louis de broglie

Upload: utami-widyaiswari

Post on 08-Jul-2015

231 views

Category:

Documents


3 download

TRANSCRIPT

Louis de Broglie : Perintis Kuantum Terakhir Hans J. Wospakrik (Fisika ITB) Pengantar Berpulangnya Duc Prinz Louis de Broglie, fisikawan teori Perancis, bulan Maret lalu pada usia 94 tahun, mengakhiri kehadiran perintis teori kuantum yang hidup di tengah kita. Mereka adalah pendobrak ilmu dengan gagasan-gagasan revolusioner pada awal abad ini yang memberi wajah baru bagi fisika, guna memahami alam atom yang mini. Ini, pada gilirannya, membuka jalan ke berbagai temuan teknologi menakjubkan, seperti transistor dan laser, yang tidak diduga sebelumnya. Untuk mengenang perintis kuantum terakhir ini, tulisan berikut mencoba memberi gambaran sekilas tentang karya dan biografinya. Adalah Max Planck (1858-1947), ilmuwan fisika teori Jerman, yang mencetuskan gagasan awal tentang teori kuantum. Ini lahir dari upayanya untuk menjelaskan teka-teki fisika yang berkaitan dengan pancaran tenaga (energi) gelombang elektromagnet oleh benda (hitam) panas. Pemecahannya ia temukan pada 1901 dengan anggapan bahwa "tenaga gelombang elektromagnet dipancarkan dan diserap bahan dalam bentuk catu-catu tenaga (diskrit) yang sebanding dengan frekuensi gelombang elektromagnet". Catu tenaga ini disebutnya kuanta (latin: sekian banyak: kuantum, bentuk tunggalnya). Dengan demikian, tahun 1901 dicatat sebagai awal bergilirnya bola teori kuantum. Namun, para fisikawan seangkatannya memandang gagasan Planck ini tidak mempunyai makna fisika yang jauh melainkan sekadar sebagai suatu kiat matematika belaka. Empat tahun kemudian, pemuda Albert Einstein (1879-1955) mencatat dirinya sebagai orang pertama yang menerapkan gagasan Planck lebih jauh dalam fisika. Salah satunya, berkaitan dengan "efek fotolistrik", yaitu teka-teki terbebaskannya elektron-elektron dari permukaan logam bila disinari cahaya (gelombang elektromagnet). Penjelasannya, karena elektron-elektron itu ditumbuk dan ditendang keluar oleh kuantakuanta cahaya yang berperilaku sebagai partikel (zarah). Kuanta cahaya ini disebut Einstein, foton. Dengan demikian, cahaya (gelombang elektromagnet) yang mulanya dipandang sebagai gelombang, kini diperlakukan pula sebagai partikel oleh Einstein. Bahwa foton menumbuk elektron, seperti halnya tumbukan dua bola bilyard, kemudian dibuktikan dengan percobaan oleh Arthur H. Compton (1892-1962) dari Amerika Serikat pada 1923, yang mengabadikan namanya dengan peristiwa itu. Gelombang partikel Gagasan foton Einstein kemudian diterapkan Louis de Broglie pada 1922, sebelum Compton membuktikannya, untuk menurunkan Hukum Wien (1896). Ini menyatakan bahwa "bagian tenaga elektromagnet yang paling banyak dipancarkan benda (hitam) panas adalah yang frekuensinya sekitar 100 milyar kali suhu mutlak (273 + suhu Celsius) benda itu". Pekerjaan ini ternyata memberi dampak yang berkesan bagi de Broglie. Pada musim panas 1923, de Broglie menyatakan, "secara tiba-tiba muncul gagasan untuk memperluas perilaku rangkap (dual) cahaya mencangkup pula alam partikel". Ia kemudian memberanikan diri dengan mengemukakan bahwa "partikel, seperti elektron juga berperilaku

sebagai gelombang". Gagasannya ini ia tuangkan dalam tiga makalah ringkas yang diterbitkan pada 1924; salah satunya dalam jurnal vak fisika Perancis, Comptes Rendus. Penyajiannya secara terinci dan lebih luas kemudian menjadi bahan tesis doktoralnya yang ia pertahankan pada November 1924 di Sorbonne, Paris. Tesis ini berangkat dari dua persamaan yang telah dirumuskan Einstein untuk foton, E=hf dan p=h/. Dalam kedua persamaan ini, perilaku yang "berkaitan" dengan partikel (energi E dan momentum p) muncul di ruas kiri, sedangkan ruas kanan dengan gelombang (frekuensi f dan panjang gelombang , baca: lambda). Besaran h adalah tetapan alam yang ditemukan Planck, tetapan Planck. Secara tegas, de Broglie mengatakan bahwa hubungan di atas juga berlaku untuk partikel. Ini merupakan maklumat teori yang melahirkan gelombang partikel atau de Broglie. Untuk partikel, seperti elektron, momentum p adalah hasilkali massa (sebanding dengan berat) dan lajunya. Karena itu, panjang gelombang de Broglie berbanding terbalik dengan massa dan laju partikel. Sebagai contoh, elektron dengan laju 100 cm per detik, panjang gelombangnya sekitar 0,7 mm. Tantangan Tesis ini kemudian diterbitkan pada awal 1925 dalam jurnal vak fisika Perancis, Annales de Physique. Namun, luput dari perhatian para fisikawan. Bahkan, para penguji de Broglie hanya terkesan dengan penalaran matematikanya tetapi tidak mempercayai segi fisikanya. Promotornya, Paul Langevin (1872-1946), kemudian mengirimkan satu kopi kepada Einstein di Berlin, yang ternyata memberi rekasi mendukung. Ia memandangnya lebih daripada permainan matematika dengan menekankan bahwa gelombang partikel haruslah nyata. Berita ini kemudian ia teruskan kepada Max Born (1882-1970), fisikawan teori Jerman, di Gottingen. Born kemudian menanyakan kemungkinan eksperimentalnya kepada James Franck (18821964), rekan sekerjanya, yang memberi tanggapan mendukung dengan menunjuk pada tekateki hasil percobaan Clinton J. Davisson (1881-1958) dan asistennya Charles H. Kunsman dari Amerika Serikat pada 1922 dan 1923. Keduanya mengamati bahwa permukaan logam yang ditembaki dengan berkas elektron selain memancarkan kembali elektron-elektron dengan tenaga yang sangat rendah, ternyata ada pula yang memiliki tenaga sama dengan elektron semula. Teka-teki ini kemudian terjelaskan oleh Walter Elsaser, mahasiswa Born, pada tahun 1925 dalam sebuah makalah ringkas dengan menggunakan gagasan gelombang de Broglie. Namun sayang, para fisikawan eksperimen tidak terkesan dengan tafsir ulang ini terhadap data percobaan mereka - apalagi oleh seorang mahasiswa berusia 21 tahun yang sama sekali belum dikenal. Dukungan dan hadiah Nobel Pada tahun 1926 barulah nampak suatu terang! Erwin Schrodinger (1887-1961), fisikawan teori Austria, merumuskan suatu persamaan matematika yang mengendalikan kelakuan rambatan gelombang partikel dalam berbagai sistem fisika. Ini sama halnya dengan persamaan gerak Newton dalam mekanika Newton (klasik) yang mengendalikan kelakuan gerak partikel.

Karya Schrodinger ini melahirkan mekanika baru yang dikenal sebagai mekanika gelombang atau lazimnya disebut mekanika kuantum. Penerapannya pada struktur atom berhasil menjelaskan berbagai data pengamatan dengan begitu mengesankan, tanpa dipaksa, sehingga menyentakkan para fisikawan untuk menerima gagasan de Broglie. Dukungan berikutnya datang dari Amerika Serikat, oleh Clinton J. Davisson dan Lester H. Germer (1896 - ?.), yang menerbitkan hasil percobaan mereka pada 1927, bahwa elektron memang memperlihatkan perilaku gelombang. Bukti yang sama tetapi dengan metode percobaan yang berbeda juga dilaporkan oleh George P. Thomson (1892-1975) dari Inggris pada waktu itu. Dukungan bukti-bukti percobaan ini kemudian mengukuhkan penerimaan gelombang partikel yang diikuti dengan dianugerahkannya hadiah Nobel Fisika (tunggal) 1929 bagi Louis de Broglie. Suatu penghargaan keilmuan bergengsi yang patut bagi karya ilmiahnya yang begitu revolusioner. Duc Prinz Louis de Broglie Louis Victor Pierre Raymon de Broglie lahir pada 15 Agustus 1892 di Dieppe, Perancis. Keturunan de Broglie, yang berasal dari Piedmont, Italia barat laut cukup dikenal dalam sejarah Perancis karena mereka telah melayani raja-raja Perancis baik dalam perang dan jabatan diplomatik selama beratus tahun. Pada 1740, Raja Louis XI mengangkat salah satu anggota keluarga de Broglie, Francois Marie (1671-1745) sebagai Duc (seperti Duke di Inggris), suatu gelar keturunan yang hanya disandang oleh anggota keluarga tertua. Putra Duc pertama ini ternyata membantu Austria dalam Perang Tujuh Tahun (1756-1763). Karena itu, Kaisar Perancis I dari Austria menganugerahkan gelar Prinz yang berhak disandang seluruh anggota keluarga de Broglie. Dengan meninggalnya saudara tertua Louis, Maurice, juga fisikawan (eksperimen), pada 1960, maka Louis serempak menjadi Duc Perancis (ke-7) dan Prinz Austria. Louis mulanya belajar pada Lycee Janson de Sailly di Paris dan memperoleh gelar dalam sejarah pada 1909. Ia menjadi tertarik pada ilmu pengetahuan alam karena katanya, "terpengaruh oleh filsafat dan buku-buku Henry Poincare (1854-1912)", matematikawan besar Perancis. Pada 1910, Louis memasuki Universitas Paris untuk menyalurkan minatnya dalam ilmu pengetahuan. Tahun 1913 ia peroleh licence dalam ilmu pengetahuan dari Faculte des Sciences. Studinya kemudian terputus karena berkecamuknya Perang Dunia I. Barulah pada usia 32, Louis meraih gelar doktornya dalam fisika teori dengan tesis tentang gelombang partikel di atas. Ia kemudian memulai karier mengajarnya di Universitas Paris dan Institut Henry Poincare pada 1928. Atom untuk perdamaian Pada 1945, Louis dan kakaknya Maurice diangkat sebagai anggota dewan Komisi Tinggi Tenaga Atom Perancis. Mereka menaruh perhatian besar pada pengembangan tenaga atom untuk tujuan damai dan mempererat pertalian antara ilmu dan industri.

Hingga akhir hidupnya, Louis de Broglie menjabat sebagai sekretaris tetap pada Akademi Ilmu Pengetahuan Perancis. Dalam jabatannya ini ia tetap mendesak badan tersebut mempertimbangkan secara mendalam berbagai akibat berbahaya dari ledakan bom hidrogen (termonuklir). Perhatiannya yang begitu besar terhadap ilmu pengetahuan dan perdamaian membuat ia patut dikenang oleh setiap pecinta ilmu dan perdamaian! Sumber : Kompas (8 Juli 1987)

Sejarah Fisika Modern SEJARAH FISIKA MODERN BAB I PENDAHULUAN A. Latar Belakang Para fisikawan umumnya percaya bahwa cepat atau lambat mereka akan berhasil membangun sebuah pemahaman yang menyatukan semua cabang fisika yang ada. Menurut pandangan ini, pada akhirnya kita akan dapat menciptakan sebuah teori yang mampu menjelaskan segala sesuatu dengan sangat tuntas hingga tidak ada lagi yang tidak dapat dijelaskan. Tentu saja hal ini tidak berarti bahwa penjelasan tersebut dapat merefleksikan bagaimana segala sesuatu itu sesunggunya. Meskipun mekanika klasik hampir cocok dengan teori klasik lainnya seperti elektrodinamika dan termodinamika klasik, ada beberapa ketidaksamaan ditemukan di akhir abad 19 yang hanya bisa diselesaikan dengan fisika modern. Khususnya, elektrodinamika klasik tanpa relativitas memperkirakan bahwa kecepatan cahaya adalah relatif konstan dengan Luminiferous aether, perkiraan yang sulit diselesaikan dengan mekanika klasik dan yang menuju kepada pengembangan relativitas khusus. Ketika digabungkan dengan termodinamika klasik, mekanika klasik menuju ke

paradoks Gibbs yang menjelaskan entropi bukan kuantitas yang jelas dan ke penghancuran ultraviolet yang memperkirakan benda hitam mengeluarkan energi yang sangat besar. Usaha untuk menyelesaikan permasalahan ini menuju ke pengembangan mekanika kuantum. B. Rumusan Masalah Mengacu pada latar belakang di atas, maka rumusan masalah dapat dirumuskan sebagai berikut : 1. Bagaimana munculnya fisika modern? 2. Siapakah tokoh-tokohnya dan teorinya? 3. Bagaimanakah dampaknya?

