chapter 4 hamilton variational principle hamilton jacobi eq classical mechanics 1

Upload: ramesh-jangala

Post on 06-Jul-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    1/64

    A. La Rosa Lecture Notes

    PSU-Physics PH 411/511 ECE 598

    I N T R O D U C T I O N T O

    Q U A N T U M M E C H A N I C S

     ________________________________________________________________________ 

    From the Hamilton’s Variational Principle to

    the Hamilton Jacobi Equation

    4.1. The Lagrange formulation and the Hamilton’s variational principle

    4.1A Specification of the state of motion

    4.1B Time evolution of a classical state: Hamilton’s variational principle

    Definition of the classical action

    The variational principle leads to the Newton’s Law 

    The Lagrange equation of motion obtained from the variational principle

    Example: The Lagrangian for a particle in an electromagnetic field

    4.1C Constants of motion

    Cyclic coordinates and the conservation of the generalized momentum

    Lagrangian independent of time and the conservation of the Hamiltonian

    Case of a potential independent of the velocities: Hamiltonian is the

    mechanical energy

    4.2 The Hamilton formulation of mechanics

    4.2A Legendre transformation 

    4.2B The Hamilton Equations of Motion 

    Recipe for solving problems in mechanics

    Properties of the Hamiltonian

    4.2C Finding constant of motion before calculating the motion itself

    Looking for functions whose Poisson bracket with the Hamiltonian vanishes

    Cyclic coordinates

    4.2D The modified Hamilton’s principle: Derivation of the Hamilton’s equations

    from a variational principle.

    4.3 The Poisson bracket

    4.3A Hamiltonian equations in terms of the Poisson brackets

    4.3B Fundamental brackets

    4.3C The Poisson bracket theorem: Preserving the description of the classicalmotion in terms of a Hamiltonian

    a) Example of motion described by no Hamiltonian

    b) Change of coordinates to attain a Hamiltonian description

    4.4 Canonical transformations

    4.4A Canonoid transformations (i.e. not quite canonical )

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    2/64

    Preservation of the canonical equations with respect to a particular

    Hamiltonian)

    4.4B Canonical transformations

    Definition

    Canonical transformation theorem

    Canonical transformation and the invariance of the Poisson bracket4.4C Restricted canonical transformation

    4.5 How to generate (restricted) canonical transformations

    4.5A Generating function of transformations

    4.5B Classification of (restricted) canonical transformations

    4.5C Time evolution of a mechanics state viewed as series of canonical

    transformations

    The generator of the identity transformation

    Infinitesimal transformations

    The Hamiltonian as a generating function of canonical transformations

    Time evolution of a mechanical state viewed as a canonical transformation

    4.6 Universality of the Lagrangian

    4.6A  Invariant of the Lagrangian equation with respect to the configuration space

    coordinates 

    4.6B  The Lagrangian equation as an invariant operator

    4.7 The Hamilton Jacobi equation

    The Hamilton principal function

    Further physical significance of the Hamilton principal function

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    3/64

    From the Hamilton’s Variational Principle to

    the Hamilton Jacobi Equation

    4.1 The Lagrange formulation and the Hamilton’s variational principle 

    4.1A Classical specification of the state of motion

    The spatial configuration of a system composed by N   point masses

    is completely described by

    3N Cartesian coordinates ( x1, y1, z 1), ( x2, y2, z 2), …, ( xN , yN , z N ).

    If the system is subjected to constrains then the  3N   Cartesian coordinates are not

    independent variables. If n  is the least number of variables necessary to specify the

    most general motion of the system, then the system is said to have   n degrees of

     freedom.

    The configuration of a system with n degrees of freedom is fully

    specified by n generalized position-coordinates q1, q2, … , qn 

    The objective in classical mechanics is to find the trajectories,

    q  = q  (t )    = 1 , 2, 3, …, n  (1) 

    or simply q = q (t ) where q stands collectively for the set (q1, q2, … qn) 

    4.1B Time evolution of a classical state: Hamilton’s variational principle 

    One of the most elegant ways of expressing the condition that determines the

    particular path )(t q  that a classical system will actually follow, out of all other possible

    paths, is the Hamilton’s principle of least action, which is described below.

    The classical action   One first expresses the Lagrangian  L  of the system in terms of the generalized

    position and the generalized velocities coordinates q  and   q  (  =1,2,…, n).

     L( q , q , t )  (2) 

    Typically  L=T-V , where T  is the kinetic energy and V   is the potential energy of

    the system. For example, for a particle of mass m moving in a potential V ( x,t ), the

    Lagrangian is,

     L ( x,  x , t ) = (1/2)m x 2 - V ( x,t ) (3) 

      Then, for a couple of fixed end points (a,t 1) and (b, t 2) the classical action  S isdefined as,

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    4/64

     

    S  (q ) ≡  )(

    )(

    2

    1

    t b,

    t a,

     L( )(t q , )(t q , t ) dt   Classical action  (4)

    Function

    or

    set of functions (n-dimension case)

    Number (1-dimension case)

    orset of numbers (n-dimension case)

    Notice S  varies depending on the arbitrarily selected path q  that joins the ending

    point a and b, at the corresponding times t 1 and t 2. See figure 1 below.

    We emphasize that in (4),

    q  stands for a function (or set of functions, in the n-dimension case)

    Indistinctly we will also call it a path 

    q(t )  is a number (or set of numbers, in the n-dimension case)

    It is the value of the function q when the argument is t .

    S  is evaluated at a function),

    i.e. S (q)

    L  is evaluated at a number (or set of numbers, in the n-dimension case) 

    Hamilton’s variational principle for conservative systems 

      Out of all the possible paths that go from (a, t 1) to (b, t 2), the system takes onlyone.

    On what basis such a path is chosen?

    Answer: The path followed by the system is the one that makes the functional  S  an extreme (i. e. a maximum or a minimum).

    S  q q    = 0  The variational principle  (5) 

    That is, out of all possible paths by which the system could travel from an initial position

    at time t 1 to a final position at time t 2, it will actually travel along the path for which the

    integral is an extremum, whether a maximum or a minimum. The figure below shows

    the case for the one-dimensional motion.

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    5/64

     

     x(t ) 

    t  t 1  t 2 

     xC  

    Figure 1. For a fixed points (a, t 1) and (b, t 2), among all the

    possible paths with the same end points, the path  xC  makes

    the action S  an extremum.

    Example: The variational principle leads to the Newton’s law 

    Consider a particle moving under the influence of a conservative force  F   (be

    gravitational force, spring force, …) whose associate potential is V  (i.e. F = - dx

    dV .)

    Since the kinetic energy is given by T= (1/2) m x 2, where  x  means dx/dt , then 

     L( x,  x , t ) = (1/2) m x 2 - V ( x), and

    S ( x) ≡  )(

    )()(

    t b,

    t a,dt t  , x x, L   =   

    )(

    )( 2

    12

    1

    ][ )(t b,

    t a,dt  xV  xm 2   (6) 

    On the left side, S  is evaluated on a path x.

    On the right side, the values  x(t ) and  x (t ) have to be used

    inside the integral, but for simplicity we have just written  x 

    and  x  respectively 

    Different paths  x give, in general, different values for S  (for fixed (a, t 1) and (b, t 2.) 

    Let’s assume xC is the path that makes the value of S extremum. One way to obtain

    a more explicit form of  xC  is to probe expression (6) with a family of trial paths that areinfinitesimally neighbors to that particular path.  Let’s try, for example, 

     x( = xC   +  h  (7)

    Scalar

    (parameter)

    Function

    which means

     x(( t ) = xC (t )  +  h(t ) (7)’ 

    where h(t ) is an arbitrary function subjected to the condition,

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    6/64

    h(t 1)= h(t 2) =0  (8) 

    and   is an arbitrary scalar parameter,

    In expression (7), when choosing small values for , x(  becomes a path just a

    “bit” different than the path  xC .

    Note: In the literature the path difference [ x( - xC  ] is sometimes called   x.

    Here we are opting to use h ( a number, and h a function) instead, just

    to emphasize that [ x(- xC ]  is a difference between two paths (and notthe difference of just two numbers). 

    Evaluating expression (6) at the path x(( gives,

    S ( x() = )(

    )(

    2

    1

     

    t b,

    t a,{  m

    2

    1 [ x C (t ) + h (t ) ]

    2  –  V ( xC(t  ) +  h(t  ) ) }dt   (9) 

    The condition that  xC is an extremum becomes, 

    00

      d 

    dS   (10)

     x(t ) 

    t  t 1  t 2 

     

    h(t )a 

    b   xC (t )

    Figure 2. For an arbitrary function h, a parametric family of trial paths  x(t ) =

     xC(t ) +  h(t ) is used to probe the action S  given by expression (6).

