cdma2000 fundamentals agilent

Upload: cbmamede

Post on 14-Apr-2018

253 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    1/120

    CDMA Fundamentals

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    2/120

    2

    Agenda

    CDMA introduction

    CDMA makes use of Diversity

    Power control

    CDMA Forward Link

    CDMA Reverse Link

    CDMA call processing CDMA Measurement

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    3/120

    3

    Cellular Access Methods

    Power Time

    FrequencyFDMA

    PowerTime

    Frequency

    Power

    Time

    Frequency

    TDMA

    CDMA

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    4/120

    4

    User #3

    Frequency Domain

    User #2

    User #1

    Synch

    Paging

    Pilot

    1.2288 MHzfreq

    Code Domain

    0 1 2 3 4 5 6 7 8 9 32 40 63

    User

    1

    User

    3

    User

    2

    Walsh Code

    Pilot Paging Synch

    Code Domain Power (cdma2000/IS-95)

    The CDMA Concept

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    5/120

    5

    CDMA is Also Full Duplex

    US Cellular Channel 384Amplitude

    Frequency

    AMPS

    CDMAFrequency

    Amplitude

    Reverse Link

    Reverse Link

    Forward Link

    Forward Link

    45 MHz

    45 MHz

    836.52 MHz

    836.52 MHz 881.52 MHz

    881.52 MHz

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    6/120

    6

    Code Division MultipleAccess

    What is CDMA ?

    Spread spectrum technique

    Multiple users share the same frequency in one cell

    Same frequency in all the cells Operates under presence of interference

    Takes advantage of multipath

    Capacity is soft

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    7/120

    7

    Cellular Frequency Reuse Patterns

    3

    6

    CDMA ReuseFDMA Reuse

    11

    1

    1

    1

    1

    11

    1

    62

    2

    1

    4

    5

    7

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    8/120

    8

    The CDMA Concept

    Baseband

    Data

    Encoding &

    Interleaving

    Walsh Code

    Spreading

    Walsh Code

    Correlator

    Baseband

    Data

    Decode & De-

    Interleaving

    0 0fcfc

    fcfcfcfc

    10 Khz BW 1.23 Mhz BW 10 Khz BW1.23 Mhz BW

    1.23 Mhz BW1.23 Mhz BWSpurious Signals-113 dBm/1.23 Mhz

    CDMA

    Transmitter

    CDMA

    Receiver

    9.6 kbps 19.2 kbps 1228.8 kbps 9.6 kbps19.2 kbps1228.8 kbps

    Background Noise External Interference Other Cell Interference Other User Noise

    Interference Sources

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    9/120

    9

    z Multiple user data can be spread by using combinations ofthis PN code

    Direct Sequence Spread Spectrum

    Baseband data multiplied by a Pseudo Random Noise (PN)Code, which is a sequence of chips valued -1 & +1 or 0 & 1

    PN code is a noise-like code with certain properties (ex:orthogonal)

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    10/120

    10

    Direct Sequence Spread Spectrum

    Direct sequence spreadspectrum signal is generated

    by multiplying narrowbanduser data with a well-defined

    wideband pseudo-random

    sequence.

    Recovering the narrowbanduser data is achieved by

    multiplying the received

    signal by an identical,

    accurately timed pseudo-random sequence.

    Direct Sequence Spread Spectrum

    Power SpectralDensity

    Freq

    Direct sequencespread signal

    Narrowband userdata

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    11/120

    11

    Direct Sequence Spread Spectrum

    Source InformationBits

    I-Q Modulator

    CarrierCode Generator BitStream

    TransmitDSSS Signal

    Block diagram of a Direct Sequence SpreadSpectrum Transmitter

    Bits toI-Q

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    12/120

    12

    Direct Sequence Spread Spectrum

    Received

    DSSSsignal

    CodeSynchronization Code Generator

    Demodulator

    Carrier

    Data

    Block diagram of a Direct Sequence Spread Spectrum Receiver

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    13/120

    13

    What is Correlation ?

    Is a Measure of HowWell a Given Signal

    Matches a Desired

    Code

    The Desired Code isCompared to the

    Given Signal at

    Various Test times

    Received Signal

    Time

    Correlation = 1

    Correlation = 0

    Correlation = 0

    Correlation = 0

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    14/120

    14

    Auto-Correlation

    Is a Comparison of a Signal

    Against Itself

    Good Pseudo-RandomPatterns Have:

    Strong Correlation at Zero Time

    Offset

    Weak Correlation at Other

    Time Offsets

    Pseudo-Random Sequence

    Auto-Correlation Versus Time Offset

    1

    0

    1

    300 5 10 15 20 25

    0 10 205 15 25 30

    0

    Chip Offset

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    15/120

    15

    Analog

    Analog

    CDMA Paradigm Shift

    Multiple Users on One Frequency99 Analog/TDMA Try to Prevent Mu lt ip le UsersAnalog/TDMA Try to Prevent Mu lt ip le Users

    InterfaceInterface

    Channel is Defined by Code99 Analog Systems Def ined Channels byAnalog Systems Def ined Channels by

    FrequencyFrequency

    Traditional FDMA/TDMA are capacity-

    limited99 Given N t imeslots per frame and KGiven N t imeslots per frame and Kfrequency channels , max imum n umber off requency channels , max imum n umber of

    users is KN;users is KN;

    99 To increase the number of u sers in theTo increase the num ber of us ers in the

    system , frequency reuse is usedsystem , frequency reuse is us ed

    Capacity Limit is Soft99 Al low s Degradin g Voice Quali ty toAl low s Degradin g Voice Qual i ty to

    Temporari ly Increase CapacityTempo rari ly Inc rease Capacity

    99 Reduce Surrounding Cel l Capaci ty toReduce Surrou nd ing Cel l Capaci ty to

    Increase a CellIncrease a Cells Capacitys Capacity

    CD

    MA

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    16/120

    16

    CDMA Capacity Gains

    ProcessingProcessingGainGain

    AMPS = 1.5 MHz / 30 kHz = 50 Channels

    Capacity = 50 Channels / 7 ( 1/7 Frequency Reuse )

    AMPS = 7 Calls ( Usin g 1.5 MHz BW )

    CDMA = 42 Calls ( Usin g 1.5 MHz BW )

    (1,230,000) (1) (1)CDMA = ____________ X _____ X _____ X (0.67)(9,600) (5.01) (.40)

    Capacity = _____________ X _____ X ____ X (Fr)(Data Rate) (S/N) (Vaf)

    (Chan BW) (1) (1)

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    17/120

    17

    CDMA makes use of Diversity

    Spatial Diversity

    Making Use of Differences in Position

    Frequency Diversity Making Use of Differences in Frequency

    Time Diversity

    Making Use of Differences in Time

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    18/120

    18

    CDMA Spatial Diversity

    Diversity Reception:

    Multiple Antennas at Base Station

    99Each A ntenna is Affected byEach A ntenna is Affected b yMul t ipathMul t ipathDifferently Due to TheirDifferently Due to TheirDi f ferent L ocat ionDif ferent L ocat ion

    99Al low s Select ion o f the Signal Least A ffected byAl low s Select ion of the Signal Least Affected byMul t ipathMul t ipath

    FadingFading

    If Diversity Antennas are Good, Why Not Use Base Stationsas a Diversity Network?