BAB II FISIKA MODERN A. Munculnya Fisika Modern Kemajuan teori kinetik tidak memuaskan bagi kebanyakan para ahli fisika, karena model atom seperti bola kecil itu dianggap masih belum cukup kelihatannya menentang anggapan mengenai struktur dibagian dalam atom tersebut. Kenyataannya memang demikian, beberapa ilmuwan menolak untuk mengakui adanya, sebab atom berarti tidak dapat dibagi-bagi lagi dan tidak mungkin dibentuk atau tersusun dari partikel lain. Pendirian begini tidak dapat dirubah lagi dan telah cukup memuaskan pada periode ini. Mekanika, bunyi, panas, dan mekanika statistika, elektromagnetik, dan optik semuanya telah mendapat perumusan yang baik dan akibat-akibatnya telah dikuatkan dengan bermacam-macam cara. Beberapa ahli memperlihatkan bahwa fisika telah selesai sama sekali, hanya tinggal cara memberi pengukuran yang lebih teliti dengan bermacam-macam konstanta fisika. Akan tetapi kepuasan ini belum waktunya, karena praktis tiap-tiap cabang ilmu fisika itu diperlihatkan dalam abad ke-20 yang memerlukan peninjauan fundamental kembali. Pembatasan-pembatasan yang diberikan ternyata telah membukakan jalan kepada seseorang untuk memperoleh fenomena-fenomena dalam skala atom yang memberikan indikasi bahwa atom itu lebih kompleks daripada yang dipikirkan selama abad ke-19. misalnya spektrum atom menunjukkan kebingungan yang kompleks. Garis-garis dalam spektrum itu telah dapat diukur dengan teliti. Seperti pada atom hidrogen dan logam-logam alkali, Balmer dan Rydberg telah dapat menentukan frekuensi-frekuensi dengan hukum empirisnya yang lebih teliti. Tidak seorangpun dalam tahun 1900-an mempunyai ide, mengapa atom-atom itu mempunyai spektrum semacam itu, meskipun beberapa ahli fisika mencoba tanpa berhasil untuk menerangkannya dengan model klasik. Beberapa observasi selama abad ke-19 menyatakan bahwa atom itu mempunyai struktur dalam yang bersifat listrik. Percobaan Michelson-Morley, salah satu percobaan paling penting dan masyhur dalam sejarah fisika, dilakukan pada tahun 1887 oleh Albert Michelson dan Edward Morley di tempat yang sekarang menjadi kampus Case Western Reserve University. Percobaan ini dianggap sebagai petunjuk pertama terkuat untuk menyangkal keberadaan eter sebagai medium gelombang cahaya. Percobaan ini juga telah disebut sebagai titik tolak untuk aspek teoretis revolusi ilmiah kedua. Albert Michelson dianugerahi hadiah Nobel fisika tahun 1907 terutama untuk melaksanakan percobaan ini.

Dalam percobaan ini Michelson dan Morley berusaha mengukur kecepatan planet Bumi terhadap eter, yang pada waktu itu dianggap sebagai medium perambatan gelombang cahaya. Analisis terhadap hasil percobaan menunjukkan kegagalan pengamatan pergerakan bumi terhadap eter. Ekperimen Michelson-Morley yang sangat peka tidak mendapatkan gerak bumi terhadap eter. Ini berarti tidak mungkin ada eter dan tidak ada pengertian gerak absolut. Setiap gerak adalah relatif terhadap kerangka acuan khusus yang bukan merupakan kerangka acuan universal. Dalam eksperimen yang pada hakikatnya membandingkan kelajuan cahaya sejajar dengan dan tegak lurus pada gerak bumi mengelilingi matahari, juga eksperimen ini memperlihatkan bahwa kelajuan cahaya sama bagi setiap pengamat, suatu hal yang tidak benar bagi gelombang memerlukan medium material untuk merambat. Eksperimen ini telah meletakkan dasar bagi teori relativitas khusus Einstein yang dikemukakan pada tahun 1905, suatu teori yang sukar diterima pada waktu itu, bahkan Michelson sendiri enggan untuk menerimanya. Percobaan Millikan atau dikenal pula sebagai Percobaan oil-drop (1909) saat itu dirancang untuk mengukur muatan listrik elektron. Rober Millikan melakukan percobaan tersebut dengan menyimbangkan gaya-gaya antara gaya gravitasi dan gaya listrik pada suatu tetes kecil minyak yang berada di antara dua buah pelat elektroda. Dengan mengetahui besarnya medan listrik, muatan pada tetes minyak yang dijatuhkan (droplet) dapat ditentukan. Dengan mengulangi eksperimen ini sampai beberapa kali, ia menemukan bahwa nilai-nilai yang terukur selalu kelipatan dari suatu bilangan yang sama. Ia lalu menginterpretasikan bahwa bilangan ini adalah muatan dari 1 elektron = 1.602 1019 coulomb (satuan SI untuk muatan listrik). Tahun 1923, Millikan mendapat sebagian hadiah Nobel bidang fisika akibat percobaannya ini. Eksperimen ini sejak saat itu sering kali dicoba dari generasi ke generasi dari siswa-siswa bidang fisika, walaupun demikian agak sulit dan mahal untuk melakukan eksperimen ini dengan tepat. Istilah fisika modern diperkenalkan karena banyaknya fenomena-fenomena mikroskopis dan hukum-hukum baru yang ditemukan sejak tahun 1890. Fenomena mikroskopis yaitu fenomena-fenomena yang tidak dapat dilihat secara langsung, seperti elektron, proton, neutron, atom, dan sebagainya. Ahli fisika telah mencoba memecahkan persoalan tentang struktur atom, elektron, radiasi dengan fisika klasik. Namun, tidak berhasil menerangkan fenomena-fenomena tersebut. Karena itu para ahli fisika mencari ilmu dan model-model lain yang baru. Dengan didapatnya teoriteori baru yang daat menerangkan fenomena-fenomena mikroskopis itu, maka fisika telah memperluas ilmu ke arah yang lebih jauh lagi. Meskipun mekanika klasik hampir cocok dengan teori klasik lainnya seperti elektrodinamika dan termodinamika klasik, ada beberapa ketidaksamaan ditemukan di akhir abad 19 yang hanya bisa diselesaikan dengan fisika modern. Khususnya, elektrodinamika klasik tanpa relativitas memperkirakan bahwa kecepatan cahaya adalah relatif konstan dengan Luminiferous aether, perkiraan yang sulit diselesaikan dengan mekanik klasik dan yang menuju kepada pengembangan relativitas khusus. Ketika digabungkan dengan termodinamika klasik, mekanika klasik menuju ke paradoks Gibbs yang menjelaskan entropi bukan kuantitas yang jelas dan ke penghancuran ultraviolet yang memperkirakan benda hitam mengeluarkan energi yang sangat besar. Usaha untuk menyelesaikan permasalahan ini menuju ke pengembangan mekanika kuantum. Seperti kata Newton dalam Makna Fisika Baru dalam Kehidupan: ...menciptakan teori baru bukan berarti merobohkan gudang tua untuk dibangun gedung pencakar langit diatasnya. Ini lebih seperti mendaki gunung, makin ke atas

makin luas pandangannya, makin menemukan hubungan antara titik awal pendakian dengan hal-hal disekelilingnya yang ternyata sangat kaya raya dan tak terduga sebelumnya. Namun titik awal tersebut tetap ada dan dapat dilihat, meskipun tampak lebih kecil dari pemandangan luas yang kita peroleh dari hasil perjuangan mengatasi rintangan selama mendaki ke atas. Pada tahun 1900, Max Planck memperkenalkan ide bahwa energi dapat dibagi-bagi menjadi beberapa paket atau kuanta. Ide ini secara khusus digunakan untuk menjelaskan sebaran intensitas radiasi yang dipancarkan oleh benda hitam. Pada tahun 1905, Albert Einstein menjelaskan efek fotoelektrik dengan menyimpulkan bahwa energi cahaya datang dalam bentuk kuanta yang disebut foton. Pada tahun 1913, Niels Bohr menjelaskan garis spektrum dari atom hidrogen, lagi dengan menggunakan kuantisasi. Pada tahun 1924, Louis de Broglie memberikan teorinya tentang gelombang benda. Teori-teori di atas, meskipun sukses, tetapi sangat fenomenologikal: tidak ada penjelasan jelas untuk kuantisasi. Mereka dikenal sebagai teori kuantum lama. Frase "Fisika kuantum" pertama kali digunakan oleh Johnston dalam tulisannya Planck's Universe in Light of Modern Physics (Alam Planck dalam cahaya Fisika Modern). Mekanika kuantum modern lahir pada tahun 1925, ketika Werner Karl Heisenberg mengembangkan mekanika matriks dan Erwin Schrdinger menemukan mekanika gelombang dan persamaan Schrdinger. Schrdinger beberapa kali menunjukkan bahwa kedua pendekatan tersebut sama. Heisenberg merumuskan prinsip ketidakpastiannya pada tahun 1927, dan interpretasi Kopenhagen terbentuk dalam waktu yang hampir bersamaan. Pada 1927, Paul Dirac menggabungkan mekanika kuantum dengan relativitas khusus. Dia juga membuka penggunaan teori operator, termasuk notasi bra-ket yang berpengaruh. Pada tahun 1932, Neumann Janos merumuskan dasar matematika yang kuat untuk mekanika kuantum sebagai teori operator. Pada 1927, percobaan untuk menggunakan mekanika kuantum ke dalam bidang di luar partikel satuan, yang menghasilkan teori medan kuantum. Pekerja awal dalam bidang ini termasuk Dirac, Wolfgang Pauli, Victor Weisskopf dan Pascaul Jordan. Bidang riset area ini dikembangkan dalam formulasi elektrodinamika kuantum oleh Richard Feynman, Freeman Dyson, Julian Schwinger, dan Tomonaga Shin'ichir pada tahun 1940-an. Elektrodinamika kuantum adalah teori kuantum elektron, positron, dan Medan elektromagnetik, dan berlaku sebagai contoh untuk teori kuantum berikutnya. Interpretasi banyak dunia diformulasikan oleh Hugh Everett pada tahun 1956. Teori Kromodinamika kuantum diformulasikan pada awal 1960-an. Teori yang kita kenal sekarang ini diformulasikan oleh Polizter, Gross and Wilzcek pada tahun 1975. Pengembangan awal oleh Schwinger, Peter Higgs, Goldstone dan lain-lain. Sheldon Lee Glashow, Steven Weinberg dan Abdus Salam menunjukan secara independen bagaimana gaya nuklir lemah dan elektrodinamika kuantum dapat digabungkan menjadi satu gaya lemah elektro. Mekanika kuantum sangat berguna untuk menjelaskan apa yang terjadi di level mikroskopik, misalnya elektron di dalam atom. Atom biasanya digambarkan sebagai sebuah sistem di mana elektron (yang bermuatan listrik negatif) beredar seputar nukleus (yang bermuatan listrik positif). Menurut mekanika kuantum, ketika sebuah elektron berpindah dari energi level yang lebih tinggi (misalnya n=2) ke energi level yang lebih rendah (misalnya n=1), energi berupa sebuah cahaya partikel, foton, dilepaskan: E = hv di mana