    From (6),

     d α

    dS 

     

    )(

    )(

    2

    1

     

    t b,

    t a, {m

    2

    1

    2 [ x

    C (t ) + h

     (t )] h

    (t ) – 

    V  ’h

    (t )  }dt

    where V’  stands for the derivative of the potential V  

    = )(

    )(

    2

    1

     

    t b,

    t a,{ m x C  (t )  h  (t )  –  V  ’ h(t )  }dt +  

    )(

    )(

    2

    1

     

    t b,

    t a, m [ h  (t )]2dt  

    The last term will be cancelled when evaluated at =0. 

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    7/64

      0  d 

    dS 

    )(

    )(

    2

    1

     

    t b,

    t a,{ m  x C  (t )  h  (t ) –  V  ’( xC) h(t ) }dt (11) 

    The first term on the right side of the equality above can be integrated

    by parts,

    )(

    )(

    2

    1

     

    t b,

    t a, x C  (t ) h  (t ) dt = x C  (t )

    2

    1

    )(t 

    t t h  -

    )(

    )(

    2

    1

     

    t b,

    t a, x C  (t ) h(t ) dt

    According to (8), h(t ) vanishes at t 1 and  t 2 ; therefore the first terms on

    the right side vanishes, 

    )(

    )(

    2

    1

     

    t b,

    t a, x C  (t )  h (t ) dt = -

    )(

    )(

    2

    1

     

    t b,

    t a, x C  (t )h(t ) dt

    Expression (11) becomes,

    0  d 

    dS    – )(

    )(

    2

    1

     t b,

    t a,{ m  x C  (t ) + V  ’( xC)} h(t )dt (12) 

    Since this last expression has to be equal to zero for any function h(t ), it must happen

    that m  x C  (t ) + V  ’( xC) =0, or,

     x C  (t ) = –  dx

    dV ( xC) = F  

    That is,

    S  ≡ )(

    )(

    2

    1

    t b,

    t a, t)dt  , x L(x, =   )(

    )( 2

    11

    1][ )(

    t b,

    t a, dt  xV  xm2

     …

    takes an extreme value when the path x(t ) . 

    satisfies the Newton’s Law  x (t ) = –  dx

    dV  = F  

    (13)

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    8/64

    In the next section, a key expression we will use through the derivation is the following:

    Consider an arbitrary function, 

    )( t  , ,S S    vu ,

    where )u,u,u( 321u   and )v,v,v( 321v  

    For arbitrary increments , , and the value of

    )( dt  t   ,  ,S      δvΔu  

    can be approximated by,

    )( )( t  , ,S dt t   ,  ,S    vuδvΔu    + 

    + 33

    2

    2

    1

    1 uuu 

    S S S 

     + 

    + 33

    2

    2

    1

    1 vvv

         

    S S S  

    + dt t 

     

    Sometimes the following notation is used,

    )u

    ,u

    ,u

    ( 321  

    S S S S u

     

    Accordingly,

    )( )( t  , ,S dt t   ,  ,S    vuδvΔu     +v

    δ

    u

    Δ 

    S S   + dt 

     

    The Lagrange equations of motion obtained from the Hamilton’s variational

    principle

    In a more general case, the system may be composed by n particles. Using, 

    x (t )= ( x1(t ),  x2(t ), … ,  xn(t ), 1 x (t ), 2 x (t ), ,…, n x  (t ) )the action is defined as

    S( x ) ≡

    )(

    )(

    2

    1

     

    t ,

    t ,

     L( x (t ), x   (t ) , t ) dt (14) 

    where a and b are two fixed point in the configuration space.

    Using a family of trial functions of the form

    x ( (t ) = x  (t )  +   h (t ) (15) 

    where h (t 1) = h (t 2) = 0

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    9/64

    x (t )= ( x1(t ),  x2(t ), … ,  xn(t ), 1 x (t ), 2 x (t ), ,…, n x  (t ) )

    h (t )= ( h1(t ), h2(t ), … , hn(t ), 1h (t ), 2h (t ), ,…,  nh  (t ) )

    we look for an extreme value of the function

    S() =  2

    1

      t 

    t  L( x ((t ), x  ((t ), t ) dt (16) 

    From (15) and (16) one obtains,

     d 

    dS 

    2

    1

      t 

    t { i

    ii

    i

    ii

    h x

     Lh

     x

     L

    } dt

    Notice, the term

     L

      does not appear in the last expression.

    Integrating by parts the second term,

     d 

    dS  

    2

    1

      t 

    t { i

    ii

    h x

     L

    } dt +

    2

    1

    i

    ii

    h x

     L

    2

    1

      t 

    t { i

    ii

    h x

     L

    dt 

    d )(

    } dt

    Since h 

    (t 1) = h 

    (t 2) = 0, one obtains 

     d 

    dS  

    2

    1

      t 

    t { i

    ii

    h x

     L

    } dt - 

    2

    1

      t 

    t { i

    ii

    h x

     L

    dt 

    d )(

    } dt

    = i

      2

    1

      t 

    t {

    i x L

      -  )(

    i x L

    dt d 

    } ih dt

    In the last expression i x

     L

     and  )(

    i x

     L

    dt 

     are evaluated at  x 

    (t ) + )(t h 

    .

    0  d 

    dS  

    i

      2

    1

      t 

    t { 

    i x

     L

      -  )(

    i x

     L

    dt 

    } )(t hi dt

    In the last expression

    i x

     L

     and )(

    i x

     L

    dt 

     are evaluated at  x 

    (t ).

    The variational principle requires that,

    0  d 

    dS  

    i

      2

    1

      t 

    t { 

    i x

     L

      -  )(

    i x

     L

    dt 

    } )(t hi dt = 0 (17) 

    for arbitrary trial functions  )(t hi .

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    10/64

    This could be satisfied only if,

    0 x

     L

     x

     L

    dt 

    ii

      for  i=1,2, …, n. The Lagrange Equations  (18)

    These are second order equations. The motion is completely specified if the initial

    values of the n coordinates xi and the n velocities i x  are specified. That is, the  xi and i x  

    form a complete set of  2n independent variables for describing the motion.

    Remark:

    Hamilton’s variational principle involves physical quantities T  

    and V , which can be defined without reference to a particular

    set of generalized coordinates. The set of Lagrange equations is

    therefore invariant with respect to the choice of coordinates. ! 

    A key expression we will use through the derivation is the following:

    For an arbitrary function,  )( t  , ,S S    vu ,

    3

    3

    2

    2

    1

    1

    uu

    uu

    uu

     

    S S S 

    dt 

    dS  

    +  33

    22

    11

    vvvvvv 

    S S S + 

    +t 

     

    Sometimes, the following notation is used )u

    ,u

    ,u

    ( 321  

    S S S S u

     

    Accordingly,

    dt 

    dS  

    vv

    uu

     

    S S 

     +t 

     

    Example: The Lagrangian for a particle in an electromagnetic field

    This is a case where the force depend on the velocity,

    )v(   B E F     q   (19)

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    11/64

    Since the Maxwell’s equation states that  0 B  , then B  can be expressed in terms ofa vector potential )( t  ,x AA   

    AB      (20)

    (because the divergence of the rotational is identically equal to zero.)

    On the other hand, the third Maxwell’s equation 0/   t B E   can then be written

    as 0)(

    AE  , or 0)/(   t AE  . The quantity with vanishing curl can be

    written as the gradient of some scalar function, that is t /AE  , or

    AE 

      (21)

    where )(  t  ,x   

    With these alternative expressions for E  and B  the equation of motion

    )v( B E x     qm    

    can be expressed as,

    t qqm

      A

    x      + )(   Ax    q   (22)

    It can be demonstrated (see homework assignment) that,

         )(   Ax    )(-   

     

     A x

      x A

    x      (23)

    Accordingly, the vector expression (22) can be expressed in term of the components,

     A

     x x

    q

    m

       

     

          + )(    

     A x

      x A

    x       = 1, 2, 3

    The second and the fourth terms on the right side constitute a

    exact differential of   A  

      x

    +dt 

    dA

     x

     

     

    A

    x    (24)

    We have to figure out the Lagrangian L, such that the Lagrangian equations (18) lead to(24). If there were no magnetic field, L would be )()(

    2x x    qm1/2 L   . The magnetic

    field introduces a term depending on the velocity. Hence, let’s try, 

    )()(2

    2

    1t  , , f qm L   x x x x        (25)

    where ),,( 322  x x xx   

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    12/64

         x

     f 

     xq

     x

     L

     

      

       x

     f 

     xm x

     L

     

     

       

     

       x

     f 

    t  x

     f 

     x

     f  xm

     x

     L

    dt 

     

    )()(x 

    x x 

    x   

    where x 

    stands for ),,(321  x x x  

     

    stands for ),,(321  x x x    

     

