de broglie waves, uncertainty, and atoms

21
De Broglie Waves, Uncertainty, and Atoms sections 30.5 – 30.7 Physics 1161: Lecture 29

Upload: niel

Post on 22-Feb-2016

119 views

Category:

Documents


5 download

DESCRIPTION

Physics 1161: Lecture 29. De Broglie Waves, Uncertainty, and Atoms. sections 30.5 – 30.7. Electron at rest. Energy of a photon. Compton Scattering. This experiment really shows photon momentum!. P incoming photon + 0 = P outgoing photon + P electron. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: De Broglie Waves, Uncertainty, and Atoms

De Broglie Waves, Uncertainty, and Atoms• sections 30.5 – 30.7

Physics 1161: Lecture 29

Page 2: De Broglie Waves, Uncertainty, and Atoms

Outgoing photon has momentum p and wavelength

Recoil electron carries some momentum and KE

Incoming photon has momentum, p, and wavelength

This experiment really shows photon momentum!

Electron at rest

Compton Scattering

Pincoming photon + 0 = Poutgoing photon + Pelectron

hchfE

hp Energy of a photon

Page 3: De Broglie Waves, Uncertainty, and Atoms

Photons with equal energy and momentum hit both sides of a metal plate. The photon from the left sticks to the plate, the photon from the right bounces off the plate. What is the direction of the net impulse on the plate?

1 2 3

0% 0%0%

1. Left2. Right3. Zero

Page 4: De Broglie Waves, Uncertainty, and Atoms

Photons with equal energy and momentum hit both sides of a metal plate. The photon from the left sticks to the plate, the photon from the right bounces off the plate. What is the direction of the net impulse on the plate?

1 2 3

0% 0%0%

1. Left2. Right3. Zero

Photon that sticks has an impulse p Photon that bounces has

an impulse 2p!

Page 5: De Broglie Waves, Uncertainty, and Atoms

hp

So far only for photons have wavelength, but De Broglie postulated that it holds for any object with momentum- an electron, a nucleus, an atom, a baseball,…...

Explains why we can see interference and diffraction for material particles like electrons!!

De Broglie Waves

ph

Page 6: De Broglie Waves, Uncertainty, and Atoms

Which baseball has the longest De Broglie wavelength?

(1) A fastball (100 mph)

(2) A knuckleball (60 mph)

(3) Neither - only curveballs have a wavelength

Preflight 29.1

Page 7: De Broglie Waves, Uncertainty, and Atoms

Which baseball has the longest De Broglie wavelength?

(1) A fastball (100 mph)

(2) A knuckleball (60 mph)

(3) Neither - only curveballs have a wavelength

Preflight 29.1

ph

Lower momentum gives higher wavelength.

p=mv, so slower ball has smaller p.

Page 8: De Broglie Waves, Uncertainty, and Atoms

A stone is dropped from the top of a building. What happens to the de Broglie wavelength of the stone as it falls?

1 2 3

0% 0%0%

1. It decreases.2. It increases.3. It stays the same.

Page 9: De Broglie Waves, Uncertainty, and Atoms

A stone is dropped from the top of a building. What happens to the de Broglie wavelength of the stone as it falls?

1 2 3

0% 0%0%

1. It decreases.2. It increases.3. It stays the same.

p

h

hp

Speed, v, and momentum, p=mv, increase.

Page 10: De Broglie Waves, Uncertainty, and Atoms

• Photon with 1 eV energy:

Comparison:Wavelength of Photon vs. Electron

hcE

Ehc nm 1240

eV 1nm eV 1240

Say you have a photon and an electron, both with 1 eV of energy. Find the de Broglie wavelength of each.

• Electron with 1 eV kinetic energy:

KE 12mv2 and p=mv, so KE =p2

2mK.E.)(2mp Solve for

KE)(2mh

KE)(2 2mchc

eV) 1)(eV 000,511(2nm eV 1240 nm23.1

Big difference!

Equa

tions

are

diff

eren

t - b

e ca

refu

l!

