

-1, .

-� I

.

I

-I �

... ..

-.

-I

.4t

� I

p

..

I -

..

--

I- .1

x

I I

---- -I

~K

: A

:-:--

-I

'

ID

%N

-.I -.-

� -.11 � -- L

..ii-

.: .

;

...

..................... ~~~~~~~~~~~~~~~~~~~~~~I

-' J1

-m-

4nI

'fI

52

HCr/0

z oN

Z

0 OO

uN

W

¢ O

Z4

0 z0

M u

=

> <H

N

C

\-l c

P r.,

O

D-l

r F

W

o,:

z \W

Z

4

N

\ ¢

C 0

00

(b\ z

HZ 1

O

u0

3

Nz] 0

3 O

w

L

aW

\

E

\ es

o .

0 O

3 \r

X

¢-\

I '

>4 U

¢O-

UL1 \

HN

~

C

X

E

W

in

E-O

W

NL

\

Z

E-4

.

, .

W

:3

N

\ '\

: 0

.

2H 1

>

4 1

\J 08

H

AD

C)

H

.O

0

-4

0 0

C")

N

.N

0

<

q)H

Xo

rl S

¢ C

S

0

to0X0C

1U o3

z0oHV)

I

E4 WH0E4

C)

WW Hz

C-

0HO

0FZ40:z0H.I

H

V)

rC- I,4r-

Ua,{C

)

rlua) C)

4-i

.L4ziU)

aa,

0)u4-)

cnCC

'Ha 0)0U,

Cl

'C)CC

0)0)u0U

)C

C

-CCN0-40

a)·rlo C

)

U)

CC

0 .,..H0 44.4-

.) ,--IO u-'C

a

-4 0Uo

tor0)H4

Eq

* *r( 04i"I(1-WuC)

a4

.1-

AI

r

Ti

1

IIIIIIII

1-i

i r~~~~~~~~~r

°~~~~~~~~~~~~~~~~~i

) ,4

CD

1 '

? W

0F

!1

00.~

~~

~~

0cJ :~~>

co ~ ~

o

u ',

.i

-

-s; it

! !

{

Y ,00

j1

·

fr-o a

i i~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~

-Zs

?o '

,X

I .

I

,.tI ; f

ifI -~o

o o,

1 5

o '

I

i,,,I cv

>

u~

~~

~~

~~

~~

~E

' r~

0'

0_ i

0 --

c CD

C

? ,n

eg

X

; t

g j''

:

ON

$ ' -: ., ,, __' ... .|~~14

14

-

N

C~~~~~rl O

C

-~. 00

3

C

i

cq :

E-4

U

0ON1

-V,C/)III1.

6 II

53

IIIIIij

E- I

HZ

oH[-

OiOi-l

fiivI

co

g00bO

00.

t)_j. ·(D

(ii

,aE-4til,M

,

di-i

tDI

8

ooCN

re)It

; ¢z

.,-i 0W E-

; l ,4

; -w E-4

! Y

I

w ,

i, )-

i w

x

C/3i ,

tnZ~

owI

0:o4

r,CMJ

iDi_,

OI

©

iJ

LWo o

iD

ui_

a,9U

f

a,i

Jrj

iD

oiv

itiIII

1J

O,C4

0,Z

I

,'

H-4 -a U

H[,,

,3

t- i

9A I

" It

mn ^

:D

:)

Z

>

H

En

¢ 0Z

t ,

u,

UnwuCf

wPL4i's

i,4

W "r

E-4CInO

i'

"H ou

Bl

iis8

y

,o.

vJ{J

0 H0e

k I

3:3.

O

-

KH

3 ¢

O

Kcw

1: ;.

O

-Z O

O

W

.

L

4 ¢ H

rnZ

-

"..r

np,

W

:4r~

1,

--!,%

X

,.-1 W

. o,:

¢o' 3-

4

4 Z

o o

* ::z

, oZ

E. o

i c iO

...

H ~

LW

H

C

u O

t x;u

H

L)

Mf

O

H

U

..

O

¢0Z

.

3 cl

w

U

) U14.

-.

2- H

.H

-E-

HU)

H

C

V

V

_ -.

Z

: '

_J ,. .

.,

U) g

+

X

z

.

r~ IIW

C)

CS

H o

VC

.o +U) C

U

.E

n

HE-4X

¢ X

.o

,0

.-

.r.

=3 e

+

B

II~4 L

C4

:zU

.H

.-

HLA,

ZC-)HHW

A

I I-

-

54-

0 -l:HH Cz

r-¢

90a,-4 H4Z oo I-q

a, 0)

cox a,ci

.z

C) :j4i

.0 H00)4- z0 oi0a)

U -W-9'A00)0)x 0) 0IW01-0)C3

a).H0) x0 Q)

11E-.(dOU,

c4s-Ice

ao 0)

I-IUn

u)aE

c-Iou) a)

0'M 4-40,{Ce

00caa

coct-4

0ca Co

0)0)-44

ci:

C0).0.0)

C,

4CPn

:I

1

55

Hr

vO

H3O

v :

HO

04 o

oH-

I I

_

0 o

Wc H

o~

o~

C..' H

00

I-

a% a

C.,

ON

CV ..A'

C*' U

l

1;i,

oI.