    0

        x

     L

     x

     L

    dt 

     implies

         

      x

     f 

    t  x

     f 

     x

     f 

     x

     f 

     xq xm

      )()(

    x x 

    x x    (26)

    which should be compared with (24)

      xm      x

    q

    +

    dt 

    dAq

     xq    

     

    A

    x   

    Notice the right side of (26) contains a term in x  , which is not present in (24). Therefore

    we require 

      x

     f 

    )(

    x x   = 0

    Or, equivalently,

         x

     f 

     x    

      for  = 1, 2, 3 (27)

    A particular solution of (27) is,

    321 G xG xG xt  , f  321  )(         x G x    (28)

    Replacing (28) in (26),

      

      

      Gt 

    G x x

    q xm

      )(

    x x 

    G x     

    The last two terms on the right side constitute a

    exact differential of G 

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    13/64

         

      Gdt 

     x xq xm  

     

    G x    (29)

    which should be compared with (24),

      xm 

       xq

    + dt dA

    q xq   

     

    A

     

    A comparison between (24) and (29) indicates that AG  q . Replacing this solution in(28) gives,

    )( t  ,q f    x Ax       (30) 

    The Lagrangian in (25) is then given by,

    )( )()(2

    2

    1t  ,qqmt  , , L   x Ax x x x x        (31)

    Lagrangian for a particle in an electro-

    magnetic field described by a scalar

    potential   and vector potential A.

    AE 

     

    AB     

    4.1C Constants of motion

    Cyclic coordinates and the conservation of the generalized momentumThere is another way to identify constant of motion. For example, if the Lagrangian

    of the system does not contain a given coordinate  x, the corresponding Lagrangian

    equation 0

        x

     L

     x

     L

    dt 

     becomes

    0

      x

     L

    dt 

     

    It means that the generalized momentum  x

     L

     is constant

    If a coordinate  x  does not appear in the Lagrangian, the variable is said to be cyclic.

      p  = constant   for a cyclic coordinate (32)

    Lagrangian independent of time and conservation of the Hamiltonian

    Consider a Lagrangian that does not depend explicitly on time, i.e. t 

     L

    = 0. 

    The total time derivative of

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    14/64

       L  L(x  , x  )  (33)is,

    dt 

    dL 

    i

    [i x

     L

    dt 

    dxi   + 

    i x

     L

    dt 

     xd  i  ] 

    From the Lagrange equationii  x

     L

    dt 

     x

     L

    , the previous equation can be written as

    dt 

    dL 

    i

    [ (i x

     L

    dt 

    )dt 

    dxi   + 

    i x

     L

    dt 

     xd  i  ]

      [ (i x

     L

    dt 

    )dt 

    dxi   + 

    i x

     L

    dt 

     xd  i  ]

      ( )(i

    i x L x

    dt d 

     

     dt 

    d  

     

    i

    i x

     L x

     

    This implies, 

     

    i

    i x

     L x

       L  = constant (34)

    when L does not depend on t explicitly.

    We have just found a constant of motion.

    The quantity on the left of expression (34) is called the Hamiltonian H  of the system.

     H   ≡ i 

     

    i

    i x

     L x

       L    (35)

    A more rigorous definition of the Hamiltonian function will be given in the following

    sections.

    Expression (34) indicates that, when L does not depend explicitly on time, the

    Hamiltonian quantity H is a constant of motion.

    Case of a potential independent of the velocities

    For the case in which V = V (x ),

     L(x  , x  ) = T ( x  )   V (x )

    = k 

     

    2

    2

    1k k  xm      V (x ) (36)

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    15/64

     i x

     L

      = ii xm    

     

    i

    i

     x

     L x

     = 

    i

     

    2

    ii xm    

    =  2 T  (x ) 

     H   ≡ i 

     

    i

    i x

     L x

       L   

    = 2 T  ( x  )  L   

    = 2 T  ( x  )  ( T ( x  )  V (x )  )

    = T ( x  )  V (x )  = Energy (37)

    Thus, when the potential does not depend on the the velocity, and L does not depend

    on the time explicitly,  H  is the energy of the system and at the same time a constant of

    motion.

    4.2 The Hamiltonian formulation of mechanicsAn alternative to the Lagrangian description of mechanics, outlined above, is the

    Hamiltonia formulation. Instead of dealing with a set of n differential equations of 2nd

    -

    order given in (18), one is resorted to solve 2n differential equations of 1st

     order, as we

    will see below. However one may end up with a similar intensity of difficulty whensolving the corresponding equations. The advantages of the Hamiltonian formulation lie

    not necessarily in its use as a calculation tool, but rather in the deeper insight it affords

    into the formal structure of mechanics.1  Its more abstract formulation is of interest

    because of their essential role in constructing the more modern theories in physics. In

    this course it is used as a point of departure for elaborating a quantum theory.

    In this section we show that the new formulation is implemented through:

      a change of variables (to be specified later),

    ( x1, x2, …, xn, 1 x , 2 x , …, n x , t )              later  specified beto

    ( x1, x2, …  xn, p1, p2, …  pn,, t )

      and, instead of ),,( t  L   x x   , the use another function

     H=H ( x1, x2, …, xn, p1, p2, …, pn, t ) = H (x , p , t )

    How to obtain such a transformation? How to choose H ?

    To get an idea of what transformation is convenient (i. e. what particular combination

    between the ),,( t x x    and ),,( t p x   variables is suitable for our purpose), let’s familiarize

    with the following, much simpler, Legendre transformation

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    16/64

     

    4.2A Legendre transformation

    Consider a physical quantity is described by a two-variable function

    L=L( x, y) (32)

    A differential change of L is given by,

    dL = x

     L

    dx + y

     L

    dy

    = u dx + v dy (33) 

    It may happen that a description could more convenient in terms of  x  and y

     L

    .

    Accordingly, we would like, then, to perform a change of variables

    ( x, y)   ( x, v) (34)

    where v =  y

     y)(x, L

     

    (We will assume that the relationship v = y

     y)(x, L

     allow us to put y in terms of x and v).

    One way to obtain a quantity B (to replace L) whose differential-change could be

    expressed directly in terms of dx   and d v (instead of dx and dy) is by defining B=B( x, v)

    as follows,

     B( x, v) ≡  L( x, y)  –   y v (35)

    =  L( x, y)  –   y 

     y

     y)(x, L

     

    Its corresponding differential is given by

    dB = dL –   y  d v –   v dy

    using (33)

    = u dx + v dy –   y  d v –   v dy  

    dB = u dx –   y  d v (36)

    (As we said above, we assumed that the definition v =  y /  y x,   L   )(  allows to

    put y in terms of x and v. Also, since u=  x L/  , the above assumption ensures u

    can be put in terms of x and v as well.)Thus, dB end ups being expressed in terms of the differentials dx  and d v (the new

    independent variables,) which is what we wanted.

    The last expression also gives,

    u = x

     B

     

      and  y = –  v

     B  (37)

    In summary, 

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    17/64

     

    ( x, y)   ( x, v)( x, v) = ( x,  y /    L    )

    L( x, y)    B( x, v)

     B( x, v) ≡  L( x, y)  –   y v

    = L( x, y)  –   y   y /    L    

    dL  = (  x L/  ) dx + (  y L/  )dy = u dx + v d   y 

    dB  = u dx –   y d v 

    (38)

    With this background, we will see below that the transformation to transit from the

    Lagrangian formulation to the Hamiltonian formulation is of the Legendre’s type. (Just

    identify the  x  variable with the y variable we have used in this section.)

    4.2B The Hamilton Equations of Motion

    The equation of motion of a system is described by a Lagrange function 

    ),,( t  L L   x x  

    , leading to a set of differential equations of second order,

    0

    ii  x

     L

     x

     L

    dt 

    , i = 1, 2, …, n 

    Consider the following transformation of coordinates,

    ),,( ),,( t t    p x x x  

      (39)

    where ),,( 

    t  x

     L

    i

    i p   x x  

     

     H   L    

    ),,( ),,( i t t   L H   p x   x x - p x i 

    i    (40) 

     xi  has to be expressed in terms of ),,( t p x  

     

    ) , (  ),,(),,( , t  p x t t   Li   p x p x    x x - i 

     

    The Hamiltonian function

    On one hand,

    ),,( t  H  H    p x     implies,

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    18/64

    dH  = dt t 

     H dp

     p

     H dx

     x

     H i

    ii

    i

    ii  

      (41)

    On the other hand, the expression for ),,( ),,( i t  Lt   p xi

    i H    x x - p x    given in (40)

    implies,

    dH  =  dt t 

     L xd 

     x

     Ldx

     x

     Ldp x xd  p i

    ii

    i

    iii

    ii

    i

    ii

       

     

    )(i x

     L

    dt d 

      i p  

    )( i pdt 

     

    i p  

    Thus, the first and fourth sum-terms cancel out

    dH  =  dt t 

     Ldx pdp x ii

    ii

    ii

          (42) 

    From (41) and (42) one obtains,

    ),,( ),,( i t t   L H   p x   x x - p x i 

    i   

    ) , (  ),,(),,( , t  p x t t   Li   p x p x    x x - i 

     

    Hamilton canonical

    equations(2n first-order equations) (43)

    i

    i p

     H  x

    i

    i x

     H  p

    i = 1, 2, …, n and

    (44)t 

     L

     H 

     

    Notice if L does not depend on t  explicitly, neither does H .