    Soft Handoff

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    19/120

    19

    Spatial Diversity During Soft Handoff

    MTSO

    Base Station 1

    Land Link

    Vocoder /

    Selector

    Base Station 2

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    20/120

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    21/120

    21

    CDMA Time Diversity

    Rake Receiver to Find and DemodulateMultipath Signals

    Data is Interleaved

    Spreads Adjacent Data in time to Improve

    Error Correction Efficiency

    Convolutional EncodingAdds Error Correction and Detection

    Viterbi Decoding

    Most Likely Path Decoder forConvolutionaly Encoded Data

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    22/120

    22

    Why Interleaving Works

    1 2 3 4

    5 6 7 89 10 11 12

    13 14 15 16

    1 5 9 13

    3 7 11 15

    4 8 12 16

    1 2 3 4

    9 10 11 12

    13 14 15 16

    5 6 7 8

    Original Data Frame

    Interleaved Data Frame

    Errors/Time

    TX1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

    Errors/Time

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

    RX

    Errors/Time

    TX

    1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

    Errors/Time

    RX

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

    2 6 10 14

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    23/120

    23

    The Rake Receiver

    Amplitude

    Frequency

    Time

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    24/120

    24

    Rake Receiver Design

    T0 T1 T4T3T2

    W0 W1 W2 W3 W4

    Antenna

    Output

    Delay

    Taps

    Tap

    Weights

    +

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    25/120

    25

    Synchronization

    All Direct Sequence, SpreadSpectrum Systems Should be

    Accurately Synchronized for

    Efficient searching

    Finding the Desired CodeBecomes Difficult without

    Synchronization

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    26/120

    26

    Power Control

    Near-end Far-end Problem

    - 60dBm

    - 30dBm

    A

    B

    At the BS receiver,

    SNR for A reception = 30 dB, certified

    SNR for B reception = -30 dB, not certified

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    27/120

    27

    z Acceptable SNR is at least 7 dB

    z For B, the signal needs 37 dB gain to meet the condition

    z What if we increase the processing gain from 21 dB to 37

    dB?

    Pgain = 10 log ( W / R )

    R is fixed at 9600 bps, W can be increased

    Is there another way to improve S/N?

    In this case, W = 48 MHz not practical

    Power Control

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    28/120

    28

    z In this case, B is the Signal and A is the Noise

    z Both A and B are transmitting at constant power

    z Since A is near, it can be asked to transmit at low power

    z

    Since B is far, it can increase the powerThis is Power Control !This is Power Control !

    z Base Station will change power levels based on

    the Path loss.

    z Base Station will also command Mobile to

    increase or decrease power levels.

    Power Control

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    29/120

    29

    Maximum System Capacity is Achieved if:

    9All Mobiles are Power Controlled to the Minimum

    Power for Acceptable Signal Quality

    9As a Result, all Mobiles are Received at About

    Equal Power at the Base Station Independent of

    Their Location

    Two Types of Control

    Open Loop Power Control

    Closed Loop Power Control

    Open & Closed Loop Power Control areAlways Both ActiveAlways Both Active

    Reverse Link Power Control

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    30/120

    30

    Open Loop Power Control

    Assumes Loss is Similar on Forward and ReversePaths

    Receive Power + Transmit Power = -73(-76dB forPCS Band

    All Powers in dBm

    Example:

    For a Received Power of -85 dBm Transm it Power = (Transm it Power = (--73)73)--((--85)85)

    Transm it Power = +12Transm it Power = +12dBmdBm

    Provides an Estimate of Reverse TX Power for GivenPropagation Conditions

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    31/120

    31

    Directed by Base Station

    Updated Every 1.25 msec

    Commands Mobile to Change TXPower in +/- 1 dB Step Size

    Fine Tunes Open Loop PowerEstimate

    Power Control Bits are Puncturedover the Encoded Voice Data

    Puncture Period is Two 19.2 kbps

    Symbol Periods = 104.2 usec

    Closed Loop Power Control

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    32/120

    32

    CDMA Variable Rate Speech Coder

    DSP Analyzes 20 Millisecond Blocks of Speech for Activity

    Selects Encoding Rate Based on Activity:

    a High Activity Full Data Rate Encoding (9600 bps)a Some Activity Half Data Rate Encoding (4800 bps)

    a Low Activity Quarter Data Rate Encoding (2400 bps)

    a No Activity 1/8 Data Rate Encoding (1200 bps)

    How Does This Improve Capacity? Mobile Transmits in Bursts of 1.25 ms

    System Capacity Increases by 1/Voice Activity Factor

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    33/120

    33

    Mobile Power Bursting

    Each Frame is Dividedinto 16 Power Control

    Groups

    Each Power ControlGroup Contains 1536

    Chips (represents 12

    encoded voice bits)

    Average Power isLowered 3 dB for Each

    Lower Data Rate

    CDMA Frame = 20 ms Full Rate

    Half Rate

    Quarter Rate

    Eighth Rate

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    34/120

    34

    The CDMA2000 evolution path is flexible

    and future-proof

    Voice

    Data up to

    14.4 kbps

    Voice

    Data up to

    115 kbps

    2x increases in voice capacity

    Up to 307 kbps* packet data

    on a single (1.25 MHz) carrier

    First 3G system for any

    technology worldwide

    Optimized, very high-speed

    data (Phase 1)

    Up to 2.4 Mbps* packet data

    on a single (1.25 MHz) carrier

    Integrated voice and data

    (Phase 2); up to 4.8 Mbps

    *downlink

    From CDG

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    35/120

    35

    CDMA Protocol Stacks

    IS -95 Rev 0Original System-never actually deployed

    ARIB T53Japan CDMA

    System Cellular

    Protocol

    IS -95 Rev ABackwards compatible with IS-95. First Deployed Protocol

    TBS- 74Cellular Protocol that adds 14400 Channel Support

    J-STD-008Not Backwards Compatible, PCS only Protocol

    EIA/TIA-95 Rev BCombines TSB-74 & J-STD-008 for a Universal Protocol

    EIA/TIA/IS-2000 Rev 0First release of IS-2000 standard (add QPCH)

    EIA/TIA/IS-2000 Rev AAdd BCH,CCCH,CACHnew channel

    EIA/TIA/IS-2000 Rev BAdd new functionality and support

    EIA/TIA/IS-2000 Rev C(1x EV-DV)Segment channel between Voice and Data

    EIA/TIA/IS-856(1x EV-DO)Optimized for packet data.

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    36/120

    36

    The architecture for CDMA2000

    IS634

    PSDN

    MSC

    HLR/AUCHLR/AUC

    Laptops with

    Cell Phones

    Cell

    Phones

    Smartphones

    and PDAs

    BSCAAAAAA

    ServerServer

    PSTN

    Internet

    IWF

    IP Router

    Core

    Elements

    Core

    Elements

    From CDG

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    37/120

    37

    cdma2000 Key Standards

    EIA/TIA/IS-2000 rev. 0 Interoperability Standard forcdma2000 Spread Spectrum Systems

    Defines channel coding, call processing procedures, protocoland other mobile / base procedures and RF requirements to

    ensure interoperability of equipment from multiple vendors

    Defines how entire system works together in extreme detail

    Revision 0 was first release of standard.

    Revision A adds enhanced channels for paging, call set-up and

    call control.

    Revision B enhanced from the cdma2000 Release A

    specifications

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    38/120

    38

    TIA/ EIA-95-B IS-2000 IS-2000-A

    F-Pilot F-Pilot F-Pilot

    F-Sync F-Sync F-Sync

    F-PCH F-PCH F-BCCHF-CCCH

    F-QPCH optional F-QPCH optional

    F-CACH

    F-CPCCH

    Forward

    Channels

    F-Traffic

    F-FCH

    F-SCH

    F-DCCH optional

    F-FCH

    F-SCH

    F-DCCH optional

    N/ A R-Pilot R-Pilot

    R-ACH R-ACH R-EACHorR-CCCHReverse

    ChannelsR-Traffic

    R-FCH

    R-SCH

    R-DCCH optional

    R-FCH

    R-SCH

    R-DCCH optional

    cdma2000 Standards Overview - IS-2000

    Release 0 versus Revision A

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    39/120

    39

    Benefits of cdma2000

    Improved Performance and Capacity:

    About 2X Voice Capacity of TIA/EIA-95-B

    Handles a Wide Range of Data Rates:99Voice and Low Speed Data wh i le Driv ingVoice and Low Speed Data whi le Driv ing

    99Up to 384 kbps Packet or Circui t Data wh i le Movin gUp to 384 kbps Packet or Circui t Data wh i le Moving

    99Up to 2 Mbps Data Rates for Fixed Ins tal lat ion sUp to 2 Mbps Data Rates fo r Fixed Ins tal lat ion s

    Meets All IMT-2000 Requirements Easy Upgrade for Service Providers Who Currently Operate

    TIA/EIA-95 Systems

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    40/120

    40

    cdm

    a

    2000

    Performance Enhancements

    Reverse Link Pilot for Each Mobile

    True QPSK Modulation

    Continuous Reverse Link Waveform Improved Convolutional Encoding for 14.4

    kbps Voice Channels

    Fast Forward & Reverse Link Power Control

    Supports Auxiliary Pilots for Beam Forming

    Forward Link Transmit Diversity - OTD,

    STS, Multi-Antenna

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    41/120

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    42/120

    42

    Terms and Definitions

    Chip

    99 Is the period o f a data bit at the final spreadin g rateIs the period o f a data bit at the final spreadin g rate

    SR - Spreading Rate99Defines the fin al sp readin g rate in terms o f 1.2288 Mcps(SR1).Defines the fin al spreadin g rate in terms of 1.2288 Mcps (SR1).