CS

i

'I'

3W~; I

, 1~~~~~~~'

i' l

E-4 -

FH I

-ucc-

H'/

1

C)'4'4UU.

C4

0 1

H>4

EP

HU)

Xr

U. L

COY

IE^.W

0

n L

~44OZ

PO

o Z

OC/

HU

),

14 =

o

cn^ E

-4 u

5 -M

eJ.-.J !

X

cn

ss .^-t

mL

I C

4--4

C

I

X

^

O'0

(DIOzzQ

* X

N

m

II Oj

Elb

Z

H

zH

¢l

O]

H

E-

E 3

w

X

.3OP

U)

hHI 0H3

oiiiO

)

g4-JOi

=i

c!o;ol0:

EJ4

.j

ej

u·ro

cn I

fIiIIi

I I

I

I !

} -

, _

, I

I :-i·

I ._

_

; -

- - I i~~~~~~~~-

--

--

--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

..

A

I A

. .

I I

II II

II

mItI JI

I

.. Ir

I

Ii

.iiiiiii

III

,tI

~~i ,~~~~i

56

C,

zZoHC)-

HHv-)

H cc

xEIt11

a)a):C>4a)43CO)

U)

a)0U)

s-n a)

44) :a a)

'-iCd

a)o a)4JU

)

>rI)aJ rUa)

a)a)a)r-t

a)U)

a)

Hl

L4-4

04-i

'o0U)

aa:U)

-Ri'r10 coEec >U)

Cd -IA4)En

e'i a40o 4-4U)

co

U)

u a) .H-44 04H C)

UU)

14

cnCH

¢-!4

ua).-.acn

C-4

u

I

rnH HH00 I-iHmrx -

o zH

N4

zHHUEq

H

tI

Z¢.] -

[,.~

HEg

w H3 on

H

H

>H

H C-4

¢ 2

u ¢.

HqEn

mH

zH

U

~-4

3:DE-43

Q0

H WC4

H

'4 N-

E-eOv_R

I 4

r4mE['

oH

Io

0N1

- ...

-4on WH

on

C

ZC

z

on o

on

CH

E-4 m

w

cqn pqC

Nc3

¢-"

>^ s'

n:

w

uz a§

C4

w

0 -It

_ !7

M

wOoHEH

onH

I s: 3

aSE

P3

>04

CN

C

0C

aco

-4

a^

cE

n

I -4

o41 "4

U)

4Cd(

.-4 a)

o4-4Ik

0j

E

Il

u-i0

.H

E.

U'

W'

i03

co 4-5 co

a) I4..

4-i4 -AU

).

"j

*d

E-4 4-i

i.0

-i U

0

ii

a)a)

'0'ua)o,0 ua)Do.0 Wa) --I

a) on0a)o mcr a)-o-W-4 a)U (da)

~S-a0

-a Iotot

57

I

mo-i I

w HPr 0-

s ¢J

I V

)

i H

I

I m -4 HHP',H0.

-tIIIIII1IIIIiIIIIi

C

C"Io

Ua) IIIiIkIIiIIiIiIIiiIIIIiIIIiIII.

CII0o o-:1

OCCD

oI

\.D

oo 00

1

.i

i i

7�I

IJI IlI

iIiIIIIIItiIiiIIIITIIII

ItIIiIkIi

IIIIiIIIIi

REFERENCES

(1) Jansen, J., Jordan, P. L. et al. "Television Broadcast SatelliteStudy" TRW Systems Group. NAS3-9707, October 24, 1969.

(2) Report "Television Broadcast Satellite Study" Volume II by ConvairAerospace Division of General Dynamics, NAS8-21036, December 31, 1970.

(3) Power, D. W. "Antenna Pattern Shaping, Sensing and Steering Study",Sylvania General Telephone and Electronics, NAS3-11524, April 15,1970.

(4) Sauides, J., "Antenna Pattern Shaping, Sensing and Steering Study'!,Philco-Ford Corporation, NAS3-11525.

(5) Graf, E. R., Technical Report No. 2, "Television Broadcast RelaySystem" by satellite Communication Laboratory, Auburn University.

(6) Wolff, George, "Oriented Flexible Rolled-up Solar Array", HughesAircraft Company, AIAA Paper No. 70-738, AIAA Third CommunicationsSatellite Systems Conference, Los Angeles, California, April 6-8, 1970.

(7) Fairchild Hiller Corporation, Space and Electronics Systems Division,Report No. 652-00101-FR, August 15, 1968, prepared for the JetPropulsion Laboratory of the California Institute fo Technology,under Contract No. 951969.

(8) Boeing Company, "Light Weight Solar Panel Development", preparedfor JPL under Contract JPL 952571, July 1970.

(9) General Electric, "Feasibility Study, 30 Watts per Pound Roll-upSolar Array", Final Report prepared for JPL under Contract No.951970, June 1968.

(10) Lipscomb, E. J., "High Power Spaceborn TV Transmitter Design Trade-offs for the 1970-1985 Period", AIAA Paper No. 70-434, ThirdCommunication Satellite Systems Conference, April 6-8, 1970.

(11) General Electric, "Television Broadcast Satellite Study", NASAContract NAS3-9708, August 1969.

58

59

(12) "Engineering Aspects of Television Allocations", Report of theTelevision Allocation Study Organization to the Federal Commun-ication Commission, March 16, 1959.