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    19/64

    Recipe for solving problems in mechanics

    i ) Set up the Lagrangian ),,( t  L   x x  

    .

    ii ) Obtain the canonical momenta ),,( 

    t  x

     L

    i

    i p   x x  

     

    iii ) Obtain ),,( ),,( i t  Lt   p xi

    i H    x x - p x  

      in terms of x 

     and p 

    .

    Example. Two dimensional motion of a particle in a central potential V( r 

    ) =V(r ). 

     L( ),,,        r r  )= T - V   = 2

    1m ( 222   r r   ) - V(r ). 

    Using the definition (39),

     L pr 

     = m r    and 

      

     

     L p  = m  2r   

    Using the definition (40),

    ),,,( ),,,( 

    r           

    r r  Lr r   p p p pr  H   - 

           p pr   r  

    2

    1m ( 222   r r   ) V(r ). 

    The expressionsr 

     L pr 

     and

      

     

     L p  are inverted to

    express r   and    in terms of ),,,(     p pr   

          p

     p p

     p

    mr m 

    2r r   

    2

    1m ( 2

    2

    22r  )()(mr 

    r m

     p p     )

    ),,,(     p pr r  H  = 222

    2 2 mr m

     p p       V(r ).

    Using (30) one obtains the equation of motion for each of the 4 independent variables

        p pr r  ,,, .

    r  p

     H r 

    =m

     pr  

     

      p

     H 

    = 2mr  p 

     

     H  pr 

    =

      

     

     H 

     p r  = 0 

    Properties of the Hamiltonian

    The significance of the Hamiltonian was already observed in Section 4.1C, in which,

    for the case when 0

     L the Hamiltonian constitutes a constant of motion. Now that

    we have a more formal definition of the Hamiltonian, given in expression (40), we can

    re-state it the following manner:

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    20/64

     

     t 

     H 

    dt 

    dH 

      (45) 

    Proof: dt dH 

      t 

     H  p p

     H  x x

     H i

    ii

    i

    ii  

       

    - i p   i x  

    The first and second sum-term cancel out, which proves the statement. That is,

    a Hamiltonian that does not depend explicitly

    on time constitutes a constant of motion 

      H is a constant of motion if .  (46) 

    L does not depend explicitly on t. 

    This follows from the two general results (44)t 

     L

     H 

      and (45) 

     H 

    dt 

    dH 

    ,

    Sin 0

     L implies 0

     H , and, hence 0

    dt 

    dH .

      For a Lagrangian L=T-V where the potential V is independent  

    of x 

      and the kinetic energy T is homogeneous quadratic (47) 

    in ,x 

     then H is the total energy

    2)( iii

     xk T      and L then has the form )( )( 2 x 

    V  xk  Li

    ii    

    One obtains,i x

     L

    = ii xk   2   and  

    i

    ii

    i i

    i  xk  x

     L x

    2)(2  

    = 2T  

    H =i

    i

    i  x

     L x

       L = 2T –  L= 2T –  ( T –  V )= T + V . 

       H   may be a constant of the motion but not the energy

    (if T   is not homogeneous quadratic.) . 

     H  may be the energy but not constant (if 0

     L). . 

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    21/64

    H may be neither the energy nor a constant of motion.  

    In the Hamiltonian approach,

      A mechanical system is completely specified at any time by giving all the

    p x     and  coordinates.That is, the state of a system is specified by a point ),(   p x 

      in phase space.

    The task is to find how this point moves in time, i.e. the motion in phase space

      The initial condition tell us where in phase space the system starts, but it is the

    Hamiltonian which tells us, though the canonical equations (43), how it proceeds

    from there.

    (  

    ,x  )

    t=t o 

    t

     phase

    space 

      Alternatively, the Hamiltonian determines all the possible motions the system can

    perform in phase space, the initial conditions picking out the particular motion

    which is the solution to a particular problem.

    4.2C Finding constant of motion before calculating the motion itself

    a) Looking for functions whose Poisson bracket with the Hamiltonian vanishes

    It is possible to use the Hamiltonian to determine directly how a given dynamical

    function varies along the solution-motion, even before calculating the motion itself. (For

    example, determining whether that quantity is a constant of motion or not.) To that

    effect, let’s consider a dynamical function  F= F  ),( t  ,p x  

      and calculate its total

    differential change with time, 

    dt 

    dF  

     F  p

     p

     F  x

     x

     F i

    ii

    i

    ii  

       

    i p

     H 

     i x

     H 

    -  

     F 

     x

     H 

     p

     F 

     p

     H 

     x

     F 

    iiiiii  

       

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    22/64

    dt 

    dF  

     F 

     x

     H 

     p

     F 

     p

     H 

     x

     F 

    i iiii  

     

      

     

      (48)

    The first term on the right side is called the Poisson bracket between F and H (to be

    described in more detailed in the sections below).

         

      

     

    i iiii  x

     H 

     p

     F 

     p

     H 

     x

     F  H  F,   (49)

    In terms of the Poisson bracket, the time dependence of a physical quantity is expressed

    as,

    dt 

    dF    H  F,  

     F 

      (48)

    A quantity F  that does not depend explicitly on time, will be a constant of motion if the

    Poisson bracket between F   and the Hamiltonian H  vanishes. Certainly, one would have

    to have a lot of intuition to figure out such a function F . We will see later, however, thatthere exist systematic methods to find just that. Here we just want to show that the

    possibility of finding constant of motion without solving the equations.

    To see how this works, let’s take the familiar example  of the two dimensional,

    symmetric simple harmonic oscillator.2 For simplicity take k=1 and m=1. Then,

    )()(),,,,(2

    2

    2

    1

    2

    2

    2

    121212

    1

    2

    1 x x x xt  x x x x L       (49)

    ii  xt  x x x x x

     L

    i

     p  

    ),,,,( 2121   for i= 1,2 (50) 

    ),,(),,( t  L - xt  ii

    i p H    x x p x  

     

    ),,,,(),,,,( 212122112121 t  x x x x L - x xt  p p x x  p p H       

    2211  p p  x x     )()(2

    2

    2

    1

    2

    2

    2

    12

    1

    2

    1 x x x x      

    where we have to replace the i x  in terms of the i p  given in (50)

    2211  p p p p   )()(2

    2

    2

    1

    2

    2

    2

    12

    1

    2

    1 x x p p    

    ),,,,( 2121 t  p p x x H    )()(2

    2

    2

    1

    2

    2

    2

    12

    1

    2

    1 x x p p     (51)

    Without finding the explicit solution, let’s show that expression (48) tell us that the

    angular momentum F, 

    12212121 ),,,,(  p x p xt  p pqq F      angular momentum  (52)

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    23/64

    Is a constant of the motion.

    First, let’s calculate, 

    1212

    1111

     x x p p x

     H 

     p

     F 

     p

     H 

     x

     F 

     

    2121

    2222

     x x p p x

     H 

     p

     F 

     p

     H 

     x

     F 

     

    0

     F  

    which gives

     F 

     x

     H 

     p

     F 

     p

     H 

     x

     F 

    iiii  

     

      

     

    2

    1i 

    =0 

    Accordingly, expression (48) gives,

    0dt 

    dF   (53)

    That is, without explicitly calculating the solution, we know that, for this problem, the

    angular momentum is a constant of motion.

    b) Cyclic coordinates

    According to the definition given in Section 4.1C, a cyclic coordinate xi is one that does

    not appear in the Lagrangian. The Lagrangian equation

    ii

     x

     L

    dt 

     x

     L

    then implies that

    the generalized momentum  pi =i x

     L

      is a constant of motion. But the Hamiltonian

    equationi

    i x

     H  p

    implies also that in this case 0

    i x

     H ; that is,

    a coordinate the is cyclic (i.e. absent in the Lagrangian) (54) 

    will also be absent from the Hamiltonian

    This conclusion can also be obtained from the definition of the Hamiltonian,

    ),,( ),,(i

    t t   L H   p x   x x - p x i 

    . Notice, H   differ from  – L  by

    i

     p x

    i i 

    , which does

    not involved the coordinates xi explicitly.