    So a 3.6864So a 3.6864McpsMcpssystem is cal led a SR3 system.system is cal led a SR3 system.

    RC - Radio Configuration

    99Defines the physical channel con f igurat ion based upon a baseDef ines the physical channel conf ig urat ion based upon a basechannel data rate.channel data rate.

    99RCsRCscontain rates derived from their base rate. For examp le,contain rates derived from their base rate. For examp le,

    RC3 is b ased on 9.6 kbps and inclu des 1.5, 2.7, 4.8, 9.6, 19.2,RC3 is based on 9.6 kbps and inclu des 1.5, 2.7, 4.8, 9.6, 19.2,

    38.4, 76.8, 153.6, and 307.200 kb ps .38.4, 76.8, 153.6, and 307.200 kb ps.

    99RCsRCsare cou pled to speci f ic Spreading Ratesare cou pled to speci f ic Spreading Rates

    IS 2000 SR1 ( k 1 RTT)

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    43/120

    43

    IS-2000 SR1 (aka 1xRTT)

    Is an Improved TIA/EIA-95-B Narrowband System

    Occupies the Same 1.23 MHz Bandwidth as TIA/EIA-95-B

    Forward Link:99Add s Fast Power Contro lAdds Fast Power Contro l

    99Quick Paging Channel to Improve Standby TimeQuick Paging Channel to Improve Standby Time

    99Uses QPSK Modu lat ion Rather than Dual BPSK to:Uses QPSK Modulat ion Rather than Dual BPSK to:

    Use 3/8 Rate Convolutional Encoder instead of 3/4 for 14.4 Service(improves error correction)

    128 Walsh Codes to Handle More Soft Handoffs for 9.6 service

    Reverse Link:

    99Uses Pi lot Aided BPSK to A l low Coherent Demodulat ionUses Pi lot Aided BPSK to A l low Coherent Demodulat ion

    99Uses 1/4 RateUses 1/4 RateConvolut ionalConvolut ionalEnco der Instead o f 1/2 or 1/3Encoder Instead o f 1/2 or 1/3

    99Uses HPSK Spreadin gUses HPSK Spreading

    Doubles System Voice Capacity

    SR1 F d R di C fi ti

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    44/120

    44

    SR1 Forward Radio Configurations

    Radio Configuration 1 - Required

    99Backwards compat ible mode with TIA/EIABackwards com pat ible mode with TIA/EIA --9595--BB

    99Based on 9,600 bp s Traff ic(RS1)Based on 9,600 bp s Traff ic(RS1)

    Radio Configuration 2

    99Backwards compat ible mode with TIA/EIABackwards com pat ible mode with TIA/EIA --9595--BB

    99Based on 14,400 bp s Traff ic(RS2)Based on 14,400 bps Traff ic(RS2)

    Radio Configurations 3, 4, and 599Al l use new cdm a2000 cod ing fo r imp roved capaci tyAl l use new cdma2000 cod ing fo r impro ved capaci ty

    99RC3 is based on 9,600 bps and goes up to 153,600 bpsRC3 is based on 9,600 bps and goes up to 153,600 bps

    99RC4 is based on 9,600 bps and goes up to 307,200 bpsRC4 is based on 9,600 bps and goes up to 307,200 bps

    99RC5 is based on 14,400 bps and goes up to 230,400 bpsRC5 is based on 14,400 bps and goes up to 230,400 bps

    SR1 F d Ch l

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    45/120

    45

    SR1 Forward Channels

    F-Pilot (Using TIA/EIA-95-B Coding)

    F-Sync (Using TIA/EIA-95-B Coding)

    Up to 7 F-Paging (Using TIA/EIA-95-B Coding) IS-2000 Rev.0

    0 to 3 F-QPCH (Quick Paging Channel)

    IS-2000 Rev.A/B 0 or 8 F-BCH (Broadcast Channel) 0 to 4 F-CPCCH (Common Power Control Channel)

    0 to 7 F-CACH (Common Assignment Channel)

    0 to 7 F-CCCH (Common Control Channels)

    Many F-Traffic Channels, Each Consisting of:99 0 or 1 F0 or 1 F--DCCH (Dedicated Con trol Channels)DCCH (Dedicated Cont rol Chann els)

    99 1 F1 F--FCH (Fundamental Chann el)FCH (Fundamental Channel)

    99 0 to 7 F0 to 7 F--SCCH (Supplemental Code Channels for RC1 & RC2)SCCH (Supplemental Code Channels for RC1 & RC2)

    99 0 to 2 F0 to 2 F--SCH (Supplemental Chann el for RC3, 4, 5)SCH (Supplemental Chann el for RC3, 4, 5)

    B St ti V i bl R t V d

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    46/120

    46

    Base Station Variable Rate Vocoder

    Base Stations Do Not Pulse TX Channels

    How Does the Base Station Handle Variable

    Rate Vocoding? Repeats Data Bits When Transmitting at

    Reduced Rates

    Repeating Data Adds 3 dB Coding Gain

    Lowers the TX Power 3dB for Each Lower

    Rate

    Forward Link Traffic Channel Physical Layer

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    47/120

    47

    Walsh CodeGenerator

    Forward Link Traffic Channel Physical Layer

    (RC1,RC2)

    1/2

    Rate

    3/4

    Rate

    P.C.

    Mux

    Vocoded

    SpeechData

    20 msec

    blocks

    ConvolutionalEncoder

    InterleaverLong Code

    Scrambling

    Power

    ControlPuncturing

    800 bps Walsh

    Coder9.6

    kbps

    14.4

    kbps

    19.2kbps

    19.2

    kbps

    Long Code

    19.2

    kbps

    19.2

    kbps

    19.2

    kbps

    19.2kbps

    1.2288 Mbps

    1.2288 Mbps

    1.2288

    Mbps

    1.2288

    Mbps

    Short Code Scrambler

    800

    bps

    FIR

    FIR

    I

    Q

    I Short Code

    Q Short Code

    Forward FCH Physical Layer

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    48/120

    48

    Forward FCH Physical Layer

    RC3 (9.6 kbps)

    OptionalCan be Carried by F-DCCH

    8.6 kbps

    1228.8 kbps

    Long Code

    Decimator

    Interleaver

    38.4 ksps

    1/4 Rate Conv.

    Encoder

    38.4 ksps

    9.6 kbps

    Long Code

    Generator

    38.4 kbps

    Power

    Control

    Puncture

    Walsh 64

    Generator

    1228.8 kcps

    1228.8 kcps

    1228.8 kbps

    1228.8kbps

    Q

    I

    S -P

    800 bps

    PCUser Long

    Code Mask

    Q

    I

    PC

    Dec

    1228.8 kcps

    Q Short Code

    I

    Q

    1228.8 kcps

    Complex

    Scrambling

    Q

    I

    FIR

    FIRI Short Code

    Orthogonal

    Spreading

    1228.8 kcps

    1228.8 kcps+

    +

    +

    -

    38.4

    ksps

    19.2 ksps

    19.2 ksps

    P.C. Bits

    Decimate by

    Walsh Length/2

    Gain

    Gain

    Puncture

    Timing

    Full Rate

    Data BitsAdd CRC and

    Tail Bits

    800 bps

    CDMA Vocoders

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    49/120

    49

    CDMA Vocoders

    Vocoders Convert Voice to/from Analog Using DataCompression

    There are Three CDMA Vocoders: IS-96A Variable Rate (8 kbps maximum)

    CDG Variable Rate (13 kbps maximum)

    EVRC Variable Rate (improved 8 kbps)