E adalah energi (J), h adalah tetapan Planck, h = 6,63 x 10-34 (Js) v adalah frekuensi dari cahaya (Hz). Dalam spektrometer masa, telah dibuktikan bahwa garis-garis spektrum dari atom yang di-ionisasi tidak kontinu; hanya pada frekuensi/panjang gelombang tertentu garisgaris spektrum dapat dilihat. Ini adalah salah satu bukti dari teori mekanika kuantum. B. Tokoh dan Teori Fisika Modern Beberapa tokoh yang kami ungkapkan disini adalah tokoh yang banyak pengaruhnya terhadap fisika modern, diantaranya: 1. Albert Einstein (1879-1955) Einstein, lahir di Ulm, Jerman. Ia sangat tidak senang pada sekolah-sekolah di Jerman yang disiplin secara kaku pada waktu itu, karena itu pada usia 16 tahun ia pergi ke negara Swiss untuk menyelesaikan pelajarannya, kemudian ia memperoleh pekerjaan yaitu sebagai orang yang memeriksa pemohon paten (hak paten) pada Swiss Patent Office (Kantor Paten Swiss) di Berne. Kemudian, dalam tahun 1905, gagasannya yang sudah ada dalam pikirannya bertahun-tahun ketika ia harus memusatkan perhatiannya untuk pekerjaan lain berbua menjadi tiga makalah pendek. Gagasan ini telah mengubah pikiran bukan hanya dalam bidang fisika melainkan juga dalam peradaban modern ini. Makalah yang pertama, mengungkapkan sifat cahaya, ia menyatakan bahwa cahaya mempunyai sifat dual, yaitu partikel dan gelombang. Makalah yang kedua, ialah mengenai gerak Brownian, gerak zigzag dari sebintik bahan yang terapung dalam fluida, misalnya serbuk sari dalam air. Einstein mendapatkan rumus yang mengaitkan gerak brownian dengan gerak partikel yang ditumbuk oleh molekul fluida dimana partikel itu terapung. Walaupun teori molekular telah dikemukakan bertahun-tahun sebelumnya, ini merupakan eksperimen yang meyakinkan yang memperlihatkan kaitan pasti yang sudah lama dinantikan orang. Makalah yang ketiga, memperkenalkan teori relativitas. Walaupun sebagian besar dunia fisika pada mulanya tidak begitu peduli atau skeptis, tetapi segera kesimpulan yang ditarik oleh Einstein (bahkan yang tidak diharapkanpun) terbukti dan perkembangan yang sekarang dikenal sebagai fisika modern mulai tumbuh. setelah ia mulai mendapatkan keudukan pada Universitas di negara Swiss dan cekoslowakia, dalam tahun 1913 ia memperoleh pekerjaan di Kaiser Wilhelm Institute di Berlin, sehingga ia dapat melakukan penelitian dengan bebas tanpa kekhawatiran kekurangan uang dan beban kewajiban rutin. Pada waktu itu minat Einstein ialah terutama dalam bidang gravitasi, dan mulai dari hal yang ditinggalkan Newton lebih dari dua abad yang lalu. Teori Relativitas Umum Einstein yang diterbitkan dalam tahun 1915, mengaitkan gravitasi dengan struktur ruang dan waktu. Dalam teori ini, gaya gravitasi dapat dipikirkan sebagai ruang-waktu yang melengkung di sekitar benda sehingga massa yang berdekatan cenderung untuk bergerak ke arahnya, sama seperti kelereng yang menggelinding ke alas lubang yang berbentuk seperti mangkuk. dari teori teori relativitas umum orang dapat membuat ramalan teoretis, misalnya cahaya harus dipengaruhi oleh gaya gravitasi, dan ternyata semuanya terbukti secara eksperimental. Penemuan berikutnya yang menyatakan bahwa semesta ini memuai ternyata cocok dengan teori. Pada tahun 1917, Einstein mengemukakan penurunan baru mengenai rumus radiasi benda hitam Planck dengan memperkenalkan gagasan radiasi yang terstimulasi, suatu gagasan yang buahnya muncul 40 tahun kemudian sebagai penemuan laser. Perkembangan mekanika kuantum dalam tahun 1920 mengganggu Einstein yang tidak menerima pandangan probabilistik sebagai pandangan

deterministik walaupun dalam skala atomik. "Tuhan tidak main dadu dengan dunia ini," katanya. Tetapi sekali ini intuisi fisis Einstein tampaknya mempunyai arah yang salah. Einstein Menjadi orang yang terkenal di dunia, tetapi kemasyurannya tidak membawa keamanan ketika Hitler dan orang Nazi berkuasa di Jerman pada awal tahun 1930. Ia meninggalkan Jerman dalam tahun 1933 dan memakai sisa hidupnya untuk bekerja di Institute for Advanced Study di Princeton, New Jersey, sehingga ia lolos dari keadaan yang dialami oleh jutaan orang Yahudi eropa yang dibanatai oleh Jerman. Akhir hidupnya dipakai untuk mencari teori medan terpadu yang menyatukan medan gravitasi dan elektromagnetisme dalam suatu gambaran, namun usahanya ini tidak berhasil. masalah seperti ini memang pantas ditangani oleh orang berbakat ini, tetapi masalah ini belum terpecahkan sampai saat ini. Suatu pemikiran yang belum tepecahkan sampai sekarang yang diwariskan oleh Albert Einstein sampai ajalnya datang menjemput, yaitu menemukan teori medan terpadu yang menyatukan medan gravitasi dan elektromagnetisme dalam suatu rumus atau hukum. 2. Max Planck (1858 - 1947) Max Planck dilahirkan di Kiel dan belajar di Munich dan Berlin. Seperti banyak ahli fisika, ia seorang pemain musik yang baik, selain itu ia juga senang mendaki gunung. dalam tahun 1900, setelah 6 tahun ia bekerja di Universitas Berlin, Planck mendapatkan bahwa kunci pemahaman radiasi benda hitam ialah anggapan bahwa pemancaran dan penyerapan radiasi terjadi dalam kuantum energi hv. Penemuan yang menghasilkan hadiah Nobel dalam tahun 1918 ini, sekarang dianggap sebagai tonggak dari fisika modern. Selama bertahun-tahun Max Planck sendiri menyangsikan kenyataan fisis dari kuantum energi ini. Walaupun selama Hitler berkuasa Max Planck tetap ada di Jerman, ia memperotes perlakuan Nazi pada ilmuwan Yahudi dan sebagai akibatnya ia harus melepaskan kedudukannya sebagai Presiden Institute Kaiser Wilhelm. Setelah perang dunia kedua, Institute itu diberi nama Planck dan ia kembali menjabat kedudukan presiden sampai akhir hayatnya. 3. Arthur Holly Compton (1892 - 1962) Ia dilahirkan di Ohio dan mengalami pendidikan di Wooster College dan Princeton. Ketika ia bekerja di Washington University di St. Louis ia menemukan bahwa panjang gelombng sinar-x bertambah jika mengalami hamburan, dan pada tahun 1923 ia dapat menerangkan hal itu berdasarkan kuantum cahaya. Pekerjaan ini telah meyakinkan orang akan kebenaran realitas foton, sebenarnya Compton sendirilah yang mengajukan kata foton. Setelah ia menerima hadiah Nobel pada tahun 1927, Compton bekerja di University of Chicago untuk mempelajari sinar kosmik dan menolong menjelaskan bahwa sinar ini sebenarnya terdiri dari partikel yang bergerak cepat (sekarang ternyata bahwa partikel itu adalah inti atom, dan sebagian besar adalah proton) yang berputar dalam ruang dan bukan sinar gamma. Ia membuktikan hal ini dengan memperlihatkan bahwa intensitas sinar kosmik berubah terhadap lintang, dan hal ini hanya dapat diterima jika partikel itu adalah ion yang lintasannya dipengaruhi oleh medan magnetik bumi. Selama Perang Dunia II, Compton merupakan salah satu tokoh pimpinan yang mengembangkan bom atom. 4. Louis de Broglie (1892 - 1987) Louis-Victor-Pierre-Raymond, duc de Broglie, banyak dikenal sebagai Louis de Broglie (15 Agustus 189219 Maret 1987), ialah fisikawan Perancis dan pemenang hadiah Nobel. Berasal dari keluarga Prancis yang dikenal memiliki diplomasi dan kemiliteran yang baik. Pada mulanya ia adalah siswa sejarah, namun akhirnya ia mengikuti jejak kakaknya Maurice de Broglie untuk membina karir dalam fisika. Pada 1924, tesis doktoralnya mengemukakan usulan bahwa benda yang bergerak

memiliki sifat gelombang yang melengkapi sifat partikelnya. 2 tahun kemudian Erwin Schrodinger menggunakan konsep gelombang de Broglie untuk mengembangkan teori umum yang dipakai olehnya bersama dengan ilmuwan lain untuk menjelaskan berbagai gejala atomik. Keberadaan gelombang de Broglie dibuktikan dalam eksperimen difraksi berkas elektron pada 1927 dan pada 1929 ia menerima Hadiah Nobel Fisika. 5. Max Born (1882 - 1970) Max Born dilahirkan pada 11 Desember 1882, di Breslau, Jerman (kini Wroclaw, Polandia). Born belajar fisika di Universitas Breslau, Heidelberg, dan Zrich. Pada 1909, ia ditunjuk sebagai dosen di Georg-August-Universitaet Goettingen, di mana ia bekerja sampai 1912, saat ia pindah ke Universitas Chicago. Pada 1915, ia kembali ke Jerman namun harus masuk Militer Jerman. Pada 1919, ia menjadi guru besar di Universitas Frankfurt-am-Main, dan kemudian profesor di Gttingen pada 1921. Selama masa inilah Born merumukan penafsiran probabilitas fungsi kepadatan dalam persamaan mekanika kuantum Schroedinger. Gagasannya menggantikan teori kuantum yang asli; kini, persamaan matematika Born dimanfaatkan. Pada 1933, Born meninggalkan Jerman untuk menghindari meningkatnya antiSemitisme dan menerima posisi dosen di University of Cambridge. Dari 1936 sampai 1953, ia adalah guru besar Filsafat Alam di Universitas Edinburgh di Skotlandia. Selama masa ini, kerja Born berfokus pada elektrodinamika nonlinear. Pada 1953, Born pensiun dan kembali ke Jerman di Bad Pyrmont, dekat Gottingen. Ia menjadi warganegara Inggris dan anggota Royal Society di London pada 1939. Pada 1954, Born menerima Hadiah Nobel Fisika untuk karyanya pada fungsi kepadatan probabilitas dan studinya pada fungsi gelombang. Slain memenangkan Penghargaan Nobel, Born dianugerahi Stokes Medal dari Cambridge University dan Hughes Medal (1950). Ia menerbitkan sejumlah karya termasuk, The Restless Universe, Einsteins Theory of Relativity (1924), dan Natural Philosophy of Cause and Chance. Born meninggal di Gttingen, Jerman pada 5 Januari 1970. 6. Werner Heisenberg (1901 - 1976) Werner Karl Heisenberg (5 Desember 1901 - 1 Februari 1976) adalah seorang ahli teori sub-atom dari Jerman, pemenang Penghargaan Nobel dalam Fisika 1932. Werner Heisenberg dilahirkan pada tanggal 5 Desember 1901 di Wrzburg, Jerman. Werner ini jagoan bahasa Yunani dan Latin karena ayahnya, August, bekerja sebagai guru bahasa klasik tersebut. Waktu pertama kali ia masuk sekolah, Werner masih malumalu dan sangat sensitif, tetapi tidak lama ia mulai percaya diri. Malah guru-gurunya semua mengakui bakat yang dimilikinya di hampir semua mata pelajaran terutama bahasa dan matematika. Heisenberg kecil memang suka sekali matematika. Ini disebabkan guru matematikanya, Christoph Wolff, selalu menantangnya untuk mengerjakan soal-soal matematika dan fisika yang tidak biasa. Dalam waktu singkat Heisenberg sudah lebih jago dibanding gurunya itu. Apalagi di rumahnya ia selalu bersaing dengan kakaknya, Erwin, yang jago kimia (Erwin Heisenberg belakangan menjadi ahli kimia). Selama masa Perang Dunia I seluruh Bavaria, Jerman, mengalami kesulitan pangan. Pernah Heisenberg jatuh pingsan di jalan sewaktu sedang bersepeda karena ia begitu kelaparan. Ayahnya dan guru-gurunya sering pergi ke garis depan untuk membantu pasukan perang. Heisenberg terpaksa belajar sendiri materi matematika dan fisika (ia melahap habis teori relativitas Einstein tanpa bantuan gurunya). Hasilnya, ia justru sudah menguasai bahan yang seharusnya belum diajarkan di sekolah menengah atas. Heisenberg muda sangat membenci peperangan dan sering melarikan diri dari suasana

kekerasan di Jerman saat itu. Ia bersama teman-temannya sering naik gunung, demi menyelamatkan rasa cintanya terhadap tanah airnya melalui alam. Dia bahkan mengetuai kelompok anak-anak pecinta alam yang selalu menghabiskan waktunya dengan cara hiking, camping, main ski, memanjat gunung, jalan-jalan di pedesaan, dan semua kegiatan alam lainnya. Kelompok ini merupakan kelompok yang anti rokok dan anti minum minuman keras. Setiap minggu kelompok anak-anak muda ini berkumpul untuk menghidupkan kembali musik dan seni puisi Jerman. Heisenberg ini ahli puisi Roma. Dia juga jago main piano klasik dan sudah sering ikut konser sejak masih berusia 12 tahun. Cuma ada satu hal lain yang bisa mengalihkan perhatiannya dari musik, puisi, dan alam bebas. Matematika! Saking cintanya dengan matematika, Heisenberg berniat mengambil jurusan matematika murni di University of Munich pada tahun 1920. Tapi wawancaranya dengan Ferdinand von Lindeman, profesor matematika di sana, tidak terlalu sukses. Jadi Heisenberg menemui profesor lain, Arnold Sommerfeld, seorang begawan fisika teori. Ternyata Sommerfeld bisa melihat bakat terpendam anak muda yang sangat gemar berpetualang di alam bebas ini. Jadilah Heisenberg melenceng dari minatnya semula dan malah masuk jurusan fisika. Tapi sebelum hari pertama ia mulai kuliah, Heisenberg menyempatkan diri untuk pergi hiking dengan teman-temannya dan sempat terkena typhoid yang hampir saja merenggut nyawanya. Secara ajaib ia bisa sembuh tepat pada waktu ia harus mulai kuliah walaupun saat itu ia tidak mendapatkan sumber pangan yang cukup gizi. Di awal masa kuliahnya Heisenberg masih ragu-ragu dengan pilihannya itu. Ia justru lebih banyak mengambil kuliah matematika dibanding fisika karena takut tidak cocok dengan pilihannya itu. Kalau ia tetap mengikuti kuliah matematika, ia kan masih tetap bisa mengikuti jika nantinya ternyata benar tidak cocok di fisika dan ingin pindah lagi ke matematika. Tapi ternyata fisika benarbenar sudah mencuri hatinya. Mulai semester keduanya di jurusan fisika, ia sudah betah mengikuti semua kuliah Sommerfeld. Selama kuliah di University of Munich, perhatian Heisenberg terpecah antara fisika teori dan petualangannya di alam bebas. Dia ini benar-benar pecinta alam. Sering kali ia camping di gunung dan hiking ke stasiun kereta terdekat di pagi harinya supaya bisa kembali di Munich tepat waktu untuk mengikuti kuliah fisika teori. Untung saja kuliahnya tidak terbengkalai. Tetapi ada satu kelemahannya yang pada akhirnya hampir membuatnya tidak lulus. Ia sama sekali tidak mengerti eksperimen di laboratorium. Ia memang jagoan di fisika teori, tetapi ketika ditanya berbagai hal tentang fisika eksperimen, ia benar-benar tidak tahu. Profesor Wilhem Wien memberinya nilai F pada ujian akhir untuk mendapatkan gelar doktor. Sommerfeld kembali menjadi penyelamat dengan memberinya nilai A untuk kejeniusannya di bidang fisika teori. Jadi Heisenberg pun akhirnya mendapatkan gelar doktornya walaupun dengan nilai C (rata-rata dari A dan F). Sommerfeld tidak salah sewaktu memberinya nilai A untuk fisika teori. Terbukti Heisenberg sangat jagoan mengutak-utik teori-teori fisika. Ia pun berhasil menjadi profesor termuda Jerman di Leipzig saat masih berusia 25 tahun. Hasil utak-utiknya melahirkan teori mekanika kuantum yang memberinya sebuah Nobel Fisika di tahun 1932. Pada tahun 1937 Heisenberg kembali tampil dalam konser piano klasik. Konser ini menjadi yang paling tidak terlupakan selama hidupnya karena saat itulah ia bertemu Elisabeth Schumacher, putri seorang profesor ekonomi yang terkenal di Berlin, yang dinikahinya tiga bulan kemudian. Keluarga Heisenberg kemudian dikaruniai tujuh orang anak, yang pertama adalah sepasang kembar. Beberapa bulan setelah pernikahannya, keluarga muda ini pindah kembali ke Munich untuk memenuhi keinginan Sommerfeld yang saat itu sudah berusia 66 tahun dan harus pensiun. Sommerfeld ingin supaya Heisenberg menggantikan posisinya sebagai profesor fisika