    Hamiltonian with full cyclic coordinates

    The solution of the Hamilton’s equation is trivial for  the particular case in which the

    Hamiltonian does not depend explicitly on time (it is a constant of motion) and all

    coordinates  xi are cyclic.

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    24/64

       xi i=1, …, n does not appear in the Hamiltonian 

    Under those conditions all the conjugate momentai

    i x

     H  p

     will be constant.

    ii p      

    The Hamiltonian then may be written in the form

    ) , ... , ,( n21       H  H    

    and the equation of motion for the coordinates x i will be,

    )(  constant  H 

     xi

    i   i   

     

    whose solutions are,

    i i        t  xi  

    It is true that rarely occurs in practice that all the coordinates are cyclic (for, thus, takingadvantage of the easy way to find the solutions.) However, a given problem can be

    described by different sets of coordinates. It becomes important then to find a

    systematic procedure for transforming from one set of variables to another set of

    variables where the solution is more conveniently tractable. That will be the subject of

    using canonical transformations, to be described in section 4.4.

    4.2D The modified Hamilton’s principle: Derivation of the Hamilton’s equations from a

    variational principle.

    Hamilton’s canonical equation can be obtained from a variational principle, similar

    to the way the Lagrange equations were obtained in Section 4.1B above. However, the

    variations will be over paths in the ),(   p x   phase-space, which has 2n dimensions, twice

    the n dimensions of the x 

     configuration-space. Interestingly enough, the function inside

    the integral, upon which the variational principle will be applied, is again the Lagrangian

     L, but now considered as a function of ),,,( t  ,p p x x    .

    ) ( ),,,( ,, t  p x L  H t  , i   p - p p x x    x i 

    i      (55) 

    As a first step, let’s apply the variational principle to

    ),(   p x S  ) ≡ 

    )(

    )(

    222

    111

    t  ,

    t  , ,

     , , p x 

    p x 

    ),,,( t  , L   p p x x    dt   (56) 

    Inside the integral, we have just written ),,,( t  ,p p x x    for

    simplicity, but  ),, ,( )()()()( t  ,t t t t    p p x x      should be used

    instead, respectively.

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    25/64

    In applying the variational principle, we realized it is very similar to the case when we

    applied it in the configuration space. This time we just have more independent

    variables. The result is, 

    0 x

     L

     x

     L

    dt 

    ii

      and 0 p

     L

     p

     L

    dt 

    ii

    , for  i=1,2, …, n. (57) 

    Applying (57) to the Lagrangian given in (55), ) ( ),,,( ,, t  p x L  H t  , i   p - p p x x    x i 

    i    ,

    i pi x

     L

    ,ii  x

     H 

     x

     L

     - 

    0 x

     L

     x

     L

    dt 

    ii

      impliesi x

     H i p

      (58a)

    On the other hand,

    0

    i p

     L

    ,

    i

    i

    i  p

     H  x

     p

     L

     -   

    0 p

     L

     p

     L

    dt 

    ii

      impliesi

    i p

     H  x

        (58b)

    That is, we obtain in (58) the canonical Hamiltonian equations (43).

    4.3 The Poisson bracketExpression (48) evaluates how a given dynamic quantity  F= F  ),( t  ,p x 

        varies as a

    function of time, while x   and p   evolves according to the Hamilton equations. The first

    term of the right hand in (48) turns out to be an important expression in itself; it is

    called the Poisson bracket of F  and H .

    In general, the Poisson bracket [S,R] of the dynamical variable S =  S  ),(   p x  

      with the

    dynamical variable R= R ),(   p x  

     is defined as,

         

      

     

    i iiii  x

     R

     p

     p

     R

     x

    S  RS,   (55)

     Poisson bracket  of the

    dynamic quantities R and S  

    Note: Sometimes it will be convenient to express the Poisson bracket as

    [S,R]( x,p) (56) 

    to emphasize that the derivatives in the bracket are taken with respect to the

    variables ),(   p x  

    . For, it may happen that an (invertible) transformation of

    coordinates

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    26/64

      ),,( t p x Q Q  

      and ),,( t p x P P  

     

    may have taken place. Therefore the dynamical quantities will have a

    dependence on Q 

     and P 

    , and the Poisson bracket of the S  and R can be taken

    with respect to the new variables,

    [S,R](Q,P )

    (57)

    In terms of the Poisson bracket, expression (48) can be expressed as,

    dt 

    dF  

     F  H  F 

    ],[   (58)

    4.3A The Hamiltonian equations in terms of the Poisson brackets

    In the particular case that  F = x  , expression (58) gives,

    ][][  H  , xt 

     x H  , x

    dt 

    dxα

    αα

    α

     

    But notice that ][  H  , xα =    

      

     

    i ii

    α

    ii

    α

     x

     H 

     p

     x

     p

     H 

     x

     x=

      p

     H 

     

    Therefore dt 

    dxα =  p

     H 

     = ][  H  , xα  

    In the particular case that F = p , expression (58) gives, 

    ],[],[ 

     H  pt 

     p H  p

    dt 

    dp 

      

     

     

    But notice that ][  H  , pα =     

     

     

    i ii

    α

    ii

    α

     x

     H 

     p

     p

     p

     H 

     x

     p

    =  x

     H 

     

    Therefore ][  H  , pdt 

    dpα

    α =  x

     H 

     

    Thus,

    (59)

    ][  H  , xdt 

    dxi

    i

    ],[  H  pdt 

    dp

    i

    i

    Hamilton canonical

    equations(2n first-order equations)

    i = 1, 2, …, n 

    constitutes an alternative way to express the Hamilton canonical equations.

    4.3B Fundamental brackets

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    27/64

         

      

     

    i iiii  x

     x

     p

     x

     p

     x

     x

     x x x

              , = 0 for any  1, 2, ..., n 

         

     

     

     

    i iiii  x

     p

     p

     p

     p

     p

     x

     p

     p p

           

       , = 0 for any  1, 2, ..., n 

         

      

     

    i iiii  x

     p

     p

     x

     p

     p

     x

     x p x

              , = 0 for  ≠ 

         

      

     

    i iiii  x

     p

     p

     x

     p

     p

     x

     x p x

              , = 1 for  = 

    That is,

    0, ,)()(  p x, p x, ][][          p p x x    (60) 

                ,)(  p x,][   p x  … .. 

    Remark.

    Notice, the result (60) appears to be trivial. It is. In fact, this is a property of the Poisson

    bracket itself, regardless of the existence of a Hamiltonian.

    It turns out, however, that if the bracket of the variables      p x , were calculated with

    respect to other arbitrary variables (Q,P ), the value of )(,  P Q,][      p x  would be, in general,

    different than         .

    (61)For an arbitrary transformation 

    ( x,p) (Q,P )          

     , )(  P Q,][   p x   

    But, for a particular type of transformation of coordinates, called canonical

    transformations (which are introduced in connection to Hamiltonian description of

    motion, to be described in detail in the following sections), the Poisson bracket has the

    remarkable property of remaining constant, that is             ,)(  P Q,][   p x  , regardless of

    the new canonical variables used to describe the motion. Hence the usefulness of thePoisson bracket; it helps to identify such important canonical transformations.

      Here we derive the chain rule that relates the Poisson brackets evaluated with

    respect to different coordinates.

    If S =S  ),(   P Q 

     and  R= R ),(   P Q 

     

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    28/64

    where ),,( t p x Q Q  

      and ),,( t p x P P  

     

         

      

     

    i  iiii

     p x,

     x

     R

     p

     p

     R

     x

    S  RS  )(, = 

        

      

    )( )(   i

     β 

     β i

     β 

     β α i

    α

    αi

    α

    α  p P 

     P  R

     pQ

    Q R

     x P 

     P S 

     xQ

    QS   

       

      

     

    )( )(    i

     β 

     β i

     β 

     β i

    α

    αi

    α

    α  x

     P 

     P 

     R

     x

    Q

    Q

     R

     p

     P 

     P 

     p

    Q

    Q

    S  

    )

    (

     i

     β 

     β i

    α

    αi

     β 

     β i

    α

    α

    i

     β 

     β i

    α

    αi

     β 

     β i

    α

    α

     p

     P 

     P 

     R

     x

     P 

     P 

     p

    Q

    Q

     R

     x

     P 

     P 

     p

     P 

     P 

     R

     x

    Q

    Q

     p

    Q

    Q

     R

     x

    Q

    Q

         i   

    )