(13) Ford, Fred Alan, "An Analysis of a 35-GHZ Communication Downlinkfrom a Stationary Satellite",, Ph.D. Dissertation, Auburn University,1969.

(14) Lawrence, R. S. , Little, C. G., "A Survey of Ionospheric Effectsupon Earth-Space Radio Propagation", Proc. IEE, January 1964,p.4-27.

(15) Holzer, Walter, "Atmospheric Attenuation in Satellite Communications",Microwave Journal, March 1965, p.119-125.

APPENDIX

60

PROGRAM FOR FIGURE 1

C SPACCI ANTtNNA WT VS FRHtLtNCYC lFtN lON YLA( lO),YL( C) ,YLC( LC),YL)( Il)) ,Y L-(1O), YLF( 1)),I YLG( IC) ,YLI(LO) ,F( I0)CALL PLOT (4.0,3.C,-3)S=22CCC*176C*3AS=3 . 14 16( 5C C*760*3 )*2.C=(( 3.3.281 )*10**WI 1 E (6, 1)

I FCRIAT( A I,/, I0,I0X,'AAN TNNA WEIGHT VS Fl:tQ FOR tIGHT ANTENNA

1GFT tLCTCRS' )

1"0 .FfCRAT ( -', IOX, F ,6X,4 YLAW,5.X, tYLB',5X,'YLC'I,5X,'YLD',5X,I 'YLE' ,5X, 'YLF' ,5X, 'YLG ,5X, 'YLH')

:A C (5, 3CC0 ) N 3CO f.CRMA I ( 1C)

N2=N 1+l' =Nl1+2.O'C IC(O =l,NlF (I)=FLOAT(I+I)*3.5/FLOAT(NI)YL( I)=0.041/AS* (C*S/ F(I))**2)*10.**(-18YL I )=0. 1C/AS*( (CSF( I ) )I *2 )*1I..**(-L8)YL(tI )=0. 13/AS* l(C*S/F((I) )*2)1C.**(-1)YLC( !)=0.20//AS((C*S/FiI))**2)*lC.**(-18)

YLF ( I )=0.31/AS*( (C*S/FI I) )*2 )*10. **(-18)

YL ( I)=O. 35/AS({C * S / F ( I *2 )*1. * -1 )10 -R'ITE(6,3C)F( I ),YLA(I ),YLI( I),YLC( ,YLD( I ),YLE( I),YLF(I ),

[YLG(I') ,YLF( I)3 ' 1- C R 4 1 ( ' O ', 5 x . F 3 .1 , S F S -2 )

CALL SCALE (F 5,' 1, 1,)YLA ( N2 )=O.OYLA (N3)=-' OC.CYLi3 ( 12 )=YLA ( N2 )Y L ( N 3 ) =YLA (N 3)YLC (. N )=YLA N2 )YLC ( 3)=YLA ( N 3 )YLD ( N )=YLA (N2 )YLD ( N)=YLA(N23)YLt (h2)= YLA (I2 )YLt(N3)=YLA(iN3)YLF (N2 )=YLA(N2)YLF(N3)=YLA (I3)YLG (N2 )=.YLA ( N 2 )YLG (N)=YL A (,',' 3)' L: N 2 )=YLA 4A 2)YLh(i )=YLAU('3)Y LF! ( N 3 ) =YL [A.,3 )

CALL AXIS (C.,O.,'FRECLt-NCY IN GHZ',-16,5,C C., F(N2),F(N3))CALL AXIS (C.,O.,'WEIGFT IN LBS',I3,5.,90.,YLA(N2),YLA(N3))CALL I INE (F,YLA,NL1,1,1,0)CALL LTNt (i-,YLB,NI 1,1, 1)CALL LINE (,iYLC,Nl,I ,12)C ALL L INLt (tYLD,N I,, 1 ,3)CALL LINE (F,YLE',Nl 1,1,4)CaLL LINE (f,YLF,N1, 1,, 5)CALL L INE (F ,YLG,NI1,1,1,6)CALL LINE (f,YLh,NI,I, 1,7)CALL SbYMECL1.1,-l.,.Il23hArTENNA WT VS F'Ec..UENCY,0.0, 23)

CALL SYM COL(.I,-I.3,.I,25h1FCR EIG.I-T ANTL'N, A hi FACTORSC.O,28)CALL PLOT (1) . C , C.0,99)'Ki '

61C

PROGRAM FOR FIGURE 2

(C <,~P: c. 4 b,:~llP fr '!\ A WI V ",/S F'H 'U r-NC YF I S f1 N YLA (IC) ,YLH (10) Y L C CI C) ,Y L I C 1 ),YLL t 10) YL( I C),

I YL(; ( 1C) ,YLF li)) ,t- ( 1)l' I it 6 , I }

1 'Cl,'A nI (I ',/ '-',, I ), N fr LNA wt IGH VS I F-L tF lCR t I6T ANTtlENNA i- IIGc- FaCTCRS' )

CALL FLI:f (4.0, J.C,-3)S=z2CCC*I17hC*3;,. '( 146( C17 I '; . - *2

I r'.1t 1, 1 .C

IC Ff'PT ( '- i (, X ,I ' t, T ' YLA', L 'YLU ' ,X,'I LC', X, ' Y LC't X,1 YL E ' X , Lr' 'Y Y L' YL" ,X'Y 'YL '