teori di University of Munich. Sewaktu pecah Perang Dunia II, banyak ilmuwan Jerman yang ramai-ramai pergi dari Jerman karena ingin menghindari Nazi dan Hitler. Heisenberg membuat keputusan yang sangat mengejutkan rekan-rekan fisikawan saat itu. Ia bertekad untuk menetap di Jerman. Keterikatannya dengan alam Jerman telah membuatnya begitu mencintai tanah airnya itu. Ternyata keputusannya ini membuatnya terpaksa bekerja untuk pemerintah Jerman dalam usaha membuat bom atom. Entah kenapa, fisikawan jenius ini tidak pernah berhasil membuat bom atom tersebut dan malah dikalahkan oleh para fisikawan di Amerika. Padahal timnya dibantu juga oleh salah satu penemu reaksi fisi nuklir, Otto Hahn. Ada gosip yang mengatakan bahwa Heisenberg sengaja bergabung dengan tim peneliti Jerman itu supaya bisa melakukan sabotase agar Nazi tidak bisa memenangkan perang. Heisenberg bahkan sempat diciduk ke kamp konsentrasi Nazi karena dikira berkhianat. Setelah lepas dari kamp konsentrasi Heisenberg kembali menekuni fisika teori dan menghasilkan karya kontroversial yang membuatnya sangat terkenal: Prinsip Ketidakpastian Heisenberg atau Heisenbergs Uncertainty. Pendekatan tidak biasa yang dilakukannya membuat teorinya ini tidak begitu saja diterima oleh dunia fisika saat itu. Begitu banyak yang menentang teori ini, sampai-sampai Heisenberg sempat menangis karenanya. Keteguhannya berhasil membuat teorinya ini diterima, bahkan menjadi sangat populer. Ia juga banyak menerima penghargaan bergengsi selain Nobel. Pada tanggal 1 Februari 1976 Werner Heisenberg yang sakit kanker meninggal dunia di rumahnya di Munich. Pada tahun 1927, Heisenberg mengembangkan suatu teori yang ditentang Einstein habis-habisan yaitu teori ketidakpastian. Menurut teori ini makin akurat kita menentukan posisi suatu benda, makin tidak akurat momentumnya (atau kecepatannya) dan sebaliknya. Jadi kita tidak bisa menentukan letak benda secara akurat. Dengan kata lain benda mempunyai kemungkinan berada di mana saja. Einstein bilang teori ini tidak masuk akal. Ia menentang teori ini hingga akhir hayatnya. Mana mungkin kita bisa percaya pada teori yang mengatakan bahwa posisi bulan tidak menentu, ejek Einstein. Einstein lebih suka melihat bulan mengorbit secara teratur, I like to believe that the moon is still there even if we don't look at it." Einstein juga berargumen bahwa tidak mungkin Tuhan bermain dadu God doesnt play dice dalam mengatur alam semesta ini. Walau ditentang oleh fisikawan sekaliber Einstein, rupanya Heisenberg tidak kapok, ia maju terus mengembangkan teorinya. Usahanya ini tidak sia-sia, akhirnya teori Heisenberg ini menjadi salah satu fondasi dari mekanika kuantum. Kini mekanika kuantum menjadi primadonanya fisika. Oleh Feynman, Elektrodinamika kuantum (mekanika kuantum yang digabung dengan teori relativistik Einstein) dijuluki the jewel of physics. Berkat mekanika kuantum inilah orang dapat mengembangkan berbagai teknologi mutakhir yang ada sekarang ini, mulai dari TV, kulkas, mainan elektronika, laser, bom atom yang dahsyat, hingga pembuatan-pembuatan chip-chip komputer super cepat. 7. Niels Bohr (1885 - 1962) Niels Bohr (7 Oktober 188518 November 1962) adalah seorang ahli fisika dari Denmark dan pernah meraih hadiah Nobel Fisika pada tahun 1922. Pada tahun 1913 Bohr telah menerapkan konsep mekanika kuantum untuk model atom yang telah dikembangkan oleh Ernest Rutherford, yang menggambarkan bahwa atom tersusun dari inti atom (nukleus) yang dikelilingi oleh orbit elektron. Putranya, Aage Niels Bohr, juga penerima Hadiah Nobel. 8. Erwin Schrodinger (1887 -1961)

Erwin Rudolf Josef Alexander Schrodinger (1887-1961) ialah fisikawan Austria. Dilahirkan di Wina, Austria-Hongaria. Ibunya berasal dari Inggris dan ayahnya berasal dari Austria. Ia memperoleh gelar doktor di kota itu di bawah bimbingan mantan murid Ludwig Boltzmann. Selama PD I, ia menjadi perwira artileri. Setelah perang ia mengajar di Zurich, Swiss. Di sana, ia menangkap pengertian Louis Victor de Broglie yang menyatakan bahwa partikel yang bergerak memiliki sifat gelombang dan mengembangkan pengertian itu menjadi suatu teori yang terperinci dengan baik. Setelah ia menemukan persamaannya yang terkenal, ia dan ilmuwan lainnya memecahkan persamaan itu untuk berbagai masalah; di sini kuantisasi muncul secara alamiah, misalnya dalam masalah tali yang bergetar. Setahun sebelumnya Werner Karl Heisenberg telah mengemukakan formulasi mekanika kuantum, namun perumusannya agak sulit dipahami ilmuwan masa itu. Schrdinger memperlihatkan bahwa kedua formulasi itu setara secara matematis. Schrodinger menggantikan Max Planck di Berlin pada 1927, namun pada 1933, ketika Nazi berkuasa, ia meninggalkan Jerman. Dalam tahun itu ia menerima Hadiah Nobel Fisika bersama dengan Dirac. Pada 1939 sampai 1956 ia bekerja di Institute for Advanced Study di Dublin, lalu kembali ke Austria. 9. Richard P. Feynman (1918 - .....) Richard Philips Feynman biasa dipanggil dengan nama kecilnya, Dick. Ia dilahirkan Far Rockaway, tidak jauh dari kota New York, dan belajar di Massachussetts Institute of Technology dan Princeton. Si kecil Dick, yang masih berusia sebelas tahun, punya sebuah laboratorium sederhana di rumahnya. Ia senang sekali bermain-main dengan apa saja yang bisa ditemukannya: main lampu dan menciptakan sekring, membuat alarm antimaling di kamarnya, dan membuat sistem koil dengan pemantik api yang dilengkapi gas argon. Saat ia sedang bermain dengan koil itu dan menikmati percikan api yang tercipta (warnanya ungu lho!), tiba-tiba ada kertas yang terbakar terkena api itu. Kertas yang terbakar itu langsung dibuangnya ke tempat sampah, tapi tiba-tiba malah jadi makin menyala. Ternyata tempat sampah itu berisi kertas koran yang cepat terbakar. Anak bandel ini cepat-cepat menutup pintu kamarnya supaya Ibunya tidak mengetahui kecelakaan kecil yang sedang terjadi. Untung saja api itu akhirnya berhasil dipadamkan! Kamarnya sih jadi penuh asap gara-gara kejadian itu. Setelah ia memperoleh Ph.D. dalam tahun 1942 ia membantu mengembangkan bom atom di Los Alamos, New Mexico bersama dengan ahli fisika muda lainnya. Ketika perang berakhir, ia pergi ke Cornell dan dalam tahun 1951 pindah ke California Institute of Technology. Pada tahun 1940 Feynmenn memberikan sumbangan pengetahuan yang penting dalam elektrodinamika kuantum, teori kuantum relativistic yang menggambarkan interaksi antarpartikel bermuatan. Masalah penting dalam teori ini ialah kehadiran kuantitas tak berhingga dalam hasilnya, sehingga diperlukan prosedur renormalisasi yang menyingkirkannya dengan melakukan pengurangan dengan kuantitas tak terhingga lain. Walaupun langkah ini meragukan secara matematis dan banyak para pakar fisika tidak senang, teori akhirnya terbukti sangat seksama dalam ramalan teoritisnya. Feynmenn menerima hadiah Nobel pada tahun 1965 bersama 2 pioner lain dalam bidang elektrodinamika kuantum, yaitu Julian Schwinger, juga seorang ahli fisika Amerika. Dan Sin-Itiro Tomonaga, seorang pakar fisika Jepang. Feymenn banyak menyumbangkan gagasan utama pada fisika, baik dalam penelitian maupun pengajaran. Ia juga seorang yang berbakat dalam membuka lemari besi dan memainkan drum bongo. 10. Wolfgang Pauli (1900 - 1958) Ia dilahirkan di Wina. Pada umur 19 tahun ia telah membahas secara terinci relativitas

khusus dan umum yang menarik perhatian Einstein dan tetap merupakan karya standar dalam bidang itu selama bertahun-tahun. Pauli menerima gelar doctor dari universitas Munich pada tahun 1922 dan bekerja untuk jangka waktu pendek di Gotthingen, Copenhagen dan Hamburg sebelum ia menjadi guru besar fisika di institute teknologi di Zurich, Swiss pada tahun 1928. pada tahun 1925 ia mengajukan usul bahwa bilangan kuantum (ketika itu belum diketahui asal hukumnya) diperlukan untuk mengkarakterisasi masing-masing elektron atomic dan bahwa tidak ada dua elektron pada atom yang sama mempunyai seperangkat bilangan kuantum yang sama. Prinsip Eksklusi ini ternyata merupakan mata rantai untuk pemahaman susunan elektron dalam atom. Pada akhir 1925 Goudsmit dan Uhlenbeck, dua orang fisikawan Belanda memperlihatkan bahwa elektron memiliki momentum sudut intrinsic, sehingga elektron harus dibayangkan sebagai partikel yang berputar dan bilangan kuantum Pauli yang keempat menggambarkan arah perputaran (spin). Pada tahun 1931 Pauli memecahkan masalah kehilangan energi semu dalam peluruhan sinar Beta oleh inti dengan mengajukan usul yang menyatakan bahwa ada partikel tak bermassa yang meninggalkan inti bersama dengan elektron yang dipancarkan. Dua tahun kemudian Fermi mengembangkan teori peluruhan Beta dengan pertolongan partikel tersebut, yang dikenal sebagai neutrino (partikel netral yang kecil). Selama perang berlangsung Pauli berada di Amerika Serikat, dan menerima hadiah Nobel pada tahun 1945. 11. Paul A. M. Dirac (1902 - 1984) Ia dilahirkan di Bristol, Inggris, dan belajar teknik elektro di sana. Selanjutnya, ia berganti minat mempelajari matematika dan akhirnya fisika. Ia memperoleh gelar Ph.D. dari Cambridge pada tahun 1926. setelah ia membaca makalah Heisenberg yang pertama mengenai mekanika kuantum pada tahun 1925, Dirac segera merancang teori yang lebih umum dan pada tahun berikutnya ia merumuskan kaidah Eksklusi Pauli menurut prinsip mekanika kuantum. Ia mempelajari statistic partikel yang memenuhi prinsip Pauli, seperti elektron. Hal ini juga dipelajari secara tak bergantungan oleh Fermi pada waktu sebelumnya. Hasilnya disebut Fermi-Dirac untuk menghormati kedua peneliti itu. Pada tahun 1928 Dirac mempelajari gabungan teori relativitas khusus dengan teori kuantum sehingga menghasilkan teori elektron yang memungkinkan penjelasan spin dan momen magnetic elektron dan juga meramalkan keadaan elektron yang bermuatan positif atau positron. Partikel ini ditemukan oleh Carl Anderson dari Amerika Serikat pada tahun 1932. Dirac memperoleh hadiah Nobel fisika bersama dengan Schrodinger pada tahun 1933. Dirac tetap tinggal di Cambridge sampai tahun 1971 kemudian pindah ke Florida State University. 12. Enrico Fermi (1901 - 1954) Di dunia ini sangat sedikit orang yang jago fisika teori dan fisika eksperimen sekaligus. Diantara yang sedikit itu, yang sangat luar biasa adalah Enrico Fermi. Kemampuan dan kehebatannya tidak diragukan lagi, sehingga namanya diabadikan diberbagai hal seperti: nama sebuah laboratorium fisika terkenal di Chicago Amerika Serikat, Fermilab (Fermi National Accelerator Laboratory) yang telah mencetak banyak peraih Nobel fisika; nama unsur ke-100, Fermium; nama suatu institut yang melakukan riset dalam bidang fisika nuklir dan fisika partikel, Enrico Fermi Institute; dan nama hadiah yang paling bergengsi dari pemerintah Amerika untuk mereka yang melakukan penemuan hebat dalam bidang energi, atom, molekul, nuklir dan partikel, The Enrico Fermi Award. Enrico Fermi dilahirkan pada tanggal 29 September 1901 di Roma, Italia, dari pasangan Ida de Gattis dan Alberto Fermi, seorang karyawan di departemen