    Each has Different Voice Quality: IS-96A - moderate quality

    EVRC - near toll quality

    CDG - toll quality

    CDMA Frame Formats

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    50/120

    50

    15

    24 bits in a ms frame

    39

    79

    171 266

    124

    54

    201200 bps

    Frame8

    Mixed Mode BitInformation Bits

    1-bit

    Reserved

    8

    8

    88

    12 12 8

    10 8

    6

    88

    8

    Mixed Mode Bit

    Mixed Mode Bit

    Mixed Mode Bit

    Information Bits

    Information Bits

    Information Bits

    2400 bps

    Frame

    9600 bps

    Frame

    4800 bps

    Frame

    192 bits in a ms frame

    96 bits in a ms frame

    48 bits in a ms frame

    1800 bps

    Frame

    3600 bps

    Frame

    7200 bps

    Frame

    14400 bps

    Frame

    288 bits in a ms frame

    144 bits in a ms frame

    72 bits in a ms frame

    36 bits in a ms frame

    1-bit

    Reserved

    1-bit

    Reserved

    1-bit

    Reserved

    Mixed

    Mode Bit

    Mixed

    Mode Bit

    Mixed

    Mode Bit

    Mixed

    Mode Bit

    Encoder

    Tail Bits

    CRC

    CRC

    Encoder

    Tail Bits

    Encoder

    Tail Bits

    Encoder

    Tail Bits

    Information Bits

    Information Bits

    Information Bits

    Information BitsEncoder

    Tail Bits

    Encoder

    Tail Bits

    Encoder

    Tail Bits

    Encoder

    Tail Bits

    CRC

    CRC CRC

    CRC

    CDMA Frame Formats

    Forward Error Protection

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    51/120

    51

    Forward Error Protection

    Uses Half-Rate Convolutional Encoder

    Outputs Two Bits of Encoded Data for Every Input Bit

    Data Out

    9600 bps

    Data Out

    9600 bps

    D DDDD D D D

    +

    +

    Data In

    9600

    bps

    zzzz z zz

    14 4 Traffic Channel Forward Link

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    52/120

    52

    14.4 Traffic Channel Forward Link

    Modifications Replaces 8 kbps Vocoder with a

    13 kbps Vocoder(both Variable

    Rate)

    Effects:

    Provides Toll Quality Speech

    Uses a 3/4 Rate Encoder

    Reduces Processing Gain 1.76 dB

    Results in Reduced Capacity or

    Smaller Cell Sizes

    3/4rate

    Vocoded

    Speech

    Data

    ConvolutionalEncoder

    20 msec

    blocks

    14.4

    kbps

    19.2

    kbps

    Interleaver

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    53/120

    53

    384 symbols are sequentially written in an input array

    Interleaved symbols are then read from the output array

    19.2 ksps9.6 ksps4.8 ksps2.4 ksps

    SymbolRepetition

    19.2 ksps

    384 Symbols

    20 ms

    Block

    InterleaverInput

    Array /output

    Array

    16 x 24 Array

    Interleaved

    Output

    16

    24

    Interleaver

    Process of permuting a sequence of symbols to achieve time

    diversity

    CDMA uses block interleaving with 20 ms blocks

    CDMA System Time

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    54/120

    54

    CDMA System Time

    How Does CDMA Achieve

    Synchronization for Efficient

    searching?

    Use GPS Satellite System

    Base Stations Use GPS Time

    via Satellite Receivers as a

    Common Time Reference

    GPS Clock Drives the LongCode Generator

    112

    2

    3

    45

    67

    8

    9

    1011

    Long Code Generation

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    55/120

    55

    Modulo-2 Addition

    Long Code Output

    Long Code Generator

    1

    User Assigned

    Long Code Mask42 bits

    24 342 41 5

    Long Code Generation

    Long Code Generation

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    56/120

    56

    Long Code Generation

    Modulo-2 Addition

    Long Code Output

    34 12

    User Assigned

    Long Code Mask

    42 bits4142 5

    Long Code Generator(Driven by System Time)

    1100011000 Permuted ESN

    41 32 31 0

    Long Code Mask

    Long Code Scrambling

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    57/120

    57

    g g

    Users Long Code Mask is

    Applied to the Long Code

    Masked Long Code is

    Decimated Down to 19.2 kbps

    Decimated Long Code is

    XORed with Voice Data Bits

    Scrambles the Data to Provide

    Voice Security

    Encoded

    Voice Data

    Long Code

    Generator

    Long Code

    Decimator

    XOR

    1.2288 Mbps

    19.2 kbps

    19.2 kbps

    19.2 kbps

    Closed Loop Power Control Puncturing

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    58/120

    58

    19.2 kbps

    p g

    Long Code is Decimated

    Down to 800 bps

    Decimated Long Code

    Controls the Puncture

    Location

    Power Control Bits Replace

    Voice Data Voice Data is Recovered by

    the Mobiles Viterbi Decoder

    Long Code

    Scrambled

    Voice Data

    Long CodeDecimated

    Data

    Closed Loop

    Power

    Control Bits

    P. C.

    Mux

    Long Code

    Decimator

    800 bps

    800 bps

    19.2 kbps

    19.2 kbps

    Power Control Bit Puncturing

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    59/120

    59

    g

    z 19.2 ksps: 384 symbols / 20ms frame

    z Each 20ms frame is divided into 16 power control

    group (1.25 ms each)

    z 24 modulation symbols in each power control group

    Long Code DecimatedData

    Decimator19.2 ksps

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

    4 symbols = 16 combinations

    20ms

    1.25ms

    If [20,21,22,23]=[1,1,0,1],then puncture bit 11,12

    SR1, RC4 (152.4 kbps) F-SCH

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    60/120

    60

    Payload

    Data Bits

    1228.8 kbps

    Long Code

    Decimator

    Interleaver

    1/2 Rate

    Convolutional

    Encoder

    307.2 ksps

    Channel

    Coder

    Add CRC and

    Tail Bits

    153.6 kbps

    Long Code

    Generator

    User Long

    Code Mask

    Decimate by

    Walsh Length/2

    307.2 ksps

    307.2 ksps

    307.2 ksps

    GainWalsh 8

    Generator

    1228.8 kcps

    1228.8 kcps

    1228.8 kbps

    1228.8kbps

    Q

    I

    S -P

    Q

    I

    1228.8 kcps

    Q Short Code

    I

    Q

    1228.8 kcps

    Complex

    Scrambling

    FIR

    FIRI Short Code

    Orthogonal

    Spreading

    1228.8 kcps

    1228.8 kcps

    +

    +

    +

    -

    153.6 ksps

    153.6 ksps

    152.4 kbps

    ( p )

    Walsh Codes

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    61/120

    61

    W=0 0

    0 1

    W = 0

    0 0 0 0

    0 1 0 1

    0 0 1 10 1 1 0

    W=

    1

    2

    4

    =nn

    nn

    n

    WW

    WWW2

    Checking for Orthogonality

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    62/120

    62

    2 Match - 2 dont = 0

    W =4

    0 0 0 00 1 0 1

    0 0 1 1

    0 1 1 0

    0 0 0 00 0 1 1

    Y Y N N

    Cross

    Correlation= Nagreements

    - Ndisagreements

    N total_number_of_digits

    Effects of Using Variable Length Walsh Codesf S di

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    63/120

    63

    SF=16SF=2 SF=4 SF=8

    1 1 1 1 1 1 1 1

    1 1 1 1 -1 -1 -1 -1

    1 1 -1 -1

    1 1 1 1

    1 1

    1 -1

    1 -1 1 -1

    1 -1 -1 1

    1

    1 -1 1 -1 1 -1 1 -1

    1 -1 1 -1 -1 1 -1 1

    1 -1 -1 1 1 -1 -1 1

    1 -1 -1 1 -1 1 1 -1

    1 1 -1 -1 -1 -1 1 1

    1 1 -1 -1 1 1 -1 -1

    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

    1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1

    1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -11 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1

    1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1

    1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1

    1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1

    1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1

    1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

    1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1

    1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1

    1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1

    1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1

    1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1

    1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1

    1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1

    for Spreading

    Using Shorter

    Walsh Codes

    Precludes Using

    all Longer CodesDerived from the

    Original

    Shorter Codes on

    a Branch mapinto Longer

    Codes

    Walsh Code Spreading

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    64/120

    64

    Encoded

    Voice Data

    Walsh Code

    Generator

    19.2 kbps

    1.2288 Mbps

    1.2288 Mbps

    What is the

    Spread ing Rate

    Inc rease ?