    (

     i

     β 

     β i

    α

    αi

     β 

     β i

    α

    α

    i

     β 

     β i

    α

    αi

     β 

     β i

    α

    α

     x

     P 

     P 

     R

     p

     P 

     P 

     x

    Q

    Q

     R

     p

     P 

     P 

     x

     P 

     P 

     R

     p

    Q

    Q

     x

    Q

    Q

     R

     p

    Q

    Q

         i   

       β 

     p x,

     β α

    α β 

     p x,

     β α

    α  P 

     R P  ,Q

    Q

    Q

     RQ ,Q

    Q

    S  )()(][][ (

       

     

    +

    ) ][][)()(

     β 

     p x,

     β αα β 

     p x,

     β αα  P 

     R

     P  , P  P 

    Q

     R

    Q , P  P 

     

    Thus,

    For S =S  ),(   P Q 

      and  R= R ),(   P Q 

     

    where ),,( t p x Q Q  

      and ),,( t p x P P  

     

    (62)

     

     

     

     

     

      P 

     R P  , P 

     P 

    S  

    Q

     RQ , P 

     P 

    S  

     P 

     R P  ,Q

    Q

    S  

    Q

     RQ ,Q

    Q

    S  

     β 

     p x,

     β α

    α β 

     p x,

     β α

    α

     β 

     p x,

     β α

    α β 

     p x,

     β α

    α β α

    )()(

    )()(

    ][][

    ][][

       

      

     

    i iiii

     p x,

     x

     R

     p

     p

     R

     x

    S    RS,

    )(

     

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    29/64

     

    Notice, if a particular transformation of coordinates ( x,p) (Q,P ) satisfies,)(],[  p x,α β   P Q  =  ,

    )(

    ],[ p x,

    α β  QQ  = 0, and   (63) )(],[  p x,α β   P  P    = ,

    then (62) gives   )(  p x, RS,  

     

     

     

     

    Q

     R

     P 

    S  

     P 

     R

    Q

    S  

    iiiii

    . That is,

      )(  p x, RS, )(  P Q, RS,   Valid only for those particular trans-  (64) formation ( x,p) (Q,P ) that satisfy (63) 

    Thus, we have found that those transformation of coordinates ( x,p) (Q,P ) satisfying

    (63) are very special: the bracket of two arbitrary dynamical quantities  R and S  remaininvariant, independent of whether we use ( x,p) or (Q,P ) to evaluate the bracket.

    4.3C The Poisson bracket theorem: Preserving the description of the classical motion

    in terms of a Hamiltonian

    a) Example of a motion for which there is not Hamiltonian to describe it

    Given a Hamiltonian ),,( t  H    p x  

     we say that the time evolution of the classical system

    is generated by H  according to the canonical equations (43) and (59).

    There are cases, however, in which no Hamiltonian generates a particular motion.

    Consider, for example, the following motion:22

    )(  x p x    (65)

    22

    2)(

    )(21  x p2x- 

     x p

     x p  

     

    That there is no H  whose associated canonical equation ends up in (60) can be seen by

    first requiring,

    22)(  x p  p

     H   x  

     

    22

    2)(

    )(21  x p2x- 

     x p

     x 

     x

     H   p  

     

    The first equation gives,

    )(4)( 2222

     x p x x p  x

      p x

     H 

     

    and the second equation gives,

    ])()(2

    1[ 222

    2

      x p2x-  x p

     x 

     p 

     x p

     H 

     

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    30/64

       x p4x-  x p

     x - )(

    )(21 2

    22 

     

    The fact that

     x p

     H  

     p x

     H 

    22  (66)

    implies that such a function H  does not exist.

    b) Change of coordinates to attain a Hamiltonian description

    It is interesting to note in the example above that under a proper change of

    coordinates ( x,p) (Q,P ), a Hamiltonian function  K   can be found such that

     P 

     K  Q

    andQ

     K -  P 

    . The following transformation will do the trick.

     xQ    (67)22 )(  x p P     

    The equations of motion for Q and P  are,

     xQ    according to (65)

    22 )(  x p  

    = P  

    )2()( 2  x x p x p2 P     

    = 2 P 1/2

    ( p +2QQ )according to (65)

    = 2 P 1/2

    ( 222

    )()(2

    1  x p2x-  x p

     x

    + 2QQ )

    = 2 P 1/2

    (     P Q2 -  P 

    1/221 2QQ )

    But   P Q   

    = 2 P 1/2

    (   P 

    1/221 )

    Q P     

    In short, the motion described, in the x,p coordinates, as22 )(  x p x    

    22

    2)(

    )(21  x p2x- 

     x p

     x p  

     

    for which there is not a Hamiltonian,

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    31/64

    is alternatively described in the new coordinates Q  ,  P by the following equation of

    motion,

     P Q    (68) 

    Q P     

    These equations do have a Hamiltonian. Indeed,

    setting  P   P 

     K  Q  

      , gives  K (Q,P ) = (1/2) P 2 + f  (Q)

    setting Q Q

     K   P   

      , gives  K (Q,P ) = (1/2)Q2 + g  ( P )

    Therefore,

     K (Q,P ) = (1/2) Q2  + (1/2) P 

    2(69) 

    c) The Poisson bracket theorem

    The above remark indicates that, when a Hamiltonian cannot be found, it may be

    that we are using the “wrong” coordinates. “Wrong” in the sense that it does not exist a

    Hamiltonian K  to describe the motion in terms of the canonical equations (43) and (59).

    The following Poisson bracket theorem comes handy, then, as a guidance to recognize

    situations in which the motion, in the coordinates being used to describe it, can be

    generated by a Hamiltonian.

    (70)

    Let )(,)( t t   p x  

     be the time development of a system on phase space.

    This development is generated by a Hamiltonian ),,( t  H    p x  

     

    if and only if

    every pair of dynamic variables ),,( t  R   p x  

    , ),,( t S    p x  

      satisfies the

    relation

    ],[ ][][dt 

    dS  RS  ,

    dt 

    dRS  R,

    dt 

    d   

    An outline of the proof is given in the Appendix-1, at the end of this chapter.

    This theorem is used to verify whether or not a given motion is a Hamiltonian motion. If

    we knew x= x(t ) and p =  p(t ), we would apply (70) with the choice of R=q  and S=p. If

    (70) were not fulfilled, then there will be no Hamiltonian to describe such a motion.

    4.4 Canonical Transformations In many occasions, it may be convenient to make a transformation of coordinates

    ( x,p) (Q,P ). The motivation may not be necessarily to simplify the mathematicalburden in solving the Hamiltonian equations in the new coordinates; instead, more

    often it is to identify more clearly those physical quantities that remain constants

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    32/64

    throughout the motion (even without solving the equations of motion.) In other

    occasions, the transformation of coordinates allows a better interpretation of classical

    mechanics formalism as a point of departure for elaborating a quantum theory. The

    latter is more pertinent to this course.

    The example given in the previous section illustrate, however, that, if we want to

    keep a Hamiltonian formalism to describe the motion, we have to be careful whenmaking a proper change of coordinates. Otherwise we may end up with no Hamiltonian

    associated to that motion when described in those new coordinates. In this section we

    study those types of transformations of coordinates that allow keeping the description

    of the classical motion within a Hamiltonian formalism, i. e. its description according to

    the canonical equations (43) and (59). They are called canonical transformations. We

    will find that the systematic procedure for generating such transformations, involves the

    participation of four types of so called generating functions. Each generating function

    produces a corresponding type of canonical transformation.

    In the course of constructing a consistent formalism for obtaining canonical

    transformations, a fortunate turn of events occurs. It turns out that, finding the proper

    generating function (to obtain a canonical transformation of specific characteristics) is

    equivalent to finding the solution to the canonical Hamiltonian equations! (This will be

    shown in Section 4.5C below.) Further, a particular canonical transformation will lead to

    a new Hamiltonian that is identically equal to zero; the equation that such a generating

    function must satisfy is the celebrated Hamilton Jacobi equation (this will be addressed

    in Section 4.7). In the subsequent chapters, when elaborating a quantum mechanics

    formalism, we will require that the quantum mechanics equation should have the

    Hamilton Jacobi equation as a limit. The latter justify our current effort for attaining a

    god understanding of the Hamilton Jacoby equation. We start by addressing the concept

    of canonical transformations first.

    Transformation of coordinates

    Consider that a classical motion is described by

    )( ,)(  t t    p x    (71)

    for which a Hamiltonian exists; i .e. the changes of )(t x 

     and )(t p 

     are governed by a

    Hamiltonian H : 

    i

    i p

     H  x

     and

    i

    i x

     H  p

     

      (72)

    Consider a transformation of coordinates,

    ),,( ),,( t t    P

    Q p x         (73)

    ),,( ; ),,(  t p x t p x Q Q  

    PP   

    As )(t x 

      and )(t p 

      change, the variables )(t Q 

      and )(t P

      also change accordingly.

    However, nothing ensures that the time evolution of the latter variables preserves the

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    33/64

    Hamiltonian formalism given in expression (43). That is, it doesn’t always exists a

    function K  such thati

    i P 

     K Q

     andi

    iQ

     K  P 

     

    .