komunikasi Italia. Enrico yang bertubuh kecil dan bermata keabu-abuan ini sangat pendiam dan sangat dekat dengan kakaknya, Giulio. Mereka sering menghabiskan waktu untuk merancang motor listrik dan menggambar desain mesin pesawat yang hampir sama canggihnya dengan rancangan para professional. Saat Enrico berumur 14 tahun, sang kakak, Giulio, meninggal dunia saat menjalani operasi kecil (sakit di kerongkongan). Enrico sangat sedih dan kesepian karena ditinggal oleh orang yang paling dekat dengannya. Tetapi dia tidak mau menunjukkan kesedihannya. Dia justru menyembunyikannya dengan cara melahap habis buku-buku fisika dan matematika. Enrico yang tidak punya banyak uang tidak mampu membeli buku-buku baru, jadi ia selalu mencari buku-buku bekas di Campo dei Fiori. Suatu waktu Enrico menemukan dua buku kuno tentang fisika elementer di Campo dei Fiori. Dia langsung membacanya sampai habis, sambil sesekali mengoreksi perhitungan matematikanya. C. Dampak Fisika Modern Dengan ditemukannya partikel subatom (partikel elementer), yaitu elektron, proton, dan neutron) menjadikan penelitian fisika mengarah pada fenomena mikroskopis. Kajian partikel inilah yang menyadarkan para fisikawan dengan penemuan yang paling menggemparkan (kalangan fisikawan) ialah fisika Newton tidak berlaku untuk realitas mikro. Pengaruh dari penemuan tersebut telah dan sedang mengubah pandangan dunia (World view) kita. Eksperimen mekanika kuantum selalu menghasilkan penemuan yang tidak dapat diprediksi atau dijelaskan oleh fisika Newton. Tetapi meski fisika Newton tidak mampu menjelaskan fenomena realitas mikroskopis, ia tetap dapat menjelaskan fenomena makroskopis dengan baik (walalupun sesungguhnya realitas makroskopis tersusun oleh realitas mikroskopis). Perbedaan fundamental antara fisika klasik dan kontemporer. Fisika klasik berasumsi ada eksternal world yang terpisah dari diri kita. Fisika klasik kemudian juga beranggapan bahwa kita dapat mengamati, mengkalkulasi, dan mengira-ngira dunia luar tersebut tanpa merubahnya. Menurut fisika klasik, dunia luar tersebut tidak berbeda dengan diri dan kebutuhan-kebutuhan kita. Kita juga dapat menunjukkan bahwa cahaya mirip partikel sekaligus mirip gelombang dengan Hamburan Compton.mirip. sebelumnya untuk mengetahui sifat partikel dari cahaya digunakan efek fotolistrik, dan menunjukkan cahaya mirip gelombang dengan eksperimen celah ganda-ganda. Teori relativitas memperkirakan bahwa kecepatan cahaya adalah relatif konstan dan setiap gerak adalah relatif terhadap kerangka acuan khusus yang bukan merupakan kerangka acuan universal. BAB III PENUTUP A. SIMPULAN Istilah fisika modern diperkenalkan karena banyaknya fenomena-fenomena mikroskopis dan hukum-hukum baru yang ditemukan sejak tahun 1890. Fenomena mikroskopis yaitu fenomena-fenomena yang tidak dapat dilihat secara langsung, seperti elektron, proton, neutron, atom, dan sebagainya. Ahli fisika telah mencoba memecahkan persoalan tentang struktur atom, elektron, radiasi dengan fisika klasik. Namun, tidak berhasil menerangkan fenomena-fenomena tersebut. Karena itu para ahli fisika mencari ilmu dan model-model lain yang baru yang dapat menerangkan fenomena-fenomena mikroskopis itu. Menciptakan teori baru bukan berarti merobohkan gudang tua untuk dibangun

gedung pencakar langit diatasnya. Ini lebih seperti mendaki gunung, makin ke atas makin luas pandangannya, makin menemukan hubungan antara titik awal pendakian dengan hal-hal disekelilingnya yang ternyata sangat kaya raya dan tak terduga sebelumnya. Namun titik awal tersebut tetap ada dan dapat dilihat, meskipun tampak lebih kecil dari pemandangan luas yang kita peroleh dari hasil perjuangan mengatasi rintangan selama mendaki ke atas. Pada tahun 1900, Max Planck memperkenalkan ide bahwa energi dapat dibagi-bagi menjadi beberapa paket atau kuanta. Ide ini secara khusus digunakan untuk menjelaskan sebaran intensitas radiasi yang dipancarkan oleh benda hitam. Pada tahun 1905, Albert Einstein menjelaskan efek fotoelektrik dengan menyimpulkan bahwa energi cahaya datang dalam bentuk kuanta yang disebut foton. Pada tahun 1913, Niels Bohr menjelaskan garis spektrum dari atom hidrogen, lagi dengan menggunakan kuantisasi. Pada tahun 1924, Louis de Broglie memberikan teorinya tentang gelombang benda B. SARAN Hendaknya dalam mempelajari sejarah harus merujuk pada sumber yang jelas, baik itu berupa narasumber, buku, manuskrip maupun prasasti. Kemudian bandingkan bila terdapat perbedaan antara dua hal yang berlainan. DAFTAR PUSTAKA Beiser, Arthur,1987. Konsep Fisika Modern edisi keempat. Jakarta. Erlangga Hart H Michael, 2005.100 Tokoh Paling Berpengaruh Sepanjang Masa.Batam.Karisma Publising group http://www.yohanessurya.com/download/penulis/Nobel_03.pdf: Rabu,17 desember 2008. 22.47 http://id.wikipedia.org/wiki/Partikel_Elementer.Rabu, 17 Desember 2008. 22.35 http://www.geocities.com/anang_suryana1999/atasan/ilmuwan.html. Rabu, 17 Desember 2008. 21.15 Zukaf,Gary, 2003.Makna Fisika Baru Dalam Kehidupan Yogyakarta. Kreasi Wacana Elektron Tuhannya Ngebor

Rate This

Dalam bahasa sehari-hari, teori relativitas berujung pada keniscayaan atau kepastian, sedangkan teori kuantum berujung pada kebetulan atau ketidakpastian. Dalam bahasa filsafat, kedua teori ini berujung pada bangkitnya kembali perdebatan antara aliran determinisme dan indeterminisme: pandangan serba pasti dan pandangan serba-tak-pasti. [Ward:17]. Ilmu pengetahuan alam yang kita kenal sebagai ilmu eksak [ilmu pasti] ternyata mengandung banyak paradoks, baik dengan definisinya sendiri [ilmu pasti] maupun akar historisitas yang melahirkannya. Salah satu paradoks itu terlihat dari ungkapan Ward [ilmuwan teistik, lihat: Tuhan Tidak Bermain Dadu] di atas.

Teori relativitas [teori ini menjelaskan fenomena-fenomena fisik dunia makrokosmos] hadir untuk mengkoreksi qanun yang dihasilkan Newton, terutama qanun ke-dua yang memastikan besaran suatu gaya setara dengan massa dan percepatan. Albert Einstein mempostulasikan fenomena gaya berat pada wilayah ruang-waktu dengan matra [dimensi] empat yang melengkung [relativitas umum]. Tentu saja, postulasi ini sangat kontroversial. Sebabnya, adalah berbenturan dengan nalar sehat, terutama persamaan-persamaan matematisnya yang njlimet. Teori relativitas berhasil mengkalkulasi fenomena alam terutama materi yang mempunyai kecepatan mendekati kecepatan cahaya. Fondasi pokok teori kuantum [wilayah teori ini pada fenomena-fenomena fisik mikrokosmos: atom dan partikel-partikelnya] berdasarkan sabda Heisenberg, qanun ketidakpastian. Setelah pusing memikirkan gerak elektron mengelilingi inti, Heisenberg menyimpulkan bahwa posisi dan momentum elektron tidak dapat ditentukan secara pasti pada saat bersamaan. Apabila elektron berada di Asrama Iqra, misalnya, momentum [lebih tepatnya: kecepatan] tidak dapat dikuantifikasi [ditentukan harga nominalnya], sedangkan apabila kecepatan elektron ketika berlabuh di Asrama Iqra dapat ditentukan, maka posisinya bukan di Asrama Iqra lagi, mungkin di surga Manisi, mungkin di hotel Sakuntala atau mungkin di singgasana Jurusan Kimia, mungkin!. Sabda Heisenberg menghapus gambaran model-model atom sebelumnya, atom menjadi individu yang merdeka, bebas, menclok di sana sini, tidak terikat aturan-aturan birokrat ilmuwan. Atom merupakan model sejati makhluk Tuhan yang mempunyai kehendak sendiri, untuk menggapai cita-citanya sendiri dalam [ber-dzikir, ber-wirid, bertasbih, ber-kontemplasi, ber-semedi, ber-sujud] keheningan dan kesendirian. Adalah Schrdinger yang mencoba merampas kemerdekaan atom [tepatnya: elektron], gaya diplomasi yang dilakukan Schrdinger untuk menjajah elektron dengan mengeluarkan tanda bukti fungsi gelombang [Y], gambarannya: posisi dan kecepatan elektron pada waktu bersamaan, bisa jadi pada hari Rabu [?/09/2003], pukul 19.00 WIB, dengan kecepatan ? m/s, ke-mungkin-an besar dapat ditemukan di orbital: Asrama Iqra, hotel Sakuntala, surga Manisi, atau tour ke Purwakarta?. Fungsi gelombang merupakan Tempat Kejadian Perkara [TKP] untuk menjerat elektron, saksi yang dihadirkan dalam persidangan adalah energi, energi potensial, dan massa elektron; sedangkan barang bukti untuk menangkap basah elektron adalah diferensial orde kedua. Heisenberg dan sobat-sobatnya belum puas, sebelum elektron bertekuk lutut dan menjadi budak persamaan matematisnya. Mereka menspesifikasi daerah jeratan elektron dengan mengkuadratkan fungsi gelombang [Y2]. Elektron pada hari Rabu [?/09/2003], pukul 19.00 WIB, dengan kecepatan ? m/s, ke-mungkin-an besar dapat ditemukan di kasur [daerah rapatan]: Asrama Iqra, hotel Sakuntala, surga Manisi. Apakah Sabda Heisenberg mendung, berawan, gelap atau cerah [konsisten dengan rasio-filosofis]?. Sebab elektron naik banding perkara dengan mengeluarkan pernyataan: Aku ber-awan. Analisis Sabda Heisenberg Secara epistemologis [kajian tentang sumber ilmu pengetahuan], pengetahuan manusia terbagi dua wilayah besar: konsepsi [al-Tashawwur, pengetahuan sederhana adalah pengetahuan tanpa penilaian] dan tashdiq [assent, pembenaran], [lihat: Baqir ash Shadr, Falsafatuna, 1995]. Sedangkan pikiran manusia mengandung dua konsepsi: pertama, pengertian-pengertian konseptual sederhana. Misalnya api panas, unsur merupakan kumpulan