't¥ L ,, (' L 3 C) N I3CCO FC~t/ fi (,1C1 C'X)

P P= 14 1+.: N;=N I + /

;''' ]CO. I= 1,;1I

t (I)=7.5+.-LA t 1, )/.Y L(I )=0. 13/ S*l. C *S/tr( )) * ) :lC .**(-l

YL( 1) =0. 25/AS*( C S/F I ) **2) ) .** (-1 )

YLCl I )=0. ;7C/ASt( (C*S/F( ) )*.2)*11C.**(-18)YlF (I )=O. 13/AS*I (C*S/f( I) )*.2), 1C.:*(-18)

1CC 'IL T t ,3C) I )Y LA I ), I ),YL(I ),YLCt I ),YLC( I ),YLt( I ) (YL -( I),L'.( I , YLF-(I)

CnLL SCALE (F~5.;,tl, 1,)

YL I A \, 3 ) A - (. (YLa(r.:3) 2.u,

Y' L t' ( N ) Y L A I Ni? )

Y L C l[ ):-'YL A ( 2Y I. C ( L'' )- -YI. j i N3YLLIN2)~YLA(N2)Y i.(F, 3) YLA (N 3Y L ( , 2 Y L A (N 3 2

YLF(. )YL( A(N2)V Lt C I 1 )'Y L A (N 3YLH(

I2k )-YLA(N2)

¥L',- =N YL. A N3Y L '. N i3 )-Y L A ( 32

V L H 1 f 3 )Y LA (i 3C LL A I S (C. ,C,, 'I't_ CI E\CY [.N CP, - -1E, .. 1,0., F (N2) ,F (N?)CaIL L XIS C.,.,'WL If r li '- L ,13,5.',90.,YLA(N2),YLA( N3)):,L L LINE (F,'YI A I, 1, 1,C)

CALL LINtL F,YL i,NI,,I,I)CALL LlINt (:,YLC, ,I 1, 1,2).CLL LINU (,,VLN~l, 1, , 3)CB /LLL Laib FYL CrI, 1, 1, )C LL LINE (t,YL J,, l, 1I,,)

CALL LINE (FYL!;,NI, 1,1,6)

C', L 1. Y L ( . I . I''2 t '-IN T A ENN!A WT VS F L trl\C. Y C .C 2 3)

C:ALL SYMi i L(.L,-i.3,.1I28teFCRR FIGHT ANTSENNA W'I FACTCRS,0'.O,28)

s· I

C,3LL 1F:11'l (1 ( I('),C¢(2.0,cS6 2

....iE 62

PROGRAM FOR FIGURE 3

':I AC 3 SL.LAk CtLL W l;GHT VS PIWr-.F Ilr t I 0(,,J A )( 2{2) ( ?2) ,C(Z2 ) ,W( 22),WKL(.Z?) ,.P(22)rALL F;L.CT (4.0, 3.C,-3)

I (CK T "T(' I',/,'5-' ,2bX,' SOLLAR CELL WEIGHT VS PO.0'RK)

25 i Ci.I1PAT ( '-' , I X, ' P' ,6X, 'IA' , I X, 'WB' 10X, I WC ' 1X, ' WD': '. I C5,2CC0 )N

2C(,0 F- r i C 1 ( | 10 )

N2 4= 2(., 3: l=L1, I

'(!(I) =l LUiAI I !)IU)81./FLOAT (Ni)

1,P(I )= 0.Q*{(PI I)

c,(; I = 10 . C* p I(

3 ; ,,t f:(L , 100) 1-C )12 1 F' [ C. F t gC , O X f

CALL . c('ALi (P,';.

,: C ( 1)' =-,W VI

vC (t 2)=WA(N2)

P. _ 1 2 =WA (N2)

~,2: x )=b A(N1){- f" 2 ) =WA ( AN 2,CALL

C( hLLC A L.

C al I

(.' -LIC 'N! .

l .

$1 (,LL

-A1 SP X I S

L. INF

LINEi I N

I IG4f

/0.65+0.23*P( I))/0.6.5+C.23'P 1)' )/O.t5+C.23*P I))/0.65+0.23P( I)))/0.65+C.23*P(I)),WA (I) , (I) ,WC (I) ,D I) ,LI I)j. I,5F1C.4).N . I)

,lOX, 'WE')

,13,5. ,90. ,WAU(NI) ,w A(N\2) )(C.,0,., ' ;t--IGI-T iN LtLS'

(F , WC , ,1, 1 , 2)( 9i R F, r N 1It 1, 3 )IP.V0- .N. ! . I .4

t L L_ - F t r I f I ;N 1 . I I-I I

SY:[rL F .I,-l. .lt 25L 1.l/k CELL WEIG (;4 'SS Fy t t I (. ,-1 , I 2 t t f = I-4 GH 4 0 . I )

FLOT (1C, .C,'n,9)

Pf W EtR ,0 ,28)

63

(C.,I()., P C"! ER I '.: KW' -II t 5., O. PiN I), P (N2) )

PROGRAM FOR FIGURE 4

C .. )iSPAC; f SC LA E kt lL ' tICi iT VS PthLE ltE t i N Vi" A (2 2.) ,r.1 22) , C(22) ti[ ( 2 ) ,n F(22) ,( 22)

I, (LR 'l I1' ,'-,/' ,',X,'SiCLAP CFLL WEICHT VS Plt.L' CALL FLOT (4.O,.C,-3)

r N 1,. 2 525 .F C k i ( - , 1 *; Xt . p h ;6, .W A , 1Xt i , ) ' !C ' , 1, X 1 . W, I I I () X Ot W

E.! A ( bC , 2CC0) N2C/C C-' : ;T (0I IC)

r- /= I '. -/ Z!J( i:( I=i,NP(I)=FLOAT(I)*10./FLOA1 (fI ,A( I 33 .0 P ! ) /C.5,+. '* P( I ) ),,(I ):'(,O.'(P I / C.58+( .' IP l) )

i' (I )=, (.CV( I ) /C.58+. 15*P I) ),tL! )=IL0, C*(P(I )/p.'. +O.. 15*p( I.))