    Why Spread Again with the Short Sequence

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    65/120

    65

    Provides a Cover to Hide the

    64 Walsh Codes

    Each Base Station is Assigned

    a Time Offset in its ShortSequences

    Time Offsets Allow Mobiles to

    Distinguish Between Adjacent

    Cells Also Allows Reuse of All Walsh

    Codes in Each Cell

    Walsh Coded

    Data at1.2288 Mbps

    1.2288 Mbps

    1.2288 Mbps I Channel ShortSequence Code

    Generator

    Q Channel Short

    Sequence CodeGenerator

    To I/Q

    Modulator

    Multi-Layer Code Assignment Short Code

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    66/120

    66

    Walsh Code layer (spreading code)

    Full codeset per cell

    W64,1

    W64,2

    W64,0

    Cells A/Sector A

    W64,1

    W64,2

    W64,0

    Cells B/Sector B

    PN 0

    PN 1

    Convolutional

    Encoder

    Long code

    Walsh Code

    CDMA as an OnionCDMA as an Onion

    Short Code (PN) Generation

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    67/120

    67

    z PN sequence codes are generated using 15-bit shift

    registers

    z PN sequence pattern repeats every 26.666 ms

    z 75 PN sequences repetition occur every 2 seconds

    z On every even second clock, MS will get PN sequence

    initial state

    Jan 6, 1980 00:00:00

    1, 0, 0, 0.............. 0R1,R2,R3,R4..........R15

    ( initial state of 15 registers )

    PN Code Combinations: 215 = 32768

    Clock Rate = 1.2288 McpsReturn of Initial State = 26.666 ms

    32768

    32768

    1

    274

    7532

    768

    2 sec26.666ms

    PN Offsets

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    68/120

    68

    Each BS scrambles PN sequence with data by sometime offset

    Time offsets are in intervals of 64 clock chips (52.08us) from even second clock

    512 unique offsets arecreated (32768/64 = 512)

    Each BS is allotted

    an offset for PNsequence scrambling

    PN 0

    PN 120

    PN 237

    PN 511

    PN 489

    Short Code Correlation

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    69/120

    69

    Short Codes are Designed to

    Have:

    Strong Auto-Correlation at Zero

    Time Offset

    Weak Auto-Correlation at Other

    Offsets

    Good Auto-Correlation in Very

    Poor Signal-to-Noise RatioEnvironments

    Allows Fast Acquisition in Real

    World Environment

    Auto-Correlation Versus

    Time Offset With 17 dB Noise Added

    0 10 205 15 25 30

    Chip Offset

    Forward Link Channel Format

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    70/120

    70

    Convert to I/Q

    & PN

    Spreading

    FIR LP Filter &

    D/A Conversion

    I Data

    Q Data

    1228.8 kbps

    Walsh Code 0

    Pilot Channel All 0s

    Convert to I/Q

    & PN

    Spreading

    FIR LP Filter &

    D/A Conversion

    I Data

    Q Data

    1228.8 kbps

    Walsh Code 32

    Sync Channel 4.8 kbps

    Convert to I/Q

    & PN

    Spreading

    FIR LP Filter &

    D/A Conversion

    I Data

    Q Data

    1228.8 kbps

    Walsh Codes 1 to 7

    Paging Channels1 up to 7 Channels

    19.2 kbps

    Convert to I/Q

    & PN

    Spreading

    FIR LP Filter &

    D/A Conversion

    I Data

    Q Data

    1228.8 kbps

    Walsh Codes 8-31,33-63

    Traffic Channels1 up to 55 Channels

    19.2 kbps

    I

    Q

    Walsh Coding Example

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    71/120

    71

    W2=0 0 -User A

    0 1 -User B

    -1

    -2

    +1+2

    -1

    +1Channel A

    Walsh Encoded

    Voice Data

    +1

    -1

    Channel A

    Voice Data

    For a 1 Input

    Use Code 11

    +1

    -1

    For a 0 Input

    Use Code 00

    User A User B

    For a 0 Input

    Use Code 01

    For a 1 Input

    Use Code 10

    Channel B

    Voice Data

    Channel B

    Walsh Encoded

    Voice Data

    Sum of A & B

    Walsh Encoded

    Data Streams

    0 0

    1 1

    0 0 1 1 0 0 0 0

    +1

    -1

    +1

    -1

    0 1

    1 0

    -1

    +1

    1 0 0 1 0 1 1 0

    +0

    +1

    1 0 0 1

    +1

    0

    1 0 0 1

    Walsh Decoding Example

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    72/120

    72

    Correlation Coefficient

    fi

    (t) r fj

    (t) dtzi j

    =1

    T

    +1

    01 0 0 1

    +1

    -1

    +2

    -2

    Original User B Voice Data

    User A & B Walsh Data

    Multiply Summed Data with Desired Walsh Code

    +1

    01 0 0 1

    +1

    -1

    +2

    -2

    Original User A Voice Data

    User A & B Walsh Data

    Multiply Summed Data with Desired Walsh Code

    +1

    -1

    +2

    -2

    X

    +1

    -1 1 1

    +1

    -1

    +2

    -2 -1+1

    -1

    +2

    -2

    +1

    -11 0 1

    +1

    -1

    +2

    -2

    = = = =+

    0T

    What if Walsh Codes are Not Time Aligned ?

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    73/120

    73

    Channel B

    Walsh

    EncodedVoice Data -1

    +1

    1 0 0 1 0 1 1 0-1

    +1Channel A

    Walsh

    EncodedVoice Data

    0 0 1 1 0 0 0 0

    -1

    -2

    +1Sum of A & B

    Walsh EncodedData Streams

    Original Data Was

    0 (-1), We Have

    Interference Now!

    Multiply Summed Data with Desired Walsh Code

    +1

    -1

    +2

    -2

    +1

    -11 1

    +1

    -1

    +2

    -2

    -0.75

    Original Time Delayed

    +

    X = =

    Pilot Channel Physical Layer

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    74/120

    74

    Walsh

    Modulator

    1.2288 Mbps

    1.2288 Mbps

    1.228

    8

    Mbps

    1.228

    8Mbps

    Short Code Scrambler

    FIR

    FIR

    I

    Q

    Walsh Code

    Generator Q Short Code

    I Short Code

    All 0

    Inputs

    19.2

    kbps

    WalshCode 0

    Uses Walsh Code 0:

    All 64 bits are 0

    All Data into WalshModulator is 0

    Output of WalshModulator is therefore all

    0s Pilot Channel is just the

    Short Codes

    Sync Channel Physical Layer

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    75/120

    75

    1/2

    Rate2x

    ConvolutionalEncoder Interleaver

    Walsh

    32

    Coder

    1.2

    kbps

    2.4

    kbps

    4.8

    kbps

    1.2288 Mbps

    1.2288 Mbps

    1.2288

    Mbps

    1.2288

    Mbps

    Short Code Scrambler

    FIR

    FIR

    I

    Q

    Sync

    Channel

    Message

    Data

    Symbol

    Repetition

    4.8

    kbps

    Walsh CodeGenerator Q Short Code

    I Short Code

    Paging Channel Physical Layer

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    76/120

    76

    Paging Channel

    Long Code

    1/2

    Rate

    ConvolutionalEncoder

    Interleaver

    4.8kbps 9.6kbps 19.2kbps

    Paging

    Channel

    Message

    Data

    2x

    Symbol

    Repetition

    19.2kbps

    Walsh1 to 7

    Coder

    1.2288 Mbps

    1.2288 Mbps

    1.2288

    Mbps

    1.2288

    Mbps

    Short Code Scrambler

    I

    Q

    Walsh Code

    Generator QShort Code

    Long Code

    Scrambling

    19.2kbps

    19.2

    kbps

    FIR

    I Short Code

    FIR

    SR1 Reverse Radio Configurations

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    77/120

    77

    Radio Configuration 1 - Required

    99 Backwards compat ible mode with TIA/EIABackwards compat ible mode with TIA/EIA --9595--BB

    99 Based o n 9,600 bps Traff icBased on 9,600 bps Traff ic

    Radio Configuration 2

    99 Backwards compat ible mode with TIA/EIABackwards compat ible mode with TIA/EIA --9595--BB

    99 Based on 14,400 bps Traff icBased on 14,400 bps Traff ic

    Radio Configurations 3 and 4

    99 Al l use new ISAl l use new IS--2000 cod ing fo r imp roved capaci ty2000 cod ing fo r imp roved capaci ty

    99 RC3 is based on 9,600 bps and g oes up to 307,200 bpsRC3 is based on 9,600 bps and goes up to 307,200 bps

    99 RC4 is based on 14,400 bps and goes up to 230,400 bpsRC4 is based on 14,400 bps and goes up to 230,400 bps

    SR1 Reverse Channels

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    78/120

    78

    Each Mobile Transmits Several

    Channels: 1 R1 R--Pi lotPi lot(Reverse Pilot)99 Includes Power Control SubIncludes Power Control Sub--ChannelChannel