atom-atom sejenis yang tak dapat dipisahkan dengan reaksi kimia dan fisika sederhana. Kedua, pengertian konseptual majemuk. Misalnya panas yang dihasilkan api diakibatkan oleh loncatan [eksitasi] elektron dengan panjang gelombang tertentu sehingga menghasilkan energi dalam bentuk panas. Tashdiq, dihasilkan ketika pikiran manusia memberikan penilaian [judgement]. Misalnya dua buah pensil lebih banyak [secara kuantitas] daripada sebuah. Derajat kevalidan pengetahuan tashdiq lebih tinggi ketimbang konsepsi. Dalam mengamati fenomena yang terjadi, pikiran manusia terkadang ragu [syak], sangka [dhan], yakin dan ain al yaqin. Atom yang menyebabkan munculnya pertengkaran di kalangan ilmuwan dengan teori dan eksperimen yang aneh-aneh merupakan materi [fisik] tetapi gaib. Nah, pikiran manusia dapat meragukan sifat atom yang njlimet; terhadap perilaku atom yang aneh, hanya sangkaan; meyakini bahwa atom memang demikian atau bahkan sangat yakin sekali. Manusia awam [masyarakat], dalam membenarkan suatu fenomena lazimnya didasarkan atas pengalaman, terutama pengalaman inderawi. Jadi, masyarakat sampai pada maqam dhan [sangkaan] saja. Sekarang timbul pertanyaan, Kan itu hasil eksperimen?. Jawabnya mudah, alat-alat yang digunakan dalam eksperimen sudah didesain, dikonstruk sedemikian rupa, bahkan terkadang dijadikan kelinci percobaan [atom] patuh terhadap teori. Yang penting buat kita adalah harus hati-hati, jangan sampai mengkonkretkan yang abstrak, kalau terjadi demikian maka sampai pada the fallacy of misplaced concreteness. Persamaan-persamaan matematis yang digunakan dalam mekanika kuantum, mengandung kuantitas besaran yang satu sama lain berbeda. Dalam asas ketidakpastian Heisenberg, perkalian antara perubahan posisi dan perubahan momentum harus lebih besar dari tetapan Planck. Coba kita pikirkan, kemungkinan kekeliruan penyamarataan makna kuantitas dari persamaan matematis itu, kekeliruan intensional [kekeliruan untuk mengidentikkan antara apa yang dirujuk oleh suatu pernyataan dengan pernyataan itu sendiri, dan "kekeliruan reifikasi" [kekeliruan berpikir bahwa setiap kata harus merujuk pada sesuatu], [Ward:2001]. Terakhir, atom [makhluk] diciptakan dengan kebebasannya. Elektron bergerak mengelilingi nucleus secara acak. Ingat Inul, heboh! Kalau Inul sudah heboh dan ratunya ngebor, maka atom adalah Tuhannya ngebor!. Nyanyian Sunyi, Asrama Iqra, 2003

Bulannya Desember, tahunnya 1900. Dunia ilmu terperanjat dan terlompat dari tempat duduknya. Apa yang terjadi? Seorang ahli fisika Jerman, Max Planck, umumkan dia punya hipotesa yang berani. Dia bilang radiant energi (energi gelombang cahaya) tidaklah mengalir dalam arus yang kontinyu, tetapi terdiri dari potongan-potongan yang disebutnya quanta. Hipotesa Planck yang bertentangan dengan teori klasik tentang cahaya dan elektro magnetik ini merupakan titik mula dari teori kuantum yang sejak itu merevolusionerkan bidang fisika dan menyuguhkan kita pengertian yang lebih mendalam tentang alam benda dan radiasi. Dilahirkan tahun 1858 di kota Kiel, Jerman, dia belajar di Universitas Berlin dan Munich, peroleh gelar Doktor dalam ilmu fisika dengan summa cum laude dari Universitas Munich selagi berumur baru dua puluh satu tahun. Sebentar dia mengajar di Universitas Munich, kemudian di Universitas Kiel. Di tahun 1889 dia jadi mahaguru Univeristas Berlin sampai pensiunnya tiba tatkala usianya mencapai tujuh puluh. Itu tahun 1928. Planck, seperti halnya ilmuwan lain, tertarik dengan "radiasi kuantitas gelap," julukan buat radiasi elektromagnetik dikeluarkan oleh obyek gelap sempurna apabila dipanaskan. (Suatu obyek gelap sempurna dijelaskan sebagai sesuatu yang tidak memantulkan cahaya, tetapi sepenuhnya menyerap semua cahaya yang jatuh di atasnya). Percobaan-percobaan para ahli fisika telah membuat ukuran yang hati-hati perihal radiasi yang dikeluarkan oleh obyek itu bahkan sebelum Planck bekerja dalam masalah itu. Hasil karya Planck pertama adalah penemuannya dalam hal formula secara aljabar yang ruwet yang dengan tepat menggambarkan "radiasi kuantitas gelap." Formula ini yang kerap digunakan dalam teori fisika sekarang dengan rapi meringkas data-data percobaan. Tetapi ada satu masalah: hukum fisika yang sudah diterima meramalkan adanya suatu formula yang samasekali berbeda. Planck berkecimpung dalam-dalam terhadap soal ini dan akhirnya tampil dengan teori baru yang radikal: energi radiant cuma keluar pada pergandaan yang tepat dari unit elementer yang

disebut Planck "kuantum". Menurut teori Planck, ukuran kuantum cahaya tergantung pada frekuensi cahaya (misalnya pada warnanya), dan juga berimbang dengan kuantitas fisik yang oleh Planck diringkas dengan "h", tetapi sekarang disebut "patokan Planck." Hipotesa Planck amatlah berlawanan dengan apa yang jadi konsep umum fisika. Tetapi, dengan penggunaan ini dia mampu menemukan keaslian teoritis yang tepat daripada formula yang benar tentang "radiasi kuantitas gelap." Teori Planck begitu revolusioner, yang tak syak lagi bisa dianggap suatu gagasan eksentrik kalau saja Planck bukan seorang ahli fisika yang mantap dan konservatif. Kendati hipotesanya terdengar aneh, dalam soal khusus ini jelas merupakan penuntun ke arah formula yang benar. Pada mulanya, umumnya ahli fisika (termasuk Planck sendiri) melihat hipotesanya sebagai tak lain dari sebuah fiksi matematik yang cocok. Sesudah beberapa tahun, hal itu berubah sehingga konsepsi Planck tentang kuantum dapat digunakan untuk pelbagai fenomena fisik selain untuk "radiasi kuantitas gelap." Einstein menggunakan konsep ini di tahun 1905 dalam rangka menjelaskan efek fotoelektrika, dan Niels Bohr menggunakannya di tahun 1913 dalam teorinya tentang struktur atom. Menjelang tahun 1918 tatkala Planck peroleh Hadiah Nobel, jelaslah sudah bahwa hipotesanya pada dasarnya benar dan itu mempunyai arti penting yang fundamental dalam teori fisika. Sikap anti Nazi Planck yang keras membuat kedudukannya berabe di masa pemerintahan Hitler. Anak laki-lakinya dihukum mati di awal tahun 1945 akibat peranannya dalam komplotan para perwira yang punya rencana membunuh Hitler. Planck sendiri mati tahun 1947, pada umur delapan puluh sembilan tahun. Perkembangan mekanika kuantum mungkin yang paling penting dari perkembangan ilmu pengetahuan dalam abad ke-20, lebih penting ketimbang teori relativitas Einstein. Patokan "h" Planck memegang peranan penting dalam teori fisika dan sekarang dihimpun jadi dua atau tiga patokan fisika paling dasar. Patokan itu muncul dalam teori struktur atom, dalam prinsip "ketidakpastian" Heisenberg, dalam teori radiasi dan dalam banyak lagi formula ilmiah. Perkiraan pertama Planck mengenai nilai jumlah adalah dalam batas perhitungan 2% yang diterima sekarang. Planck umumnya dianggap bapak mekanika kuantum. Kendati dia memainkan peranan tak seberapa dalam perkembangan teori selanjutnya, adalah keliru mengecilkan arti Planck. Jalan mula yang disuguhkannya sungguh penting. Dia membebaskan pikiran orang dari anggapananggapan keliru yang ada sebelumnya, dan dia memungkinkan orang-orang sesudahnya menyusun teori yang jauh lebih jernih daripada yang sekarang kita miliki.

Mengendarai Kuantum Menuju Komputer Fotonik Mukhlis Akhadi (BATAN) Suatu ketika Hamlet berkata pada Horotio : masih lebih banyak lagi sesuatu di sorga dan di bumi dari pada apa yang dimimpikan dalam filsafatmu, Horotio. Kalimat tersebut barangkali tepat pula bila ditujukan kepada para fisikawan di akhir abad ke-19. Memasuki permulaan abad ke-19, perkembangan dalam penelitian fisika klasik dapat dikatakan tidak mengalami kemajuan yang berarti. Pada saat itu, hampir semua bidang studi yang berhubungan dengan fisika, seperti mekanika, gelombang, bunyi, optik, listrik, magnet dan sebagainya telah dikuasai semuanya. Menjelang akhir abad ke-19, sebagian besar fisikawan merasa puas dengan pengetahuan yang mereka kuasai. Mereka mengira bahwa setiap hal penting dalam fisika sudah diketahui, dan merasa tidak akan ada lagi penemuan-penemuan besar untuk menjelaskan fenomena alam. Persoalan-persoalan yang masih ada dalam fisika diyakini akan dapat dipecahkan menggunakan kerangka teori yang suatu ketika dapat ditemukan. Teori Kuantum Pada tahun 1900, fisikawan berkebangsaan Jernam Max Planck (1858-1947), memutuskan untuk mempelajari radiasi benda hitam. Beliau berusaha untuk mendapatkan persamaan matematika yang menyangkut bentuk dan posisi kurva pada grafik distribusi spektrum. Planck menganggap bahwa permukaan benda hitam memancarkan radiasi secara terusmenerus, sesuai dengan hukum-hukum fisika yang diakui pada saat itu. Hukum-hukum itu diturunkan dari hukum dasar mekanika yang dikembangkan oleh Sir Isaac Newton. Namun dengan asumsi tersebut ternyata Planck gagal untuk mendapatkan persamaan matematika yang dicarinya. Kegagalan ini telah mendorong Planck untuk berpendapat bahwa hukum mekanika yang berkenaan dengan kerja suatu atom sedikit banyak berbeda dengan hukum Newton. Max Planck mulai dengan asumsi baru, bahwa permukaan benda hitam tidak menyerap atau memancarkan energi secara kontinyu, melainkan berjalan sedikit demi sedikit dan bertahaptahap. Menurut Planck, benda hitam menyerap energi dalam berkas-berkas kecil dan memancarkan energi yang diserapnya dalam berkas-berkan kecil pula. Berkas-berkas kecil itu selanjutnya disebut kuantum. Teori kuantum ini bisa diibaratkan dengan naik atau turun menggunakan tangga. Hanya pada posisi-posisi tertentu, yaitu pada posisi anak tangga kita dapat menginjakkan kaki, dan tidak mungkin menginjakkan kaki di antara anak-anak tangga itu. Dengan hipotesa yang revolusioner ini, Planck berhasil menemukan suatu persamaan matematika untuk radiasi benda hitam yang benar-benar sesuai dengan data percobaan yang diperolehnya. Persamaan tersebut selanjutnya disebut Hukum Radiasi Benda Hitam Planck yang menyatakan bahwa intensitas cahaya yang dipancarkan dari suatu benda hitam berbeda-