    Those particular transformations that allow preserving the Hamiltonian form of the

    equation of motion are called canonical transformation. In this section we address,  a method to generate such transformations, and

      inquire how to select a canonical transformation that renders a Hamiltonian K

    that is a constant function, for, in such a case, the equation of motion becomes

    obviously very simple.

    (  

    ,x  )

    t=t o 

    t

     phase space  (  

    ,Q  )

    t=t o 

    t

     phase space 

     H

    Transformation 

    Figure 3. For 

    ),,( ; ),,(  t p x t p x Q Q  

    PP   

    4.4A Canonoid transformations (i.e. not quite canonical )

    Preservation of the canonical equations with respect to a particular Hamiltonian)

    Consider a Hamiltonian H =  H   ).,,( t p x  

     

     An invertible transformation of variables ),,(),,( t t    P

    Q p x     such

    that the time evolution of the new variables )(t iQ 

     and )(t P

      (74)

     preserve the form of the Hamiltonian equations,

    i.e. there exists a function K  such thati

    i P 

     K Q

     andi

    iQ

     K  P 

     

     ,

    is called canonoid (i.e. not quite canonical) with respect to H .

    . Note: It turns out, a transformation that is canonoid with respect to a given Hamiltonian

    need not be so with respect to another.

    4.4B Canonical transformations

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    34/64

    Definition

     A transformation that is canonoid with respect to all Hamiltonians  (75)

    is called canonical.

    Canonical transformation theorem3 

    Let ),(   p x  

    be a set of general coordinates on phase space. The Poisson brackets of anytwo dynamic variables R and S will be specified as,

         

      

     

    i    i i i i 

    p x 

    S S 

    ),(R ,  

    Consider an invertible transformation

    ),,( ; ),,(   t p x t p x Q Q    PP  

    The following three statements are equivalent:

    a) The transformation ),,( ;),,( t t    p x p x Q Q    PP   is canonical. (76)

    b) There exists a nonzero constant z such that any dynamical

    variables R and S satisfy,

    ),(),( R ,R , p x Q  S  z S    P   (77)

    (That is, the Poisson bracket is practically independent of the

    coordinates used to calculate it.)

    The transformation ),,( ;),,( t t    p x p x Q Q    PP   is canonoid with

    respect to all quadratic Hamiltonians of the form,

     H= C +

    n

     pc xc1

    )'( 

         + 

    +

    n n

     p p p x x x1 1

    )"'(2

    1

    2

    1

       

                         (78) 

    where   = , ' = ' , ” = ”

    An outline of the proof is given in the Appendix-2.

    Canonical transformation and the invariance of the Poisson bracket

    In short, the theorem above establishes that,

    A transformation is canonical if and only if (79)

    It preserves the Poisson bracket (to within a constant factor z.)

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    35/64

    4.4C Restricted canonical transformations

     A canonical transformation  ),,( ;),,( t t    p x p x Q Q    PP   is called (80) 

    restricted-canonical transformation if in expression (78) z=1.

    That is,  ),(),( R , R , p x Q  S S    P .

    Note: In the literature the restricted canonical transformations are often simply called

    canonical transformations.

    4.5 How to generate (restricted) canonical transformations

    4.5A Generating functions of transformations

    In the remaining of the notes, whenever referring to canonical transformations, we

    will assume that they are restricted (z=1); that is ),(),( R , R , p x Q  S S    P . A way togenerate restricted canonical transformations will result along the way of attempting to

    classify them. Toward this end, let’s analyze first the following expression

    ii P i

    i

    i

    i Q p x    -    (81) 

    where the variables correspond to the transformation (73), 

    ),,( ; ),,(   t p x t p x Q Q    PP   (82)

    It turns out, when (81) is written as a function of ),,( t p x  

    it reveals much about the

    transformation. It is found that when the transformation (82) is (restricted) canonical,

    expression (81) becomes an exact total derivative of a scalar function  F . The latter is

    then used to generate the transformation

    The strategy is to show that there exists a function F  that allows express (81) in thefollowing alternative form,

    ii P i

    i

    i

    i Q p x    -   = else ...

     F  p

     p

     F  x

     x

     F i

    i

    i

    i

     

      i i 

      (83)

    To this end, let’s expand the left side in terms of the old coordinates, 

    ii P i

    i

    i

    i Q p x    -   =

    = ik   P )(t 

    Q

     p

    Q

     x

    Q i

    i

    ii

    i

    i  p x p x

    k i k 

    k -     

    iQ  

    )PPP(  imimi  

    i

    i

    i i

    m

    mm i

    i

    i

    m

    i

    it 

    Q

     p

    Q

     x

    Q p x p x     -   

     

    i

    i

    m i

    m

    ii m

    i

    i

    mi

    Q

     p

    Q

     x

    Q p x p iimm P)P()P(     (84) 

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    36/64

        i    i    

    The next step is then to identify, term by term, expressions (83) and (84).

    Appendix-3 outlines the demonstration that there exists such a scalar function F  such

    that,

    im

    m

    i

    mi

     x

     F   P 

     x

    Q  p

       

    im

    m

    i

    m

     p

     F   P 

     p

    Q

     

    and

     K  H t 

     F  P 

    Q

    i

    ii

     

    (85)

    Further, replacing (85) in (84),

    ii P i

    i

    i

    i Q p x    -    =

     F  p

     p

     F  x

     x

     F i

    i

    i

    i  

    ( i i 

    + H - K )

    Or

     H  - i

    i

    i p x -

     K  P Q i

    i

    i  =

     F  p

     p

     F  x

     x

     F i

    i

    i

    i  

     i i 

     

     H  - i

    i

    i p x   -

     K  P Q i

    i

    i  =

    dt 

    dF   (86)

    What is remarkable is that the left side is an exact differential.

    The function F  is called the generating function of the transformation for, as we will see,

    once F is given the transformation equations (82).

    4.5B Classification of (restricted) canonical transformationsExpression (86) suggests that, in order to effect the transformation between the two

    sets of canonical variables, F must be a function of both the old and the new variables. F  

    is a function of 4n  variables plus the time. But only 2n  of these are independent,

    because the two sets ) ,   P(Q  and ),(   p x    are connected by the 2n  transformation

    equations (82). Accordingly, there are four potential forms to express  F , which will

    depend on the circumstances dictated by the specific problem:

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    37/64

     

    ),(1 t   , F    Q x  = ),( ),( t   , F    Q x p x   

    ),(2 t   , F    Px  = ),,( ),( t   F    Px p x  ,

    ),(3 t   , F    Q p  = ) ,( ),( t   , F    p x   Q p   

    ),(4 t   , F    Pp  = ) ,( ),( t   , F    p x  p   P  

    Case 1:  Assume the function ),(1 t   , F    Q q    is given.

    In this case, (86) states,

     H  - i

    i

    i p x   -

     K Q i

    i

    iP   = ),(1 t   ,

    dt 

    dF Q x   

    =t 

     F Q

    Q

     F  x

     x

     F i

    i

    i

    i  

    111  i i 

      (87) 

    Since the xi and the Qi are independent, then the coefficients of i x  and iQ should be

    equal,

    ),(1 t   , x

     F 

    i

    i p   Q x 

      i= 1, 2, … , n (88a)

    These are used to solve for the n variables

    Qi as a function of ),(   p x   

    ),(1P t   ,

    Q

     F 

    i

    i   Q x 

      i= 1, 2, … , n (88b)

    Since the Qi have been determined in (88a),

    this expression gives the n variables Pi as a

    function of ),(   p x   

    which leaves (87) with,

     F  H  K 

    1  (88c)

    Case 2:  Assume the function ),(2 t   , F    Px    is given.In this case, (86) states,

     H  - i

    i

    i p x   -

     K Q i

    i

    iP   = ),(2 t   ,

    dt 

    dF Px   

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    38/64

     

    =t 

     F  F  x

     x

     F i

    i

    i

    i  

    222  P

    i i 

      (89) 

    On the left side, we expand the termi

    ii

    QP

      . For convenience we write it asm

    mm

    QP

     

    ,

     H  - i

    i

    i p x   -

     K Q m

    m

    mP   = ),(2 t   ,

    dt 

    dF Px   

    =t 

     F  F  x

     x

     F i

    i

    i

    i  

    222  P

    i i 

      (89)’ 

    where we will replace PP

      mm ii

    i

    i i

    m

    Q x

     x

    QQ  

     

    m

    m

    mQ P   = mm

    i

    i

    i

    i i

    Q x

     x

    QP)P

    P ( mm

     

    Inverting the order of the summation

    m

    m

    mQ P    = PP

      PP mm

    i

    im

    ii

    im

    m i

    Q x

     x

    Q

      (90) 

    Replacing (90) in (89)’ 

     H  - i

    i

    i p x   -

    i

    im

    ii

    im

    m i

    Q x

     x

    QP)

    P ()( PP mm  

     + K   = ),(2 t   ,dt 

    dF Px   

    =t 

     F  F  x

     x

     F i

    i

    i

    i  

    222  P

    i i 

     

    (91) 

    Since the xi and the Pi  are independent in (91), then the coefficients of i x  and iP  

    should be equal,

    ),( P  2m t   , x

     F 

     x

    Q

    i

    m

    m i

    i p   Px 

       

    PP

    mm

    i

    Q m = ),(

    P

    2 t   , F i

    Px    (92)

     K - H   =t 

     F 

    It is not straightforward to visualize that from the first equation the Pi  can be solved as

    a function of ),(   p x  , since the Qm are involved there. Hence, we perform an extra step.