3C i i t ( , I1 ) P I , A( I ) , Wt ( I ) WC ( I ) WI ( ! ,- ( I )10C FCk' u',o , 15XIt 5.1,5F10.1)

C3LL .CAL,- ({P,5~,{n, 1)kA it, , 1 ) = E. OIVA I-2 ) =4CC. C

h (N I )=WA (NI)

V Ct ( ) L=W 1 ( N ,,C ( 2 ) =: (NWA2 )

Nt:( , A )=A N I)i: ( , 2 )w - ( IN 2I. L ( ; I) =WA (N)

YP (,"? ) =WA(fN2)

CLL AXIS (C.,O.,'POC:LP IN KI', 11,5., .,(N P(N ))CA LL L'XI. (C ., 1:, , 'LIC- IN L hS' ,13, .,9 .,WA ( N ) ,l A (N2) )C- LL LINt (P,WA,IN,I,I,C)CPLL LINE (P,Wf3 ,NIl,, )ICALL LIN ( P.,4C ,iN, 1, 1 , )CALL LINE (P,WC., N,1,I,2)ChLl LINt {P,,k , 1r,,l l,3)CALL LINk (P,Wt,N,,1.I 4)CALL S' MECL (. .. 1,, ,26SC:LP CELL WcIGHT VS P£OW-R ,0.,28CALL _ YM BCL (.1,-1.3,.1,13hFi<L P-i-12 ;HHL ,., 13)CALL FLCT (10.,U.0,99q)

T C -

64

PROGRAM FOR FIGURE 5

C S$ACC 2 CLIf ' SYSTEMI WT VS POhWERc ILs[ n ION P IR'I 2 ) P$ s 22 ), r WTH 22 ) wWT ( 2 2 ), t I 2 2 )C.ALL FLOT (4.C,3..C,-3)

.fG TTt 461)1 FCHMAT(%I ',/,i'-,,25X,'COFI]I SYSlEI htEI HT VS P!WEK' )

r, l i'' 1202 C F C -', I 7 , ' P',7 X ' W T ', 7 X ' P ',7X,.'WTh,7X, 'W T' )

tAC (5, lCCO )NlICOC FCRNAT (10)

N2=N 1+ Ih?=N 1+2r[ .3C IdI,NIP(ll)=FLUAT(l )*1O./FLCAT{(Nl).TRU I )=28.+7.5TP I)kFS( I)=62.+ 16J/t*1(!)W[ht I)=12.5*Ptl1)!.T[})=:wTKrI )+hPS [( +Wt I )

3C hRiTE(wl1CO)PIl),WTR( I),W4PS( I),WTH(lI)hwT(I)loC FCRPPT (%O't 15xI 4.1. t4FlO.4)

CALL SCALE l P 5,N I, 1 )W Th I2 ) 'C.0T' ( 13 )' 1CO.C

wPS IN3 )-',TN RN3)WTHIN2 )-'-~l R (N2)kTH ( N3 ) W R ( N 3 )W'. (N2)=kvlPU\2 )V, ( N2 3 =W T R ' (k3)CALL. AX l'S !C. ij, I HPt htl: .IN KW,- 5., 0 ., P ( \N2 ), P N3))CALL AXIS (. C. ,,0 , 'WEI GI IN L H S ', 13, :,. ., WR(N2), W T'I N 3))CALL LIriF (F,TiH,NIt,1liO)C ALL LINE ( ,P PS ,N1, I 1CAL L L I INE (F,WTH,N 1 1 i 2 )CALL LINe (P,WTNlI,1tl,3)CALL SYMPCL (.1,-1.1.-131FtCCV SYSTEI IAEIGHT VS POtR ,0.,31)CPLL SYIMCL (.I -I.3,. 1,12HFR Q=1-4 GHZ,O.,1 2)CL L FLCT (1O.,O.C,999)STCPF: N j

65

PROGRAM FOR FIGURE 6

t.C 'QFACE 5 CCPt'. SYS.Tt ' hT VS PLIwtHEFI I t t' SI ! N r ( 2 ) ,WP S ( 2 2 ), WTH 22), ( 2 2 )CALL PLC-T (4 .0,3. 0C-3 )V I T Lt(6, 1)cI ILtrA ( I' ' /, '-.' ,25x, 'CCI' SYST t, WCI;GHT VS P['kiE' )

-, IN 1 2 "2C F-:CNlPTl ('-,'17X, 'P' , 7X, ,WTR, 7X, IPS' , 7X, WTFI' ,7X, WT')

k A F (5, 1 C C C ) 1r I

2-. 3 = ' 1 + 2

-!:L C 1=-l,N1I'( )=FLOTAT(I )*1./FLCAI'(N1)

. I;',(I)=23.+7.8P( I)lrS(I))=6.+16.14 *PP( I

1T(I)=TPR(lI)+WPS(I)+WIP(I)3) Wi E (6, 1o ) PI ) , ri ( I ) ,WPS( I ),WTH( T),WT( I)

1.G0 f CkVAl' ()l ,15Xt-4.1,4F1l0.4)CALL SCA LE P,5.P,NI, 1TP 2 )=0.O0

f r, ( h r ) = 1.'0 R .]