beda sesuai dengan panjang gelombang cahaya. Planck mendapatkan suatu persamaan : E = hn, yang menyatakan bahwa energi suatu kuantum (E) adalah setara dengan nilai tetapan tertentu yang dikenal sebagai tetapan Planck (h), dikalikan dengan frekwensi (n) kuantum radiasi. Hipotesa Planck yang bertentangan dengan teori klasik tentang gelombang elektromagnetik ini merupakan titik awal dari lahirnya teori kuantum yang menandai terjadinya revolusi dalam bidang fisika. Terobosan Planck merupakan tindakan yang sangat berani karena bertentangan dengan hukum fisika yang telah mapan dan sangat dihormati. Dengan teori ini ilmu fisika mampu menyuguhkan pengertian yang mendalam tentang alam benda dan materi. Planck menerbitkan karyanya pada majalah yang sangat terkenal. Namun untuk beberapa saat, karya Planck ini tidak mendapatkan perhatian dari masyarakat ilmiah saat itu. Pada mulanya, Planck sendiri dan fisikawan lainnya menganggap bahwa hipotesa tersebut tidak lain dari fiksi matematika yang cocok. Namun setelah berjalan beberapa tahun, anggapan tersebut berubah hingga hipotesa Planck tentang kuantum dapat digunakan untuk menerangkan berbagai fenomena fisika. Pengakuan terhadap Teori Kuantum Teori kuantum sangat penting dalam ilmu pengetahuan karena pada prinsipnya teori ini dapat digunakan untuk meramalkan sifat-sifat kimia dan fisika suatu zat. Pengakuan terhadap hasil karya Planck datang perlahan-lahan karena pendekatan yang ditempuhnya merupakan cara berfikir yang sama sekali baru. Albert Einstein misalnya, menggunakan konsep kuantum ini untuk menjelaskan efek foto listrik yang diamatinya. Efek foto listrik merupakan fenomena fisika berupa pancaran elektron dari permukaan benda apabila cahaya dengan energi tertentu menimpa permukaan benda itu. Semua logam dapat menunjukkan fenomena ini. Penjelasan Einstein mengenai efek foto listrik itu terbilang sangat radikal, sehingga untuk beberapa waktu tidak diterima secara umum. Namun ketika Einstein menerbitkan hasil karyanya pada tahun 1905, penjelasannya memperoleh perhatian luas di kalangan fisikawan. Dengan demikian, penerapan teori kuantum untuk menjelaskan efek foto listrik telah mendorong ke arah perhatian yang luar biasa terhadap teori kuantum dari Planck yang sebelumnya diabaikan. Pada tahun 1913, Niels Bohr, fisikawan berkebangsaan Swedia, mengikuti jejak Einstein menerapkan teori kuantum untuk menerangkan hasil studinya mengenai spektrum atom hidrogen. Bohr mengemukakan teori baru mengenai struktur dan sifat-sifat atom. Teori atom Bohr ini pada prinsipnya menggabungkan teori kuantum Planck dan teori atom dari Ernest Rutherford yang dikemukakan pada tahun 1911. Bohr mengemukakan bahwa apabila elektron dalam orbit atom menyerap suatu kuantum energi, elektron akan meloncat keluar menuju orbit yang lebih tinggi. Sebaliknya, jika elektron itu memancarkan suatu kuantum energi, elektron akan jatuh ke orbit yang lebih dekat dengan inti atom. Dengan teori kuantum, Bohr juga menemukan rumus matematika yang dapat dipergunakan untuk menghitung panjang gelombang dari semua garis yang muncul dalam spektrum atom hidrogen. Nilai hasil perhitungan ternyata sangat cocok dengan yang diperoleh dari percobaan langsung. Namun untuk unsur yang lebih rumit dari hidrogen, teori Bohr ini ternyata tidak cocok dalam meramalkan panjang gelombang garis spektrum. Meskipun demikian, teori ini diakui sebagai langkah maju dalam menjelaskan fenomena-fenomena fisika yang terjadi dalam tingkatan atomik. Teori kuantum dari Planck diakui kebenarannya karena dapat dipakai untuk menjelaskan berbagai fenomena fisika yang saat itu tidak bisa diterangkan dengan teori klasik. Pada tahun 1918 Planck memperoleh hadiah Nobel bidang fisika berkat teori kuantumnya itu. Dengan memanfaatkan teori kuantum untuk menjelaskan

efek foto listrik, Einstein memenangkan hadiah Nobel bidang fisika pada tahun 1921. Selanjutnya Bohr yang mengikuti jejak Einstein menggunakan teori kuantum untuk teori atomnya juga dianugerahi hadiah Nobel Bidang fisika tahun 1922. Tiga hadiah Nobel fisika dalam waktu yang hampir berurutan di awal abad ke-20 itu menandai pengakuan secara luas terhadap lahirnya teori mekanika kuantum. Teori ini mempunyai arti penting dan fundamental dalam fisika. Di antara perkembangan beberapa bidang ilmu pengetahuan di abad ke-20, perkembangan mekanika kuantum memiliki arti yang paling penting, jauh lebih penting dibandingkan teori relativitas dari Einstein. Oleh sebab itu, Planck dianggap sebagai Bapak Mekanika Kuantum yang telah mengalihkan perhatian penelitian dari fisika makro yang mempelajari objek-objek tampak ke fisika mikro yang mempelajari objek-objek sub-atomik. Dengan adanya perombakan dalam penelitian fisika yang dimulai sejak memasuki abad ke-20 ini, maka perhatian orang mulai tertuju ke arah penelitian atom, dan melalui penjelasan teori kuantum inilah manusia mampu mengenali atom dengan baik. Sebagai konsekwensi atas beralihnya bidang kajian dalam fisika ini, maka muncullah beberapa disipilin ilmu spesialis seperti fisika nuklir dan fisika zat padat. Fisika nuklir yang perkembangannya cukup kontraversial kini menawarkan berbagai macam aplikasi praktis yang sangat bermanfaat dalam kehidupan. Energi nuklir misalnya, saat ini telah mensuplai sekitar 17 % kebutuan energi listrik dunia. Sedang perkembangan dalam fisika zat pada telah mengantarkan ke arah revolusi dalam bidang mikro elektronika, dan kini sedang menuju ke arah nano elektronika. Cairan Kuantum Setelah berumur hampir seabad, teori kuantum masih tetap mendapatkan perhatian yang sangat besar di kalangan fisikawan. Hal ini terbukti dengan dimenagkannya hadiah Nobel bidang fisikat untuk tahun 1998 ini oleh tiga kampium fisika kuantum akhir abad 20. Komite Nobel Karolinska Institute di Stockholm, Swedia, pada tanggal 13 Oktober 1998 mengumunkan Prof. Robert B. Laughlin (universitas Stanford, California), Prof. Daniel C. Tsui (Universitas Princeton) dan Prof. Horst L. Stoemer (fisikawan berkebangsaan Jerman yang bekerja di Universitas Columbia, New York dan sebagai peneliti di Bell Labs, New Yersey) sebagai nobelis fisika tahun 1998. Pada tahun 1982, Horst L. Stoemer dan Daniel C. Tsui melakukan eksperimen dasar menggunakan medan magnet sangat kuat pada temperatur rendah berupa superkonduktor yang didinginkan helium cair. Para nobelis fisika itu berjasa dalam penemuan mekanisme aksi elektron dalam medan magnet kuat sehingga membentuk partikel-partikel elementer baru yang bermuatan mirip elektron. Pada tahun yang bersamaan, Robert B. Laughlin juga menginformasikan fenomena serupa. Melalui analisa fisika teori, mereka berhasil menunjukkan bahwa elektron-elektron dalam medan magnet sangat kuat dapat berkondensasi membentuk semacam cairan sehingga melahirkan apa yang disebut sebagai cairan kuantum. Hasil yang diperoleh ketiga fisikawan tadi sangat penting artinya bagi para peneliti dalam memahami struktur suatu materi, termasuk pembuatan aneka perangkat superkonduktor. Temuan itu juga merupakan terobosan dalam pengembangan teori dan eksperimen fisika kuantum serta pengembangan konsep-konsep baru dalam beberapa cabang fisika moderen. Para nobelis fisika sama-sama mempunyai latar belakang riset dalam pengembangan fisika kuantum yang mempunyai peran penting bagi kemajuan riset pengembangan perangkat

fotonik. Temuan para nobelis fisika tahun 1998 ini telah memungkinkan efek kuantum menjadi mudah diamati. Fenomena Efek Hall (Hall effect) dalam fisika yang pertama kali dilaporkan oleh Edwin H. Hall pada tahun 1879 dan sangat menakjubkan itu, kini seakanakan dapat diamati oleh para fisikawan di manapun. Komputer Fotonik Kiprah mekanika kuantum di masa-masa mendatang barang kali masih akan tetap diperhitungkan. Misteri lain yang mungkin lebih besar barangkali masih tersimpan dalam teori kuantum itu. Paling tidak para ilmuwan berharap, dengan mengendarai kuantum mereka akan sampai pada tujuan mewujudkan impian berupa hadirnya perangkat fotonik serta gagasan pembuatan komputer fotonik (komputer kuantum) yang akan mencerahkan kehidupan manusia di awal milenium ketiga ini. Arun N. Netravali, ilmuwan berdarah India yang menjabat Vice President Research Lucent Technology dan Direktur Bell Labs di AS, telah melakukan terobosan dalam proses pembuatan prosesor fotonik, sehingga beliau pada tahun 1998 menerima penghargaan tertinggi dari perusahaan elektronik NEC, Jepang. Basis dari perangkat fotonik ini bukan lagi pada teknologi silikon seperti yang saat ini banyak diaplikasikan, melainkan mulai bergerak menuju teknologi foton yang memanfaatkan cahaya. Para ilmuwan sebetulnya sudah sejak lama berusaha mencari alternatif lain dalam mengembangkan komputer elektronik. Mereka umumnya melirik jalam untuk beralih dari komputer elektronik ke komputer fotonik. Banyak kelebihan yang dimiliki komputer fotonik ini jika kelak benar-benar bisa diwujudkan, yaitu :

Pada komputer elektronik sinyal dibawa oleh berkas elektron, sedang pada komputer fotonik sinyal itu dibawa oleh foton (gelombang elektromagnetik) dalam bentuk cahaya tampak. Gerak atau cepat rambat foton cahaya paling tidak mencapai tiga kali lebih cepat dibandingkan cepat rambat elektron. Oleh sebab itu, komputer fotonik akan bekerja jauh lebih cepat dibandingkan komputer elektronik yang saat ini beredar. Semua cahaya tidak dapat saling mengganggu (berinterferensi) kecuali jika cahayacahaya itu berasal dari satu sumber. Di samping itu, cahaya dapat merambat di dalam serat optis yang lebih ringan dibandingkan logam (tembaga) yang saat ini dipakai sebagai media aliran elektron pada komputer elektronik. Pada komputer elektronik data disimpan dalam medium dua dimensi seperti pita magnetik dan yang lainnya, sedang pada komputer fotonik data dapat disimpan secara tiga dimensi dalam medium yang ketebalannya berorde mikro meter. Jadi satu penyimpan fotonik bisa memiliki kapasitas yang setara dengan ribuan penyimpan elektronik.

Kini para ilmuwan telah berhasil menghadirkan sumber cahaya dalam bentuk laser semikonduktor dan LED (Light Emitting Diode) yang dapat dipakai sebagai sumber pembawa sinyal pada komputer fotonik. Teknologi serat optis pun sudah berkembang sedemikian rupa sehingga siap mendukung tampilnya perangkat fotonik. Riset menuju terwujudnya komputer fotonik berkembang sangat pesat dan telah mencapai tingkat yang sangat mengagumkan. Tidak mustahil jika komputer fotonik ini akan segera hadir di hadapan kita dan ikut meramaikan unjuk kecanggihan teknologi moderen di awal milenium tiga ini. Sumber : Elektro Indonesia no. 31/VI (Mei 2000)

Bulannya Desember, tahunnya 1900. Dunia ilmu terperanjat dan terlompat dari tempat duduknya. Apa yang terjadi? Seorang ahli fisika Jerman, Max Planck, umumkan dia punya hipotesa yang berani. Dia bilang radiant energi (energi gelombang cahaya) tidaklah mengalir dalam arus yang kontinyu, tetapi terdiri dari potongan-potongan yang disebutnya quanta. Hipotesa Planck yang bertentangan dengan teori klasik tentang cahaya dan elektro magnetik ini merupakan titik mula dari teori kuantum yang sejak itu merevolusionerkan bidang fisika dan menyuguhkan kita pengertian yang lebih mendalam tentang alam benda dan radiasi. Dilahirkan tahun 1858 di kota Kiel, Jerman, dia belajar di Universitas Berlin dan Munich, peroleh gelar Doktor dalam ilmu fisika dengan summa cum laude dari Universitas Munich selagi berumur baru dua puluh satu tahun. Sebentar dia mengajar di Universitas Munich, kemudian di Universitas Kiel. Di tahun 1889 dia jadi mahaguru Univeristas Berlin sampai pensiunnya tiba tatkala usianya mencapai tujuh puluh. Itu tahun 1928. Planck, seperti halnya ilmuwan lain, tertarik dengan "radiasi kuantitas gelap," julukan buat radiasi elektromagnetik dikeluarkan oleh obyek gelap sempurna apabila dipanaskan. (Suatu obyek gelap sempurna dijelaskan sebagai sesuatu yang tidak memantulkan cahaya, tetapi sepenuhnya menyerap semua cahaya yang jatuh di atasnya). Percobaan-percobaan para ahli fisika telah membuat ukuran yang hati-hati perihal radiasi yang dikeluarkan oleh obyek itu bahkan sebelum Planck bekerja dalam masalah itu. Hasil karya Planck pertama adalah penemuannya dalam hal formula secara aljabar yang ruwet yang dengan tepat menggambarkan "radiasi kuantitas gelap." Formula ini yang kerap digunakan dalam teori fisika sekarang dengan rapi meringkas data-data percobaan. Tetapi ada satu masalah: hukum fisika yang sudah diterima meramalkan adanya suatu formula yang samasekali berbeda. Planck berkecimpung dalam-dalam terhadap soal ini dan akhirnya tampil dengan teori baru yang radikal: energi radiant cuma keluar pada pergandaan yang tepat dari unit elementer yang disebut Planck "kuantum". Menurut teori Planck, ukuran kuantum cahaya tergantung pada frekuensi cahaya (misalnya pada warnanya), dan juga berimbang dengan kuantitas fisik yang oleh Planck diringkas dengan "h", tetapi sekarang disebut "patokan Planck." Hipotesa Planck amatlah berlawanan dengan apa yang jadi konsep umum fisika. Tetapi, dengan penggunaan ini dia mampu menemukan keaslian teoritis yang tepat daripada formula yang benar tentang "radiasi kuantitas gelap." Teori Planck begitu revolusioner, yang tak syak lagi bisa dianggap suatu gagasan eksentrik kalau saja Planck bukan seorang ahli fisika yang mantap dan konservatif. Kendati hipotesanya terdengar aneh, dalam soal khusus ini jelas merupakan penuntun ke arah formula yang benar. Pada mulanya, umumnya ahli fisika (termasuk Planck sendiri) melihat hipotesanya sebagai tak lain dari sebuah fiksi matematik yang cocok. Sesudah beberapa tahun, hal itu berubah sehingga konsepsi Planck tentang kuantum dapat digunakan untuk pelbagai fenomena fisik selain untuk "radiasi kuantitas gelap." Einstein menggunakan konsep ini di tahun 1905 dalam rangka menjelaskan efek fotoelektrika, dan Niels Bohr menggunakannya di tahun 1913 dalam teorinya tentang struktur atom. Menjelang tahun 1918 tatkala Planck peroleh Hadiah Nobel, jelaslah sudah bahwa hipotesanya pada dasarnya benar dan itu mempunyai arti penting yang fundamental dalam teori fisika. Sikap anti Nazi Planck yang keras membuat kedudukannya berabe di masa pemerintahan Hitler. Anak laki-lakinya dihukum mati di awal tahun 1945 akibat peranannya dalam komplotan para perwira yang punya rencana membunuh Hitler. Planck sendiri mati tahun 1947, pada umur delapan puluh sembilan tahun. Perkembangan mekanika kuantum mungkin yang paling penting dari perkembangan ilmu pengetahuan dalam abad ke-20, lebih penting ketimbang teori relativitas Einstein. Patokan "h" Planck memegang peranan penting dalam teori fisika dan sekarang dihimpun jadi dua atau tiga patokan fisika paling dasar. Patokan itu muncul dalam teori struktur atom, dalam prinsip "ketidakpastian" Heisenberg, dalam teori radiasi dan dalam banyak lagi formula ilmiah. Perkiraan pertama Planck mengenai nilai jumlah adalah dalam batas perhitungan 2% yang diterima sekarang. Planck umumnya dianggap bapak mekanika kuantum. Kendati dia