    1 R1 R--ACH or RACH or R--EACHEACH(Access or Enhanced Access Channel)

    99 Used to Init iate CallsUsed to Init iate Calls

    0 or 1 R0 or 1 R--CCCHCCCH(Common Control Channel)

    99 Used to Init iate Calls in the Reservation Ac cess ModeUsed to Init iate Calls in the Reservation A ccess Mode

    0 or 1 R0 or 1 R--DCCHDCCH(Dedicated Control Channel)

    99 Prov ides Signaling while a Traff ic Channel is Ac tiveProvid es Signaling while a Traff ic Channel is Ac tive

    0 or 1 R0 or 1 R--FCHFCH(Reverse Fundamental Channel)99 Primary Channel, usually VoicePrimary Channel, usu ally Voice

    0 to 2 R0 to 2 R--SCHsSCHs(Reverse Supplemental Channels)

    99 Carries High Speed DataCarries High Speed Data

    R-FCH Coding for SR1(RC1,RC2)

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    79/120

    79

    1/2Rate

    Vocoded

    SpeechData

    20 msec

    blocks

    Convolutional

    Encoder

    Interleaver

    9.6

    kbps

    14.4

    kbps

    28.8

    kbps

    28.8

    kbps

    28.8

    kbps

    1.2288 Mbps

    1.2288

    Mbps

    Short Code Scrambler

    I

    Q

    1/3

    Rate

    Long Code

    64-ary

    Modulator

    1 of 64

    Walsh Codes

    Walsh

    Code 2

    Walsh

    Code 63

    Walsh

    Code 62

    Walsh

    Code 61

    Walsh

    Code 1

    WalshCode 0

    Long Code

    Modulator

    307.2

    kbps

    1.2288

    Mbps1.2288 Mbps

    Q Short Code

    FIR

    I Short Code

    FIRt/ 2

    1/2 Chip Delay

    Reverse Error Protection

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    80/120

    80

    Uses Third-Rate Convolutional Encoder

    Outputs Three Bits for Every Input Bit

    Data Out

    9600 bps

    D DDDD D D D

    +

    +

    Data

    Out

    9600

    bps

    +

    Data In

    9600kbps

    Data Out

    9600 bps

    z z z z z z z z

    z

    z

    z

    14.4 Traffic Channel Reverse LinkModifications

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    81/120

    81

    Replaces 8 kbps Vocoder with

    a 13 kbps Vocoder (both

    Variable Rate)

    Effects: Provides Toll Quality Speech

    Uses a 1/2 Rate Encoder

    Reduces Processing Gain 1.76

    dB Results in Reduced Capacity

    or Smaller Cell Sizes

    1/2Rate

    Vocoded

    Speech

    Data

    20 msec

    blocks

    ConvolutionalEncoder

    14.4

    kbps28.8

    kbps

    64-ary Modulation

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    82/120

    82

    Every 6 Encoded Voice Data

    Bits Points to one of the 64

    Walsh Codes

    Spreads Data from 28.8 kbps to307.2 kbps

    (28.8 kbps * 64 bits) / 6 bits =

    307.2 kbps)

    Is Not the Channelization forthe Reverse Link

    307.2kbps

    28.8kbps

    >

    Walsh

    Code 2

    Walsh

    Code 1Walsh

    Code 0

    Walsh

    Code 63

    Walsh

    Code 62

    Walsh

    Code 61

    Why Arent Walsh Codes Used for ReverseChannelization ?

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    83/120

    83

    All Walsh Codes Arrive

    Together in Time to All Mobiles

    From the Base Station

    However, Transmissions fromMobiles DO NOT Arrive at the

    Same Time at the Base Station

    Reverse Channel Long Code Spreading

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    84/120

    84

    Long Code Spreading

    Provides Unique Mobile

    Channelization

    Mobiles are Uncorrelated butnot Orthogonal with Each Other

    Long Code

    Generator

    WalshModulated

    Voice Data

    XOR

    307.2 kbps 1.2288 kbps

    1.2288 kbps

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    85/120

    Data Burst Randomizer

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    86/120

    86

    Algorithm

    At 2400 bps rate ,

    Transmission should occur on the PCG's numbered:

    b0 if b8 = 0, or 2 + b1 if b8 = 1 (i.e. 1 out of PCG 0...3)

    4 + b2 if b9 = 0, or 6 + b3 if b9 = 1 (i.e. 1 out of PCG 4...7)

    8 + b4 if b10 = 0, or 10 + b5 if b10 = 1 (i.e. 1 out of PCG 8...11)

    12+b6 if b11 = 0, or 14 + b7 if b11 = 1 (i.e. 1 out of PCG 12..15)

    (Example)

    ( 25% Gated-On, 25% Gated-Off )

    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

    At 1200 bps rate ,

    Transmission should occur on the PCG's numbered:

    b0 if (b8 = 0 and b12=0), or 2 + b1 if (b8 = 1 and b12=1)

    or 4 + b2 if (b9 = 0 and b12=0), or 6 + b3 if (b9 = 1 and b12=1) (i.e. 1 out of PCG 0...7)

    8 + b4 if (b10 = 0 and b13=0), or10 + b5 if (b10 = 1 and b13=1)or 12 + b6 if (b11 = 0 and b13=0), or14 + b7 if (b11 = 1 and b13=1) (i.e. 1 out of PCG 8..15)

    (Example)

    (12.5% Gated-On, 12.5% Gated-Off)

    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

    Gated-On and Gated-Off Power

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    87/120

    87

    7 us 7 us

    20 dB or to

    the noise

    floor (-60dBm)

    3 dB

    1.247 ms

    Mean output of theensemble average

    Ensemble average: Average of power control groups,

    all with the same output power

    Reverse Channel Short Sequence Spreading

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    88/120

    88

    Same PN Short Codes Are

    Used by Mobiles

    Short Sequence spreading Aids

    Base Station Signal Acquisition Extra 1/2 Chip Delay is Inserted

    into Q Path to Produce OQPSK

    Modulation to Simplify Power

    Amplifier Design

    1.2288 Mbps

    Short Code Scrambler

    I

    Q

    1.2288 Mbps

    I Short Code

    FIR

    I Short Code

    FIRt/ 2

    1/2 Chip Delay

    1.2288

    Mbps

    OQPSK Modulation

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    89/120

    89

    QPSK Makes oneSymbol Change EveryPeriod

    OQPSK Makes twoSymbol Changes EveryPeriod if Q DataChanges

    Example Symbol Patternis:

    - 00,10,01,11

    I

    Q

    n

    n n

    n00 01

    10 11

    I

    Q

    n

    n n

    n00 01

    10 11

    CDMA Modulation Formats

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    90/120

    90

    Filtered Offset QPSKFiltered QPSK

    I I

    QQ

    Mobile Station TX

    Base StationPilot Channel TX

    Reverse Pilot/Power Control Multiplexing(RC3,4)

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    91/120

    91

    MUX

    Pilot Data

    Power

    Control Bits

    To I Channel

    Summer

    One Power Control Group

    Pilot PilotPilot PC Bits

    312.5 us 312.5 us 312.5 us 312.5 us

    1.25 ms

    There are 16 Power Control Groups per 20 ms Frame

    Each Power Control Group is Split into 4 Sub-Groups

    1 Power Control Bit is Sent per Power Control Group Pilot and Power Control are Multiplexed Together

    SR1, RC3 R-FCH Coding(RC3,RC4)

