dynamic positioning control using hamilton-jacobi techniques

35
Qian Zhong David Fernández ME C236 Control and Optimization of Distributed Parameters Systems Berkeley, May 08 th 2014

Upload: vuliem

Post on 11-Feb-2017

226 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Dynamic Positioning Control using Hamilton-Jacobi Techniques

Qian ZhongDavid Fernández

ME C236 Control and Optimization of Distributed Parameters Systems

Berkeley, May 08th 2014

Page 2: Dynamic Positioning Control using Hamilton-Jacobi Techniques

Dynamic Positioning Control Using Hamilton-Jacobi Techniques

2Qian Zhong & David Fernández 8th May, 2014

Outline1. Background

2. Method

Hamilton-Jacobi-Isaacs Based Optimal Control

3. Result and Analysis

Kinematic Model (2 Dimensions)

Time-dependent Kinematic Model (3 Dimensions)

Dynamic Model (5 Dimensions)

Page 3: Dynamic Positioning Control using Hamilton-Jacobi Techniques

Dynamic Positioning Control Using Hamilton-Jacobi Techniques

3Qian Zhong & David Fernández 8th May, 2014

Outline1. Background

2. Simulation Method

Hamilton-Jacobi-Isaacs Based Optimal Control

3. Result and Analysis

Kinematic Model (2 Dimensions)

Time-dependent Kinematic Model (3 Dimensions)

Dynamic Model (5 Dimensions)

Page 4: Dynamic Positioning Control using Hamilton-Jacobi Techniques

Dynamic Positioning Control Using Hamilton-Jacobi Techniques

4Qian Zhong & David Fernández 8th May, 2014

Semisubmersible Platform

Floating offshore structure for oil exploration

Fixed position required

Motion due to Environmental Forces

Source: worldmaritimenews.com

Page 5: Dynamic Positioning Control using Hamilton-Jacobi Techniques

Dynamic Positioning Control Using Hamilton-Jacobi Techniques

5Qian Zhong & David Fernández 8th May, 2014

Dynamic Positioning (DP)

𝑀 𝑥 = 𝐹𝑒𝑛𝑣. + 𝐹𝑐𝑜𝑛𝑡𝑟.

Large Fuel Consumption

Applying control force: Thruster

Page 6: Dynamic Positioning Control using Hamilton-Jacobi Techniques

Dynamic Positioning Control Using Hamilton-Jacobi Techniques

6Qian Zhong & David Fernández 8th May, 2014

Objective: Reduce Energy Consumption

Less time for thruster in action

1. Minimize the time to reach the required position

Minimum-time-to-reach problem

2. Inactivate the thruster in “safe region”

Reachability problem

Page 7: Dynamic Positioning Control using Hamilton-Jacobi Techniques

Dynamic Positioning Control Using Hamilton-Jacobi Techniques

7Qian Zhong & David Fernández 8th May, 2014

Outline1. Background

2. Method

Hamilton-Jacobi-Isaacs (HJI) Based Optimal Control

3. Result and Analysis

Kinematic Model (2 Dimensions)

Time-dependent Kinematic Model (3 Dimensions)

Dynamic Model (5 Dimensions)

Page 8: Dynamic Positioning Control using Hamilton-Jacobi Techniques

Dynamic Positioning Control Using Hamilton-Jacobi Techniques

8Qian Zhong & David Fernández 8th May, 2014

HJI Based Optimal Control

Model 𝑥 = 𝑓(𝑥, 𝑎, 𝑏)

Cost Function𝑉 𝑥0 = inf

𝑎 ⋅ ∈𝐴sup𝑏 ⋅ ∈𝐵

𝑡∗(𝑥0, 𝑎 ⋅ , 𝑏 ⋅ )

HJI Equation

𝐷𝑡𝜙 +min 0, 𝐻 𝑥, 𝐷𝑥𝜙 𝑥, 𝑡 = 0

Optimal Input, 𝑎∗ and 𝑏∗, and Trajectory

Page 9: Dynamic Positioning Control using Hamilton-Jacobi Techniques

Dynamic Positioning Control Using Hamilton-Jacobi Techniques

9Qian Zhong & David Fernández 8th May, 2014

HJI Based Optimal Control

Model 𝑥 = 𝑓(𝑥, 𝑎, 𝑏)

Cost Function𝑉 𝑥0 = inf

𝑎 ⋅ ∈𝐴sup𝑏 ⋅ ∈𝐵

𝑡∗(𝑥0, 𝑎 ⋅ , 𝑏 ⋅ )