memainkan peranan tak seberapa dalam perkembangan teori selanjutnya, adalah keliru mengecilkan arti Planck. Jalan mula yang disuguhkannya sungguh penting. Dia membebaskan pikiran orang dari anggapan-anggapan keliru yang ada sebelumnya, dan dia memungkinkan orang-orang sesudahnya menyusun teori yang jauh lebih jernih daripada yang sekarang kita miliki

EINSTEIN Albert Einstein, tak salah lagi, seorang ilmuwan terhebat abad ke-20. Cendekiawan tak ada tandingannya sepanjang jaman. Termasuk karena teori "relativitas"-nya. Sebenarnya teori ini merupakan dua teori yang bertautan satu sama lain: teori khusus "relativitas" yang dirumuskannya tahun 1905 dan teori umum "relativitas" yang dirumuskannya tahun 1915, lebih terkenal dengan hukum gaya berat Einstein. Kedua teori ini teramat rumitnya, karena itu bukan tempatnya di sini menjelaskan sebagaimana adanya, namun uraian ala kadarnya tentang soal relativitas khusus ada disinggung sedikit. Pepatah bilang, "semuanya adalah relatif." Teori Einstein bukanlah sekedar mengunyah-ngunyah ungkapan yang nyaris menjemukan itu. Yang dimaksudkannya adalah suatu pendapat matematik yang pasti tentang kaidah-kaidah ilmiah yang sebetulnya relatif. Hakikatnya, penilaian subyektif terhadap waktu dan ruang tergantung pada si penganut. Sebelum Einstein, umumnya orang senantiasa percaya bahwa dibalik kesan subyektif terdapat ruang dan waktu yang absolut yang bisa diukur dengan peralatan secara obyektif. Teori Einstein menjungkir-balikkan secara revolusioner pemikiran ilmiah dengan cara menolak adanya sang waktu yang absolut. Contoh berikut ini dapat menggambarkan betapa radikal teorinya, betapa tegasnya dia merombak pendapat kita tentang ruang dan waktu. Bayangkanlah sebuah pesawat ruang angkasa --sebutlah namanya X--meluncur laju menjauhi bumi dengan kecepatan 100.000 kilometer per ******* Kecepatan diukur oleh pengamat, baik yang berada di pesawat ruang angkasa X maupun di bumi, dan pengukuran mereka bersamaan. Sementara itu, sebuah pesawat ruang angkasa lain yang bernama Y meluncur laju pada arah yang sama dengan pesawat ruang angkasa X tetapi dengan kecepatan yang berlebih. Apabila pengamat di bumi mengukur kecepatan pesawat ruang angkasa Y, mereka mengetahui bahwa pesawat itu melaju menjauhi bumi pada kecepatan 180.000 kilometer per ******* Pengamat di atas pesawat ruang angkasa Y akan berkesimpulan serupa. Nah, karena kedua pesawat ruang angkasa itu melaju pada arah yang bersamaan, akan tampak bahwa beda kecepatan antara kedua pesawat itu 80.000 kilometer per detik dan pesawat yang lebih cepat tak bisa tidak akan bergerak menjauhi pesawat yang lebih lambat pada kadar kecepatan ini. Tetapi, teori Einstein memperhitungkan, jika pengamatan dilakukan dari kedua pesawat ruang angkasa, mereka akan bersepakat bahwa jarak antara keduanya bertambah pada tingkat ukuran 100.000 kilometer per detik, bukannya 80.000 kilometer per ******* Kelihatannya hal ini mustahil. Kelihatannya seperti olok-olok. Pembaca menduga seakan ada

bau-bau tipu. Menduga jangan-jangan ada perincian yang disembunyikan. Padahal, sama sekali tidak! Hasil ini tidak ada hubungannya dengan tenaga yang digunakan untuk mendorong mereka. Tak ada keliru pengamatan. Walhasil, tak ada apa pun yang kurang, alat rusak atau kabel melintir. Mulus, polos, tak mengecoh. Menurut Einstein, hasil kesimpulan yang tersebut di atas tadi semata-mata sebagai akibat dari sifat dasar alamiah ruang dan waktu yang sudah bisa diperhitungkan lewat rumus ihwal komposisi kecepatannya. Tampaknya merupakan kedahsyatan teoritis, dan memang bertahun-tahun orang menjauhi "teori relativitas" bagaikan menjauhi hipotesa "menara gading," seolah-olah teori itu tak punya arti penting samasekali. Tak seorang pun --tentu saja tidak-- membuat kekeliruan hingga tahun 1945 tatkala bom atom menyapu Hiroshima dan Nagasaki. Salah satu kesimpulan "teori relativitas" Einstein adalah benda dan energi berada dalam arti yang berimbangan dan hubungan antara keduanya dirumuskan sebagai E = mc2. E menunjukkan energi dan m menunjukkan massa benda, sedangkan c merupakan kecepatan cahaya. Nah, karena c adalah sama dengan 180.000 kilometer per detik (artinya merupakan jumlah angka amat besar) dengan sendirinya c2 (yang artinya c x c) karuan saja tak tepermanai besar jumlahnya. Dengan demikian berarti, meskipun pengubahan sebagian kecil dari benda mampu mengeluarkan jumlah energi luar biasa besarnya. Orang karuan saja tak bakal bisa membikin sebuah bom atom atau pusat tenaga nuklir semata-mata berpegang pada rumus E = mc2. Haruslah dikaji pula dalam-dalam, banyak orang memainkan peranan penting dalam proses pembangkitan energi atom. Namun, bagaimanapun juga, sumbangan pikiran Einstein tidaklah meragukan lagi. Tak ada yang cekcok dalam soal ini. Lebih jauh dari itu, tak lain dari Einstein orangnya yang menulis surat kepada Presiden Roosevelt di tahun 1939, menunjukkan terbukanya kemungkinan membikin senjata atom dan sekaligus menekankan arti penting bagi Amerika Serikat selekas-lekasnya membikin senjata itu sebelum didahului Jerman. Gagasan itulah kemudian mewujudkan "Proyek Manhattan" yang akhirnya bisa menciptakan bom atom pertama. "Teori relativitas khusus" mengundang beda pendapat yang hangat, tetapi dalam satu segi semua sepakat, teori itu merupakan pemikiran yang paling meragukan yang pernah dirumuskan manusia. Tetapi, tiap orang ternyata terkecoh karena "teori relativitas umum" Einstein merupakan titik tolak pikiran lain bahwa pengaruh gaya berat bukanlah lantaran kekuatan fisik dalam makna yang biasa, melainkan akibat dari bentuk lengkung angkasa luar sendiri, suatu pendapat yang amat mencengangkan! Bagaimana bisa orang mengukur bentuk lengkung ruang angkasa? Einstein bukan sekedar mengembangkan secara teoritis, melainkan dituangkannya ke dalam rumusan matematik yang jernih dan jelas sehingga orang bisa melakukan ramalan yang nyata dan hipotesanya bisa diuji. Pengamatan berikutnya --dan ini yang paling cemerlang karena dilakukan tatkala gerhana matahari total-- telah berulang kali diyakini kebenarannya karena bersamaan benar dengan apa yang dikatakan Einstein. Teori umum tentang relativitas berdiri terpisah dalam beberapa hal dengan semua hukumhukum ilmiah. Pertama, Einstein merumuskan teorinya tidak atas dasar percobaan-percobaan, melainkan atas dasar-dasar kehalusan simetri dan matematik. Pendeknya berpijak diatas dasar rasional seperti lazimnya kebiasaan para filosof Yunani dan para cendekiawan abad tengah perbuat. Ini berarti, Einstein berbeda cara dengan metode ilmuwan modern yang berpandangan empiris. Tetapi, bedanya ada juga: pemikir Yunani dalam hal pendambaan keindahan dan simetri tak pernah berhasil mengelola dan menemukan teori yang mekanik yang mampu bertahan menghadapi percobaan pengujian yang rumit-rumit, sedangkan Einstein dapat bertahan dengan sukses terhadap tiap-tiap percobaan. Salah satu hasil dari pendekatan Einstein adalah bahwa teori umum relativitasnya dianggap suatu yang amat indah, bergaya, teguh dan secara intelektual memuaskan semua teori ilmiah.

Teori relativitas umum juga dalam beberapa hal berdiri secara terpisah. Kebanyakan hukumhukum ilmiah lain hanya kira-kira saja berlaku. Ada yang kena dalam banyak hal, tetapi tidak semua. Sedangkan mengenai teori umum relativitas, sepanjang pengetahuan, sepenuhnya diterima tanpa kecuali. Tak ada keadaan yang tak diketahui, baik dalam kaitan teoritis atau percobaan praktek yang menunjukkan bahwa ramalan-ramalan teori umum relativitas hanya berlaku secara kira-kira. Bisa saja percobaan-percobaan di masa depan merusak nama baik hasil sempurna yang pernah dicapai oleh sesuatu teori, tetapi sepanjang menyangkut teori umum relativitas, jelas tetap merupakan pendekatan yang paling diandalkan bagi setiap ilmuwan dalam usahanya menuju kebenaran terakhir. Meskipun Einstein teramat terkenal dengan "teori relativitas"-nya, keberhasilan karyanya di bidang ilmiah lain juga membuatnya tersohor selaku ilmuwan dalam setiap segi. Nyatanya, Einstein peroleh Hadiah Nobel untuk bidang fisika terutama lantaran buah pikiran tertulisnya membeberkan efek-efek foto elektrik, sebuah fenomena penting yang sebelumnya merupakan teka-teki para cerdik pandai. Dalam karya tulisan ilmiah itu Einstein membuktikan eksistensi photon, atau partikel cahaya. Anggapan lama lewat percobaan yang tersendat-sendat mengatakan bahwa cahaya itu terdiri dari gelombang elektro magnit, dan gelombang serta partikel merupakan konsep yang berlawanan. Sedangkan hipotesa Einstein menunjukkan suatu perbedaan yang radikal dan amat bertentangan dengan teori-teori klasik. Bukan saja hukum foto elektriknya terbukti punya arti penting dalam penggunaan, tetapi hipotesanya tentang photon punya pengaruh besar dalam perkembangan teori kuantum (hipotesa bahwa dalam radiasi, energi elektron dikeluarkan tidak kontinyu melainkan dalam jumlah tertentu) yang saat ini merupakan bagian tak terpisahkan dari teori itu. Dalam hal menilai arti penting Einstein, suatu perbandingan dengan Isaac Newton merupakan hal menyolok. Teori Newton pada dasarnya mudah dipahami, dan kegeniusannya sudah tampak pada awal mula perkembangan. Sedangkan "teori relativitas" Einstein teramat sulit dipahami biarpun lewat penjelasan yang cermat dan hati-hati. Lebih-Lebih rumit lagi jika mengikhtisarkan aslinya! Tatkala beberapa gagasan Newton mengalami benturan dengan gagasan ilmiah pada jamannya, teorinya tak pernah tampak luntur atau go