.. FS I 3 )=V. T RN>)

1T HI (5) =T lIK , 23)

l r:2 ) =W'P ( N2 )WI ( 3 )=idJ' P- 3)'ALL P XIS ( .,U . ll.IPGWER I W.,-1 1,5., 0., P (N), P N3))

CALL AXIS (C.,O.. WF'IGIT hiN LbS',13,5.,90.,WTR(N2),WTR(N3))CALL L! t-E (PWTR ,N ,I, O)I,CALL L I NE (P, PS,N,,1,I1)CALL L tL I- ( P,. rH ,NI, 1,1, 2)'ALl. li!F (',WT,NI ,1,I,,3)'-PLI. SYMBIHiLL (.1,-I.,.l,31 HCOlt / SvSTt1 Wi:lGHr VS POWER ,0.,31

CaL 'Y 0L .( .1, -1.3, .1,l 3HFRFi :8- 12 GHZ,0., 13.);CALL FLCT (10.,0.0,991)

66

PROGRAM FOR FIGURE 7

rC SFACC7 ATTITL1Cu, ]RBIT CCNTKCL ANC STRLJCFURh WEIGFTC If hNSION \WAC(IO),WST(O),WA(JST(IO) ,WAST(10)CLI. F L(T' (4 .C 3.C ,-)

I 1 1; 6 ,'1 IF-CfPtlT(l',/,'-g,,25XATTITIUJDE CRBIr CCNTRllL AND SIRUCTLKE WEIGHT'

1C FCR F/ T(,-' ,SW 15X,ASI "tloX,'W1GX jX hST ' ' W.r AX()AOST')CC 3CC 1=1,5WPST( I )1CCC.*FLC/AT(I )-1CCO.

ACII)= 0. A*"hAS T11)SIl II)-2.C+C.272.~.AST( I)aCST I I )= C+0 5C6*WAS ( I )

3CC VRiltEb,?2C) WAST(I) ,WAC.(I) ,WST(I) WACST(I)2C FCRVAT( ,',5X4f-15.3)

CPLL a x I (C., C. ' AST',-4, t 5. ', O.,C., 1OCUO. )CPLL PX[S(C.,O.¢'/E IGF-T IN LeS',13,5.1,90., C, 500.)AhST( )-(-C.C.

WP'ST 17 )'I CCC. Ct (t )=0.CVAr 7)= 5CC.CAC(;SI Ch6)=.C,,AUCSI (7)= 5CC.0SI (t)=0 .CS I (7) = 5CCC

CALL LlNE( (hAS1,WAL(, 5, , I )C.LL LINE(hPST,WST,5,1,1.,2)C LL L INE(kAST,WACST,5,t1,1,3)CqLL. SY'PCLI.l1,-I., .1,4C AT ATI TUCE CRBIT3 CCNTROCL AND SfRLCTULRE WT

1C.C,4C )CALL FLCT(IC.C,O.C,999.)STCF

67

PROGRAM FOR FIGURE 8

C SFSPACCl- 41 T ITUCt,CReIT CC:NTROL' AfNC STRLCTLRt .itIGHTElI rI S i:Oh ACS I(1) ( ,W)ST (IC),hACST( I ) ,'ASTI( 1)CALL FLOT(4.C,3C,t-3)

I FCaLR T(I'L',/,'-S,25X,'ATTIFUC1L, CRBOIT CCNTRCL ANC STRUCTLRE WEIGI-T

IC FCiRDA('-' t,5XtOsASf ',ICX,'WAO ',lCOX,'WSI ' ,LOX,'WAOS'T')Cc 3cC 1=1,5VAST(I) : 5CC.*FLCAT(.I)- 5CO.PC I )=(.2 *hAST ( I I)WSf(I1)=2P.C+C.264*WASTI)VACS1 (I)=28.C+O464*WAST(I)

3CC C VRIII i- l b,2C ) AST (I), WA I),SWST(I)iWOST( I.)20C FERNTI ( 'C', ,5X4F 15.3)

CALL aXTS(lC.,C.e'kAST',-4,5.0,.O., 5CC.)CALL AnxlSO.,O.,!'EI-GF-T I N LBS',13,5. 90.,0.,250.)

wACST({)=C-ChC{LU )=O.C

wST{6)=O.okAul =250C.ChACS1 (7)=25C.C

AS9T ( 7) 5CC.CSl'' 1 )=2b5.C

CALL LINE AS'ST,,,,5,1,1,,1)