HJI Equation

𝐷𝑡𝜙 +min 0, 𝐻 𝑥, 𝐷𝑥𝜙 𝑥, 𝑡 = 0

Optimal Input, 𝑎∗ and 𝑏∗, and Trajectory

Page 10: Dynamic Positioning Control using Hamilton-Jacobi Techniques

Dynamic Positioning Control Using Hamilton-Jacobi Techniques

10Qian Zhong & David Fernández 8th May, 2014

Outline1. Background

2. Method

Hamilton-Jacobi-Isaacs (HJI) Based Optimal Control

3. Result and Analysis

Kinematic Model (2 Dimensions)

Time-dependent Kinematic Model (3 Dimensions)

Dynamic Model (5 Dimensions)

Page 11: Dynamic Positioning Control using Hamilton-Jacobi Techniques

Dynamic Positioning Control Using Hamilton-Jacobi Techniques

11Qian Zhong & David Fernández 8th May, 2014

Kinematic Model (2D)

𝑥 = 𝑉𝑐 𝑥 + 𝑎 𝑥, 𝑡 + 𝑏 𝑥, 𝑡

𝑥: Position

𝑉𝑐: Current velocity

𝑎: Thruster control input, | 𝑎| ≤ 5𝑚/𝑠

𝑏: Disturbance input, |𝑏| ≤ 1𝑚/𝑠

Page 12: Dynamic Positioning Control using Hamilton-Jacobi Techniques

Dynamic Positioning Control Using Hamilton-Jacobi Techniques

12Qian Zhong & David Fernández 8th May, 2014

Kinematic Model (2D)

Velocity Field (Defined)

(a) Magnitude of Velocity Field (b) Quiver Plot with 𝑑𝛼 = 0.1

Page 13: Dynamic Positioning Control using Hamilton-Jacobi Techniques

Dynamic Positioning Control Using Hamilton-Jacobi Techniques

13Qian Zhong & David Fernández 8th May, 2014

Kinematic Model (2D)

Velocity Field (Defined)

(a) Magnitude of Velocity Field (b) Quiver Plot with 𝑑𝛼 = 0.1

𝑑𝛼Vortex

Page 14: Dynamic Positioning Control using Hamilton-Jacobi Techniques

Dynamic Positioning Control Using Hamilton-Jacobi Techniques

14Qian Zhong & David Fernández 8th May, 2014

Figure: Minimum time to reach the center (0, 0) in defined area

Minimum Time to Reach the Center

Page 15: Dynamic Positioning Control using Hamilton-Jacobi Techniques

Dynamic Positioning Control Using Hamilton-Jacobi Techniques

15Qian Zhong & David Fernández 8th May, 2014

Figure: The trajectory of the platform from (-3, -3) to the Center

Trajectory

Page 16: Dynamic Positioning Control using Hamilton-Jacobi Techniques

Dynamic Positioning Control Using Hamilton-Jacobi Techniques

16Qian Zhong & David Fernández 8th May, 2014

(a) Quiver Plot with 𝑑𝛼 =𝜋

2(b) Minimum time to reach the Center

Reachability

Page 17: Dynamic Positioning Control using Hamilton-Jacobi Techniques

Dynamic Positioning Control Using Hamilton-Jacobi Techniques

17Qian Zhong & David Fernández 8th May, 2014

(a) Quiver Plot with 𝑑𝛼 =𝜋

2(b) Minimum time to reach the Center

Reachability

Not reachable

Reachable

Page 18: Dynamic Positioning Control using Hamilton-Jacobi Techniques

Dynamic Positioning Control Using Hamilton-Jacobi Techniques

18Qian Zhong & David Fernández 8th May, 2014

Outline1. Background

2. Method

Hamilton-Jacobi-Isaacs (HJI) Based Optimal Control

3. Result and Analysis

Kinematic Model (2 Dimensions)

Time-dependent Kinematic Model (3 Dimensions)

Dynamic Model (5 Dimensions)

Page 19: Dynamic Positioning Control using Hamilton-Jacobi Techniques

Dynamic Positioning Control Using Hamilton-Jacobi Techniques

19Qian Zhong & David Fernández 8th May, 2014

Time-dependent Kinematic Model (3D)

𝑑

𝑑𝑡

𝑥𝑦𝑡

=𝑈𝑐 𝑥, 𝑦, 𝑡 + 𝑎𝑥 𝑥, 𝑦, 𝑡 + 𝑏𝑥(𝑥, 𝑦, 𝑡)

𝑉𝑐 𝑥, 𝑦, 𝑡 + 𝑎𝑦 𝑥, 𝑦, 𝑡 + 𝑏𝑦 𝑥, 𝑦, 𝑡

−1

Page 20: Dynamic Positioning Control using Hamilton-Jacobi Techniques

Dynamic Positioning Control Using Hamilton-Jacobi Techniques

20Qian Zhong & David Fernández 8th May, 2014

Velocity Field (Changing with Time)