    First, notice that the first equation in (92) can be written as,

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    39/64

      ),( P  2m t   , x

     F Q

     x im

    mi

    i p   Px 

       

    )P(  m2 m

    mi

    i Q F 

     x

     p  

      (93a)

    Also notice in the second equation of (92),

    m

    i

    m

    ii

    m QQQ

    m m m  P

    PP

    P

     )P( mmm  

    mm

    i

    QQ

     

    im 

     PP

      m  

    im

    i

    QQ

    P

    P  m

     

    Hence, the second equation in (92) can be expressed as,

    im

    P

     )P(Q

    Q

    i

    m

    = ),(P

    2 t   , F 

    i

    Px 

     

    iQ =

    )P(P

    m2 m

    i

    Q F    (93b)

    In term of the function F 2’, 

    )P( ' m22 mQ F  F   ,

    expressions (92a) and (92b) give,

    i

    i x

     F  p '  2  

    iQ   =i

     F 

    P

    '2

      (94) 

     K - H   =t 

     F 

    '  2  

    At the end, there will be no interest in the function F 2. We already found a F 2’ that, if

    expressed in terms of (x,P) as independent variables, it will generate a canonical

    transformation. Hence, let’s just rename the F 2’ as F 2.

    In summary

    ),(  2 t   , x

     F 

    i

    i p   Px 

    , iQ   = ),(

    P2 t   ,

     F 

    i

    Px 

     ,  K - H   =

     F 

    solve for Once the Pi  are known,

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    40/64

      this gives

    ),,(PP t  ii   p x    ),,( t  QQ ii   p x   

    Invert them to obtain

    ),, t  P x(Q x     ),, t   K    P (Q   = ),,( t   H    p x   +t 

     F 

    '

      2 ),( t   ,Px   

    ),, t  P p(Q p    

    ),, t   K    P (Q   = ), ,( ),,),, t   H  t  t   P (Q P (Q    p x   +

    +t 

     F 

    '

      2 ),( ),, t   ,t   PP (Q x   

    4.5C Evolution of the mechanical state viewed as series of canonical transformations

    i) The generator of the identity transformation

    Consider the generating function

    x  i2 P),( i xt   , F    P   (95) 

    Let’s find out the canonical transformation it generates.

    Using (94),

    i

    i

    i x

     F  p P  2

      (96) 

    iQ   = ii

     x

     F 

    P

    2

     

    We find the new coordinates ) ,(   PQ  are the same old coordinates ),(   p x  . That is, the

    function in i 

    x  i2 ),(  P  xt   , F  iP  generates the identity transformation. 

    ),(   p x      I 

      ) ,(   PQ   

    ii) Infinitesimal transformations

    Consider the generating function

    x  i2 ),(  P  xt   , F  iP   + ),( t   ,G   p x    (97)

    where  is an infinitesimal number, and ),( t   ,G   p x   an arbitrary function (to be specified

    later.) 

    Due to the small value of , and since i 

    i P  xi  generates the identity transformation, we

    expect the new coordinates ) ,(   PQ   will differ from the old ones ),(   p x   also by

    infinitesimal values; that is,

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    41/64

    iQ   = i i x   (98) 

    iP   = i  i p  

    Let’s figure out the values of i   and i   .

    Applying (94) to (97) gives,

    ii

    i x

    G

     x

     F  p

       i

    2 P  (99a) 

    iQ   = ),(PP

    )(2 t   ,G x F 

    i

    i

    i

    Pp x 

       

     based on (99a) one obtains

    ),( )( t   ,G p

     xi

    i   Pp x 

       

    i p iP  

    ),( )( t   ,G p

     xi

    i   Pp x 

          (99b) 

    In short, we have obtained:

    The function i 

    x  i2 ),(  P  xt   , F  iP   + ),( t   ,G   p x   generates

    the transformation

    i

    i x

    G p

        Pi   (100) 

    iQ  i

    i p

    G x

        

    iii) The Hamiltonian as a generating function of canonical transformations

    Notice in (100), if G is the Hamiltonian ),( t   , H    p x  , and  is chosen to be the incremental

    time differential dt  , one obtains,

    i

    i x

    G p

        Pi   =

    i

    i x

     H dt  p

    )( 

    Using the Hamiltonian equations (43)

    = )()(  ii  pdt  p    

    But )(dt  pi is the increment of p due to the motion

    = ii dp p    

    iQ  i

    i p

    G x

         =

    i

    i p

     H dt  x

    )( 

    Using the Hamiltonian equations (43)

    = )()(  ii  xdt  x    

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    42/64

      = ii dx x    

    That is, we have obtained: 

    The function i 

    x  i2 ),(  P  xt   , F  iP   + (dt ) ),( t   , H    p x   generates the

    transformation ),(   p x          ) ,(   PQ   

    ii dx x Q  i     (101)

    ii dp p  Pi    

    where d xi and d pi  are, respectively, the changes

    in xi and pi due to the motion governed by the

    Hamiltonia H .

    Notice in (101) that, basically, the Hamiltonian can be viewed as the

    generator of the transformation. It transforms the value of the coordinates

    ),(   p x   at the time t , to the value of those coordinates at the time t +dt .

    This result is very interesting. It tells us that the evolution of the state of

    motion ),( )()( t t  ii  p x can be viewed as a series of canonical transformations

    generated by the function H , (as the result applying (101) successively one

    after another differential time dt .)

    iv) Time evolution of a mechanical state viewed as a canonical transformationSymbolically, the result in (101) can be expressed this way:

    Defining )( t' t, F  i 

    i P  xi   + (t ’ -t ) ),( t   , H    p x    (102)

    x  (t ), p (t )           )(  t' t, F 

       x(t ’ ), p(t ’ )           )(  t" t, F 

      x (t ”), p ((t ”) , …. , (103)

    Evolution of the classical state x  (t ), p (t ) over time.

    The Hamiltonian in (102) constitutes the generator of the

    state’s evolution with time.

    Expression (103) also hints an approach, at least conceptually, of how to attain a

    solution of the equation of motion. In effect, since the successive applications of

    canonical transformations is a canonical transformation, finding the solution x  (t ), p (t )

    of the Hamilton equations can be view as the task of finding a canonical transformation

    that takes the initial conditions x(t 0), p(t 0) (old coordinates) to the values of the state at

    the time t , x  (t ), p (t )  (the new coordinates).

  • 8/17/2019 Chapter 4 Hamilton Variational Principle Hamilton Jacobi Eq Classical Mechanics 1

    43/64

      Canonicaltransformation

    x (t 0), p (t 0)           )(  0t t, F    x (t ), p (t ) (104) 

    old coordinates new coordinates

    4.6 Universality of the Lagrangian

    4.6A  Invariant of the Lagrangian equation with respect to the coordinates used in the

    configuration space 

    It was stated in the sections 4.1B above that the Lagrangian equations

    0 x

     L

     x

     L

    dt 

    ii

      (105) 

    have the particular interesting property of being independent of the particular

    coordinates used in the configuration space. Regardless of the coordinates being used,

    the Lagrangian equations look the same. From each new coordinates we would be ableto obtain a corresponding Hamiltonian, by following the procedure of Section 4.2B. Such

    a statement may appear to be at odds with the concepts outlined in Section 4.4, where

    we had to be careful in not making the wrong transformation of coordinates, otherwise

    we would end up with a no Hamiltonian describing the system. The transformation had

    to be canonical. The following example helps clarify the issue.

    Consider the generating function,

    m

    mm t   f t   , F   P)(),(2   x x   P   (106) 

    where the f i  are arbitrary functions.

    Using (94),

    iQ   = )(P

    2 t   f  F 

    i

    i

      (107) 

    ii

    i x

     F  p

    2  =

    m

    m

    i

    m

     x

    t   f P

    )(x  

    That is, the new coordinates Qi depend only on the old coordinates and time,