Page 11: De Broglie Waves, Uncertainty, and Atoms

Preflights 28.4, 28.5

Photon A has twice as much momentum as Photon B. Compare their energies.

• EA = EB

• EA = 2 EB

• EA = 4 EB

Electron A has twice as much momentum as Electron B. Compare their energies.

• EA = EB

• EA = 2 EB

• EA = 4 EB

Page 12: De Broglie Waves, Uncertainty, and Atoms

Preflights 28.4, 28.5

Photon A has twice as much momentum as Photon B. Compare their energies.

• EA = EB

• EA = 2 EB

• EA = 4 EB

Electron A has twice as much momentum as Electron B. Compare their energies.

• EA = EB

• EA = 2 EB

• EA = 4 EB

mpmvKE22

1 22

hcE p

hand so cpE

double p then quadruple E

double p then double E

Page 13: De Broglie Waves, Uncertainty, and Atoms

Compare the wavelength of a bowling ball with the wavelength of a golf ball, if each has 10 Joules of kinetic energy.

1 2 3

0% 0%0%

1. bowling > golf

2. bowling = golf

.bowling < golf

Page 14: De Broglie Waves, Uncertainty, and Atoms

Compare the wavelength of a bowling ball with the wavelength of a golf ball, if each has 10 Joules of kinetic energy.

1 2 3

0% 0%0%

1. bowling > golf

2. bowling = golf

.bowling < golf

KE)(2mh

ph

Page 15: De Broglie Waves, Uncertainty, and Atoms

Rough idea: if we know momentum very precisely, we lose knowledge of location, and vice versa.

If we know the momentum p, then we know the wavelength , and that means we’re not sure where along the wave the particle is actually located!

y

Heisenberg Uncertainty Principle

2hypy

Page 16: De Broglie Waves, Uncertainty, and Atoms

to be precise... pyyh2

Of course if we try to locate the position of the particle along the x axis to x we will not know its x component of momentum better than px, where

pxxh2

and the same for z.

Preflight 29.2According to the H.U.P., if we know the x-position of a particle, we can not know its:

(1) Y-position (2) x-momentum

(3) y-momentum (4) Energy

Page 17: De Broglie Waves, Uncertainty, and Atoms

to be precise... pyyh2

Of course if we try to locate the position of the particle along the x axis to x we will not know its x component of momentum better than px, where

pxxh2

and the same for z.

Preflight 29.7According to the H.U.P., if we know the x-position of a particle, we can not know its:

(1) Y-position (2) x-momentum

(3) y-momentum (4) Energy

Page 18: De Broglie Waves, Uncertainty, and Atoms

Early Model for Atom

But how can you look inside an atom 10-10 m across?

Light (visible) = 10-7 m

Electron (1 eV) = 10-9 m

Helium atom = 10-11 m

--

--

+

+

+

+

• Plum Pudding– positive and negative charges uniformly

distributed throughout the atom like plums in pudding

Page 19: De Broglie Waves, Uncertainty, and Atoms

Rutherford ScatteringScattering He++ nuclei (alpha particles) off of gold. Mostly go through, some scattered back!

Atom is mostly empty space with a small (r = 10-15 m) positively charged nucleus surrounded by cloud of electrons (r = 10-10 m)

(Alpha particles = He++)

Only something really small (i.e. nucleus) could scatter the particles back!

Page 20: De Broglie Waves, Uncertainty, and Atoms

Atomic Scale

• Kia – Sun Chips Model– Nucleons (protons and neutrons) are like Kia Souls

(2000 lb cars) – Electrons are like bags of Sun Chips (1 lb objects)– Sun Chips are orbiting the cars at a distance of a

few miles• (Nucleus) BB on the 50 yard line with the

electrons at a distance of about 50 yards from the BB

• Atom is mostly empty space• Size is electronic

Page 21: De Broglie Waves, Uncertainty, and Atoms

Recap• Photons carry momentum p=h/• Everything has wavelength =h/p• Uncertainty Principle px > h/(2

• Atom – Positive nucleus 10-15 m– Electrons “orbit” 10-10 m– Classical E+M doesn’t give stable orbit– Need Quantum Mechanics!