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    92/120

    92

    R-FCH

    Data Bits

    8.6 kbps

    Walsh Code

    Generator

    1 Frame1/4 Rate

    Convolutional

    Encoder

    38.4 ksps

    Channel

    Coder

    Add CRC and

    Tail Bits

    9.6 kbps

    Interleaver

    1,1, 1, 1,-1, -1, -1, -1, 1,1, 1, 1,-1, -1, -1, -1

    R-FCH Coding for a 20 ms Frame

    Orthogonal

    Spreading

    Spread

    Factor = 16

    2 Reps

    Symbol

    Repeat

    38.4 ksps 76.8 ksps 1228.8 kcps

    R-FCH Carries Voice Information

    Uses a 20 ms Frames Length

    Using rate convolutional coding

    ComplexR-SCH 2 Gain

    SR1 Reverse Channel Spreading(RC3,RC4)

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    93/120

    93

    1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1

    I Channel

    Short Code

    Generator

    User Long

    Code Mask

    ComplexScrambling

    Q

    I+

    +

    +

    -R-DCCH

    R-Pilot +

    Power

    Control

    R-SCH 1

    orR-EACH

    or

    R-CCCH

    R-FCH

    Walsh 16

    Generator

    1,1, 1, 1 -1,-1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1

    Walsh 2/4/8

    Generator

    1,-1 or 1 -1 1,-1, or 1,1,-1,-1,1,1,-1,-1

    Walsh 16

    Generator

    1228.8 kcps

    R-SCH 2

    Walsh 4/8

    Generator

    1, 1, -1, -1 or 1, 1, -1, -1, -1, -1, 1, 1

    Walsh 2

    Generator

    1,-1

    Gain

    Scale

    GainScale

    Gain

    Scale

    GScale

    Deci

    by 21228.8 kcps

    1228.8 kcps

    1228.8 kcps

    1228.8 kcps

    1228.8 kcps

    1228.8 kcps

    1228.8 kcps

    1228.8 kcp

    Q Channel

    Short Code

    Generator

    1228.8 kcps

    1-Chip

    Delay

    Long Code

    Generator

    1,1,1,1,-1,-1,-1,-1 for

    R-EACH or R-CCCH

    Channelization Summary

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    94/120

    94

    Function

    9.6 kbpsConvolutional Encoder

    14.4 kbps

    Convolutional Encoder

    Walsh Coding

    Long Code

    Spreading

    Short Code

    Spreading

    Forward Link

    (Base to Mobile)

    1/2 Rate(9600 in 19200 out)

    3/4 Rate

    (14400 in 19200 out)

    Channelization

    Voice Privacy

    Base Station

    Identification

    Reverse Link

    (Mobile to Base)

    1/3 Rate(9600 in 28800 out)

    1/2 Rate

    (14400 in 28800 out)

    64-aryModulation

    Channelization

    Aid Base Station

    Searching

    CDMA Multiplex Sublayer

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    95/120

    95

    Layer 1Physical Layer

    Channel Data - 9600 bps or 14400 bps

    Multiplex SublayerTraffic Channel

    Layer 2Link Layer

    Paging & Access

    Channels

    Layer 2Primary Traffic

    Layer 2Signaling

    Layer 3

    Call Processing & Control

    Station Class Mark (SCM)

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    96/120

    96

    Extended SCMIndicator

    7 Band Class 0 0XXXXXXXBand Class 1 1XXXXXXX

    Dual Mode 6 CDMA Only X0 XXXXXXDual Mode X1XXXXXX

    Slotted Class 5 Non-Slotted XX0XXXXXSlotted XX1XXXXX

    IS- 54 Power Class 4 Always 0 XXX0XXXX

    25 MHz Bandwidth 3 Always 1 XXXX1XXX

    Transmission 2 Continous XXXXX0XXDiscontinous XXXXX1XX

    Power Class for Band

    Class "0" AnalogOperation( For CDMA only "00")

    1- 0 Class I XXXXXX00

    Class II XXXXXX01Class III XXXXXX10Reserved XXXXXX11

    Function Bit(s) Setting

    Ten Minutes in the Life of a CDMA MobilePhone

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    97/120

    97

    Turn-on

    System Access

    Travel

    Idle State Hand-Off

    Initiate Call

    System Access

    Continue Travel

    Initiate Soft Handoff

    Terminate Soft Handoff

    End Call

    CDMA Turn On Process

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    98/120

    98

    Find All Receivable Pilot Signals Choose Strongest One

    Establish Frequency and PN TimeReference (Base Station I.D.)

    Demodulate Sync Channel

    Establish System Time

    Determine Paging Channel Long CodeMask

    Sync Channel Message

    C t i th F ll i D t

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    99/120

    99

    Contains the Following Data:

    Base Station Protocol Revision

    Min Protocol Revision

    Supported

    SID, NID of Cellular System

    Pilot PN Offset of Base Station

    Long Code State

    System Time

    Leap Seconds From Start of

    System Time

    Local Time Offset from System

    Time

    Daylight Savings Time Flag Paging Channel Data Rate

    Channel Number

    SYNC

    Read the Paging Channel

    D d l t th P i

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    100/120

    100

    Demodulate the Paging

    Channel:

    Use Long Code Mask Derived

    from the Pilot PN Offset Givenin Sync Channel Message

    Decode Messages

    Register, if Required by Base

    Station Monitor Paging Channel

    Pagin

    g

    CDMA Idle State Handoff

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    101/120

    101

    No Call In Progress

    Mobile Listens to New Cell

    Move Registration Location ifEntering a New Zone

    Access Procedures

    Controlled b BS b broadcasting Access Parameters

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    102/120

    102

    Controlled by BS by broadcastingAccess ParametersMessage on the paging channel

    Access attempt is the process of sending one message and

    receiving (or failing to receive) an ACK for that message= groups of access probe sequence

    Access probe sequence = groups of access probes

    Access probe = each transmission in an access attempt

    Access Probe

    Access Probe (or Access Channel Slot)

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    103/120

    103

    Access Channel Message

    40 - 880 bits

    Padding

    as reqd

    Frame Body

    88 bits

    T

    8

    Frame Body

    88 bits

    T

    8

    Access Channel Message Capsule

    Access

    Chan Frame96 b/20ms

    Access

    Chan Frame96 b/20ms

    Access

    Chan Frame96 b/20ms

    Access

    Chan Frame96 b/20ms

    Access

    Chan Frame96 b/20ms

    Access

    Chan Frame96 b/20ms

    ( )( 4 + PAM_SZ + MAX_CAP_SZ) x 20ms [ Max value = 26 frames ]

    Preamble

    (1 + PAM_SZ) x 20ms[ max = 16 frames ]

    Access Channel Message Capsule

    (3 + MAX_CAP_SZ) x 20 ms[ Max = 10 frames ]

    Preamble

    96 bits 0s

    Preamble

    96 bits 0s

    PAM_SZ = No. of preamble frames

    MAX_CAP_SZ = No. of message capsule frames

    Access Probe Sequence

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    104/120

    104

    Access Probe Sequence

    AccessProbe 1

    Access

    Probe 2

    Access

    Probe 3

    Access

    Probe n

    TA TA TART RT RT

    Preamble + Access Message Capsule

    Max = 26 frames

    RN RN RN RN

    IP

    P1

    P2

    P3

    IP = Open Loop Power + NOM_PWR + INIT_PWR

    where Open Loop Power = -( Received Power ) - 73

    Access Attempt

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    105/120

    105

    RS : Backoff delay, which is random value between 0 to BKOFF slots

    Process for Response MessagesProcess for Response Messages

    message ready for

    transmission

    Access

    Probe

    Sequence

    Access

    Probe

    Sequence

    Access

    Probe

    Sequence

    Access

    Probe

    Sequence

    Access AttemptMAX_RSP_SEQ

    RS RS RS

    Access Attempt

    P f R t MP f R t M

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    106/120

    106

    PD: (Persistence Delay) resulted from a pseudo-random test by MS; the first access probe of thesequence begins in the slot only if the test passes within that slot

    The test result depends on the ESN, reason for attempt (call origination, register, etc.) and theaccess overload class of the MS, and a PSSIST value broadcasted by BS for that access class. If

    the PSSIST is all 1s for some access class, the test for that access class will always fail

    Process for Request MessagesProcess for Request Messages

    message ready for transmission

    Access

    Probe

    Sequence

    AccessProbe

    Sequence

    AccessProbe

    Sequence

    AccessProbe

    Sequence

    Access AttemptMAX_REQ_SEQ

    RS PD RS PDRS PDPD

    Access Channel Messages

    Registration Message

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    107/120

    107

    Registration Message - for registration as well as GlobalChalleng Authentication Process

    Order Message - for transmission of order messages (e.g., BSchallengeorder, SSD update confirmation, MSacknowledgement order, etc.)