Figure: Illustration Quiver plot, 𝑑𝛼 is changing from 0 to 𝜋

2

𝑑𝛼

Page 21: Dynamic Positioning Control using Hamilton-Jacobi Techniques

Dynamic Positioning Control Using Hamilton-Jacobi Techniques

21Qian Zhong & David Fernández 8th May, 2014

Minimum Time to Reach

Page 22: Dynamic Positioning Control using Hamilton-Jacobi Techniques

Dynamic Positioning Control Using Hamilton-Jacobi Techniques

22Qian Zhong & David Fernández 8th May, 2014

(a) Trajectory with initial position at (4, -4):Reachable

(b) Trajectory with initial position at (-6, -6):Not reachable

Trajectory

Page 23: Dynamic Positioning Control using Hamilton-Jacobi Techniques

Dynamic Positioning Control Using Hamilton-Jacobi Techniques

23Qian Zhong & David Fernández 8th May, 2014

Dynamic Positioning (DP)

Page 24: Dynamic Positioning Control using Hamilton-Jacobi Techniques

Dynamic Positioning Control Using Hamilton-Jacobi Techniques

24Qian Zhong & David Fernández 8th May, 2014

CONCEPT

Page 25: Dynamic Positioning Control using Hamilton-Jacobi Techniques

Dynamic Positioning Control Using Hamilton-Jacobi Techniques

25Qian Zhong & David Fernández 8th May, 2014

Goal

Three main areas :

State observer

Controller

Thrust allocation

We simplify it by generatingdirectly the environmentalconditions.

Dynamic Model Inertial forces Added mass Wind loads Current loads Wave loads

REQUIREMENTS:

Extend the use of the Hamilton-Jacobi equation to calculate theoptimum thrust commands that minimize the operating time, and

consequently the fuel consumption.

Page 26: Dynamic Positioning Control using Hamilton-Jacobi Techniques

Dynamic Positioning Control Using Hamilton-Jacobi Techniques

26Qian Zhong & David Fernández 8th May, 2014

Dynamics

Wind

Current

Waves

Less straightforward

Page 27: Dynamic Positioning Control using Hamilton-Jacobi Techniques

Dynamic Positioning Control Using Hamilton-Jacobi Techniques

27Qian Zhong & David Fernández 8th May, 2014

DynamicsAssumptions Only drift forces are

compensated Only planar movements are

controlled: No restoring forces Low speed: Wave resistance is

not dominant

Quadratic Transfer Functions

Page 28: Dynamic Positioning Control using Hamilton-Jacobi Techniques

Dynamic Positioning Control Using Hamilton-Jacobi Techniques

28Qian Zhong & David Fernández 8th May, 2014

Hamilton - JacobiMinimum Time To Reach (MTTR) problem

Page 29: Dynamic Positioning Control using Hamilton-Jacobi Techniques

Dynamic Positioning Control Using Hamilton-Jacobi Techniques

29Qian Zhong & David Fernández 8th May, 2014

Practical application

Semisubmersible platform to install offshore wind mills

Displacement = 55800 ton

Length = 100 m

Height = 55 m

Depth = 30 m

Thrusters = 380 ton

Page 30: Dynamic Positioning Control using Hamilton-Jacobi Techniques

Dynamic Positioning Control Using Hamilton-Jacobi Techniques

30Qian Zhong & David Fernández 8th May, 2014

Environmental conditions

Page 31: Dynamic Positioning Control using Hamilton-Jacobi Techniques

Dynamic Positioning Control Using Hamilton-Jacobi Techniques

31Qian Zhong & David Fernández 8th May, 2014

Time domain simulation

Page 32: Dynamic Positioning Control using Hamilton-Jacobi Techniques

Dynamic Positioning Control Using Hamilton-Jacobi Techniques

32Qian Zhong & David Fernández 8th May, 2014

Conclusions

Page 33: Dynamic Positioning Control using Hamilton-Jacobi Techniques

Dynamic Positioning Control Using Hamilton-Jacobi Techniques

33Qian Zhong & David Fernández 8th May, 2014

Conclusions We have successfully applied the Hamilton-Jacobi formulation

to obtain the optimum control for reachable set and minimum time to reach target of floating bodies.

Inclusion of dynamic model in the simulations, although with a high computational cost.

The optimum control for large inertial systems shows relevant oscillations, which suggests that this method is not entirely effective close to the target.

A set of new functions to predict the loads on the floating bodies has been added to the toolbox.

Page 34: Dynamic Positioning Control using Hamilton-Jacobi Techniques
Page 35: Dynamic Positioning Control using Hamilton-Jacobi Techniques