C L! L INE ( i AS ,hC T, S, 5I1,2 ) ,

CALL SYM3CL(.I,-1.,.1,404CAITTJTUCE CRBIT CCN1ROL AND STRLCTtRE fT,LC.C,4C)CALL PLGT (IC .CO,O.O,99S top

68

PROGRAM FOR FIGURE 9

C SFPAC C TCTPL WEIGHT CF SAltLLLITt AL h 1,Y'2, I4 iK, K5, 6 K,TA1 E 12) ,PC{ 12)

CALL P1 0{4.0 ,3'O,-3)C= ( 3 .C/30.48 )1* .t** 1OktAE (5, ) SFCItAPiKlIK4

I FCVI I (6f 1C .0S 1= SS=S5528.()AS= L[:'IA*52P, C./2C)***3.14159aIL-'./[528C.5280 ).IF(F-6. )! L1020,2C

10 V2=9C.<K 336. 14K 5 =C . 5

6 = C. 506;C rc 25

2) K2= 8.K 3=33.94

1< 6=( 46425 Ci)N[IILNUEI

<.'; I-l t ( 6,.11 )11 FKr"AT(;1',/, '-'.,25X,'TOTAL WEIGHT CF SATELLITE')

F I =F 1. ' * 9-.=2..-t (I.+K)*(IKL*( (C*S/Fl)**2)/.AS)+K2+P*(K3+K4/K5+U.23*K4))

k R ITE (6 i100) S1 F, D I a, PAS I PK ,1 2 K3,K4,K5,6, WICC FC(RP TI(-'I,'XIT TO REC ANTENNA IN fILES',14X,' =',10O.4,/

1'C ,'I REQ('LEf s CY Ih (N;Z =', F 10.4 /1'C','CIAPETER 0F COVER/E(F IN PILtS =',f10.4,/1'C' 'CClVERACE AR*AP IN SC PILL S =' FIC.0,/1'C','F CWER IN KW =',F1O.4,/I'C',IAKTENNA hT fACT(R IN LES/SC -T =',FIC.4,/i'C','tLLCTKICAL ANOD LLtCTRCNIC ECUIPFENT WT FACTOK ='tFIC.4,/I'C', ELECTRIC AL AND TFJEPFAL CCNITROL Wr FAC-CR =',F1C.4t/1'C','SGLARk CELL IRkAY kT FnCTrR IN LBS/KV =',F10.4,/I'C','XN' TTit tF- IC ItINCY =' ,FlCO4,/1'C 'A,1TITUEL CCfxTROL ANC STRLCTURE hT FACTOR =',F1C.4,/I'', 'ITC[AL kEIG(;H OF sATELLITE =' ,FI.4)

WR IT r ( lZ )2 FCRFPAI(-',25x,',CITAL htEIGHT VS PCER

CC 3C lI1,1(;PC I )=FLCAT( I)TATE(Tl)=28.+.1 -+K6)*(I(Kl*((C.S/l)*1)2)/AS)+K2+PCW(I )*(K3+K4/K5.

10.2,K<4))3C rlI il- {6,311) PCkI(I.),TATL( I)31 -CRPF T('0O',5X$'PCtEk IN hh= ',FIO( ,.45X,C' TAL WEIGHT'= ',FIO.4)

PC l 11 )'C.OPCW;( 12)'2.CALl SCAL tlkATLt ,5.C, IC, 1)CALL PXSI(C.,C. i'POER 1 KN Ki',-lli5.C,0C.O,PC'C will),PJIW(12))CALL A-XS(C. ,C.,,'klGI-T IN LBS',13,5.0,9C., TWTt(ll)iTwA rI (12))CALL Ll It(PCo, TWA1L,Cl,1,1,1)CtLL SYNtCL(. 1,- ., .I,'TCTAL hFIGHT VS POCFK',C.0,21)CPAl.L FLLT(LC.TCI. C,.,c 9)STPCF

69

I

If

It

I

I

I

{,

I

i+

PROGRAM FOR TABLES 14 - 17

t) IMENS1I. ) 4 F A(t 10i),) ,SPACLU( 100,6 ), NAMEf ( 100, 7)

)n 100 1=L,100it A0( 5 1:)( SP 4-O( I ,J) , J= I, 6) , ( NAMt (I tJ J=l , 7)IF(SPACO (I,I).tQ. 99. )GO T 1101:!=r + 1

10o) CiNT INuE113 I [ r(' INUEI L F RMAT ( F S 6 .0,F t .,) 1X , F4.0, 2F 5. ) 7A4 )

D I 10 = 1, N!(] 1G J=1,b

, FA( I, J ) =SPACO( I, J)11 ) -( 1 Il)=(SPACO( 1,4)-SPACU( [,3) )/2.+SPAC1{( 1,3)

:= =10(CALl S0RT(SPACO,NIA"F,,,M,2),Q I Tr ( 6. 1)

.,,4 I TE 6,4 )I f(;R4TAT( 'l',/,-' 40X, TABL tlNE'2 f-CRiUAT(0',32X,'RF AMP PAkAPtTERS VS P)WtRK')3 RvAIt('-' -,17X,'PCWER',2X,'FREQ RANGE',3X,'GAIN',2X,' WEIC!r'3X,A'CCIPANY', 3X, PAKT NO',3X,'TYPE')

4 F ' 'RAT( , 17X,'kATTS' ,X,'GHZ',6, 'OB', 5X, 'LeS' ,/,'C )0D 3C I=1,N

3 ,,1 T E(6,21) (SPACC( I ,J) .J=2,6) , (NAE(I,J),J=1t 7)21 fCR!AT('0',!3X, F8.O,F7.1,'-',F4.1,7.1,,F9.1,7A4)