    Data Burst Message - to get a trigger from the user to send amessage to BS (information message likeSMS)

    Origination Message-MS information

    Page Response message

    Authentication Challenge Response Message

    Status Response Message - response to BS status requestorder which may include MS terminalinformation, station class mark, service optionsupported, multiplex option support, IMSI, ESN,etc.

    CDMA Call Initiation

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    108/120

    108

    Dial Numbers, Then Press Send Mobile Transmits on a Special Channel Called the

    Access Channel

    The Access Probe Uses a Long Code Mask

    Based On:bAccess & Paging Channel NumbersbBase Station ID

    bPilot PN Offset

    CDMA Call Completion

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    109/120

    109

    Base Answers Access Probe using theChannel Assignment Message

    Mobile Goes to A Traffic Channel Based on

    the Channel Assignment MessageInformation

    Base Station Begins to Transmit andReceive Traffic Channel

    CDMA Soft Handoff Initiation

    Mobile Finds Second Pilot of Sufficient Power (exceeds

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    110/120

    110

    (

    T_add Threshold)

    Mobile Sends Pilot Strength Message to First Base Station

    Base Station Notifies MTSO

    MTSO Requests New Walsh Assignment from Second Base

    Station

    If Available, New Walsh Channel Info is Relayed to First

    Base Station

    Hard, Soft, and Softer Handoffs

    Hard Handoff f2

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    111/120

    111

    Break before make.

    Soft Handoff

    Make before break.

    MS communicates with more

    than one BS at a time.

    Improves reception on cell

    boundaries.

    MS will receive different powercontrol from the two BSs.

    Softer Handoff

    MS communicates with more

    than one sector of a cell. MS will receive identical power

    control from both sectors.

    f1

    2

    Hard Handoff

    f1

    f1

    Soft Handoff

    f1

    Softer Handoff

    Pilot Ec/ I0

    cdma2000 CONCEPT: Soft Handoff

    Terms:

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    112/120

    112

    T_ADD

    BS1 BS2

    Pilot Ec/ I0

    T_DROP

    BS1 BS2

    Active Set: MS is in soft

    handoff.

    Candidate Set: MS identifies asstrong.

    Parameters:

    T_ADD

    T_COMP T_DROP

    T_TDROP

    Pilot Ec/ I0

    0.5xT_COMP

    BS1 BS2

    CDMA Soft Handoff Completion

    First Base Station Orders Soft Handoff with new Walsh

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    113/120

    113

    Assignment

    MTSO Sends Land Link to Second Base Station

    Mobile Receives Power from Two Base Stations

    MTSO Chooses Better Quality Frame Every 20 Milliseconds

    MTSO

    Base Station 1

    Land Link

    Vocoder/ Selector

    Base Station 2

    Ending CDMA Soft Handoff

    First BS Pilot Power Goes Low at Mobile Station (drops

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    114/120

    114

    below T_drop)

    Mobile Sends Pilot Strength Message

    First Base Station Stops Transmitting and Frees up Channel

    Traffic Channel Continues on Base Station Two

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    115/120

    cdma2000 Standards Overview - TIA/EIA-98-D/E

    I.e.3GPP2 C.S0011-A/B:

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    116/120

    116

    Recommended Minimum Performance Standards for

    cdma2000 Spread Spectrum Mobile Stations.

    Important test sections:

    2 Standard Radiated Emissions Measurement Procedure

    3 CDMA Receiver Minimum Standards

    4 CDMA Transmitter Minimum Standards

    Covers both SR1 and SR3

    No Minimum Standards specified for SR3.

    This presentation only covers SR1 testing.

    CDMA Service Options

    Service Options Are:

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    117/120

    117

    9911--Voice Using 9600 bp s ISVoice Using 9600 bps IS--9696--AA VocoderVocoder

    9922--Rate Set 1Rate Set 1LoopbackLoopback(9600 bp s)(9600 bp s)

    9933--Voice Usin g 9600 bps (EVRC)Voice Usin g 9600 bps (EVRC)

    9944--Asy nch ronous Data Service (c i rcui t sw i tched)Asynch ronou s Data Service (c i rcui t sw i tched)

    9955--Group 3 FaxGroup 3 Fax

    9966--Sho rt Message Service (9600 bps )Sho rt Message Service (9600 bps )

    9977--Internet Standard PPP Packet DataInt ernet Standard PPP Packet Data

    9988--CDPD Over PPP Packet DataCDPD Over PPP Packet Data

    9999--Rate Set 2Rate Set 2LoopbackLoopback(14400 bps)(14400 bp s)

    991414--Sho rt Message Service (14400 bps)Sho rt Message Service (14400 bp s)

    9932,76832,768--Voice Usin g 14400 bps (CDG)Voice Usin g 14400 bps (CDG)

    Section 3 - Receiver Test

    Receiver Test

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    118/120

    118

    3.1 Frequency Coverage Requirements

    3.4.1 Demod of Fwd Traffic Channel with AWGN

    3.4.2 Demod of Fwd Traffic Channel with Multipath Fading

    3.5.1 Receiver Sensitivity and Dynamic Range

    3.5.2 Single Tone Desensitization

    3.5.3 Intermodulation Spurious Response Attenuation3.5.4 Adjacent Channel Selectivity

    3.5.5 Receiver Blocking Characteristics

    3.7.1 Supervision Paging Channel

    Section 4 - Transmitter Test

    Transmitter Test

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    119/120

    119

    4.1 Frequency Accuracy

    4.2 Handoff

    4.3 Modulation Requirements4.4 RF Output Power Requirements

    4.4.14.4.1Range of Open Loop Output PowerRange of Open Loo p Outpu t Power

    4.4.2 Time Response of Open Lo op Power Con trol4.4.2 Time Response of Open Lo op Power Con trol

    4.4.3 Acc ess Probe Outpu t Pow er4.4.3 Access Probe Ou tpu t Pow er

    4.4.4 Range of Closed Loop Pow er Control4.4.4 Range of Closed L oop Power Con trol

    4.4.5 Maximum RF Outpu t Pow er4.4.5 Maximum RF Outpu t Pow er

    4.4.6 Minimum Control led Outp ut Power4.4.6 Minimum Control led Outp ut Power

    4.4.7 Standby Outpu t Power and Gated Ou tpu t Power4.4.7 Standb y Ou tput Power and Gated Ou tput Power

    4.4.8 Pow er Up Funct ion Outpu t Power4.4.8 Power Up Func t ion Outpu t Power

    4.4.9 Code Channel to Reverse Pilot Channel Output Power A ccu rac4.4.9 Code Channel to Reverse Pi lot Channel Outpu t Pow er Acc uracyy

    4.4.10 Reverse Pilot Channel Transm it Phase Discon tinu ity4.4.10 Reverse Pilot Channel Transm it Phase Discon tinu ity

    4.4.11 Reverse Traff ic Channel Outpu t Power During Changes in Da4.4.11 Reverse Traff ic Channel Outpu t Power During Changes in Datata

    RateRate

    CDMA Conclusions

    New Access Method

  • 7/27/2019 Cdma2000 Fundamentals Agilent

    120/120

    120

    Code Based

    Designed for Use in Interfering Environment

    Uses Multipath to Improve Reception in Fading Conditions

    cdma2000 is Backwards Compatible with TIA/EIA-95-B

    Provides 2x Capacity Improvement Over TIA/EIA-95-B

    99Improved CodingImproved Coding

    99 Improved Modulat ionImproved Modulat ion

    99 Coherent Reverse Link Demodulat ion (Mobi le Pilot)Coherent Reverse Link Demodulat ion (Mobi le Pi lot)

    99 Fast Forward Lin k Power Contro lFast Forward Link Power Contro l

    Has Options for Green Field and Overlay Operation:99 Direct Spread for Green Field Spectrum Appl icat ionsDirect Spread for Green Field Spectrum Appl icat ions

    Supports High Speed Data for New Applications