CALL SCRT(RFA, NAE,N,M, 1)W I fE (6, 121

!R.IT t 6, 3, I ,[TEIf 6,4)

121 FOR/MAT('O' ( 32X,' QFAIP PARAHEFTERS VS FREQUFNCY' )!-0 60 I=1=.NJ

6 'I TE6,E.21)(P.FA( 1,J),J=2,6), (NAM( I,J),J=I,7)CALl SORT(TSPACe,NAVE,N,I,5)R I TE (.6, 2 0 1)

' TE' 6E, 122)RrTET ( , 3)

122 FECR.AT('0',32X,'4PFAMP PARAMETERS VS GAIN')9C: 95 I=1.N

9 T ( 6, 21 )(SPACC( I J ) J = 2 6 ) 4 E ( I J ) ,J = 1 , 7)CALL SCRT( SPACC,NAME,N,l, 6)

R T ( 6 , 3 0 1), E ( 6, 123)

I s TE ( 6 3.).W ;[[T __ 6,4)

123 kCRUAT('O08 ',32X,'RFAMP PARAMETERS VS WEIGHT')9C 9 I=1,N

9 T E ( 6,21) (S oACC( I,J) , J=2,6) , (NAME 1,,) , J=, 7)101 -CRPTIT('l',/,'-',40X,'TABLb TWO')201 FcRC T('1'./,'-',40X,'T ABLE ThREE')301 ~ CA ' - ''/.,'- ' , 40X, 'TASL FCUR,)

S TO'JP*T 0 P ~N ~~~.7

70

PROGRAM FOR TABLES 14 - 17 (Cont'd)

SUBRCLTI N.E SOKT(A,K,N,, L)DIMENSION A(M,6),K(M1,7)DC 3000 KZ=l,NJ B=N-KZDO 3000 I=l,J3IF(A(I,L).GT.A+1, I,I )) GO TO 1000GO TO 3000

1000 DO 3000 J=1,7IF(J.GT.6) GO TO 2000

3CDAK=A( I,J)A(I,J)=A(I+1,J.)A( I+l,J)=BODAK

20UO0 KADOB=K(I,J)K(I,J)=K(I+l,J)K(I+1,J)=KADOB

3000 CONTINUERi TU R NEND

71

72

COPIES OF SURVEY

QUESTIONNAIRES.

73

HuR cj4

C i

H

E-

.C

.a_/l1_) W

I

L'-'

c

Z

WN

CY 0

.44

oL1I

ILr

Ln

14

o

C

uo

C -)I

C NJ

E~E-4

E-4

0 o41a,

Ut

mI~4

I.

1

I

I

Icn

1

J

1

74

E-AI

ouC14Pa

F-I U

I

¢ S

2 I

.-

t

F-II~

I

ME

~~z I

~~

~--II

.1

__

a L

PI

u -

o W: rX4

C'.'

PX coX

. 3

W

b v2

H

M

HzU

--- I-I

II

i j'

j I

75

E-4

8X

I

i, i

i !

z ~f

E'

PI4

I 4 I

C~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

1~

I _

_ _

_ _

_ I _ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _~

~~

~~

~~

~~

~~

~

-,Z

h

w

N

ID

L44

oI-4

oI1u1

C.

_S1 U

n

0,-4I0\H co~c)

Ln

o I

: Z

2,,

I

wr

c

_

o

I

r-

,-I t

E-4

0Cl2

A .

E-1

Pi

z ! :

W-,

4i,I

Cii

iifIiiIii

1-1

.Iz 34!v v3 m

* U

76

0

9 e

I~~

~~~~~~~~~~~~~~~~~~~~~

I

1.~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~

w~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I r

'4 1

*1'40O3

E~

O3I

a~~~~~~~

HI _

_ _I_

_

_ __

_ _

_ _

_

_ _

N~

~~

~~

~~

~1(

H~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

N

II

'4X>xIH

ilIft

H4

.0

O

j I.v:

j E

i i m, ! CiI

, I U

·,m! L.

.IIiIiIiiIIIIIfIIIi

77

0O

:3

C4 H

n-> I

IIIIIII

C4 rX

4~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~

<

_

P-I

0 "

-'

11i

i*5

LI)I~

~~

~

EI

i I4~

~

,i~~

~~

'- cj

I W

~~

__

_j

_3

iU

'4

W~~~~~~~~~~~~~~~~II____

'4

'4C,'-4O4

0

T

'0S

IEcrW

11 00 .w3I,

IMl o

i N1,NFr4HHH

I

U)

'-4C,

0a)C.r,

0u

Ii--------

; i

I .r-

II

i IIIIiI

I

_t

I!% IiIIIiiIIiii

78

C

HH

E.4 -

.. o

i t

l I

I-'i HH_

_ _

_ _

_ _

_ _

_ _

_ _

_ _

__

Un

{2H

0 o*4

ooo 0)O

~01

00

I

00ej

000o

o~~~~~~~~~~~

o00o\o

I II

lI i

I I

ooo

l I

oo00

I

E-.0E-,

0 - En

E-e

V]

CD

U Wc,Q)a),

I fl

)1! I

' I I

IIiiiiiiI