bth treatment delays the senescence of postharvest pitaya

11
foods Article BTH Treatment Delays the Senescence of Postharvest Pitaya Fruit in Relation to Enhancing Antioxidant System and Phenylpropanoid Pathway Xiaochun Ding 1 , Xiaoyang Zhu 2 , Wang Zheng 2 , Fengjun Li 1,3 , Shuangling Xiao 2 and Xuewu Duan 1, * Citation: Ding, X.; Zhu, X.; Zheng, W.; Li, F.; Xiao, S.; Duan, X. BTH Treatment Delays the Senescence of Postharvest Pitaya Fruit in Relation to Enhancing Antioxidant System and Phenylpropanoid Pathway. Foods 2021, 10, 846. https://doi.org/ 10.3390/foods10040846 Academic Editor: Joaquina Pinheiro Received: 9 March 2021 Accepted: 8 April 2021 Published: 13 April 2021 Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affil- iations. Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). 1 South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; [email protected] (X.D.); [email protected] (F.L.) 2 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory for Postharvest Science and Technology of Fruit and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; [email protected] (X.Z.); [email protected] (W.Z.); [email protected] (S.X.) 3 College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected]; Tel.: +86-20-3725-2960 Abstract: The plant resistance elicitor Benzo (1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) can enhance disease resistance of harvested fruit. Nonetheless, it is still unknown whether BTH plays a role in regulating fruit senescence. In this study, exogenous BTH treatment efficiently delayed the senescence of postharvest pitaya fruit with lower lipid peroxidation level. Furthermore, BTH- treated fruit exhibited lower hydrogen peroxide (H 2 O 2 ) content, higher contents of reduced ascorbic acid (AsA) and reduced glutathione (GSH) levels and higher ratios of reduced to oxidized glutathione (GSH/GSSG) and ascorbic acid (AsA/DHA), as well as higher activities of ROS scavenging enzymes, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD) and glutathione reductase (GR) in comparison with control fruit. Moreover, BTH treatment enhanced the activities of phenylpropanoid pathway-related enzymes, including cinnamate-4-hydroxylase (C4H), phenylalanine ammonia-lyase (PAL) and 4-coumarate/coenzyme A ligase (4CL) and the levels of phenolics, flavonoids and lignin. In addition, BTH treatment upregulated the expression of HuSOD1/3/4, HuCAT2, HuAPX1/2 and HuPOD1/2/4 genes. These results suggested that application of BTH delayed the senescence of harvested pitaya fruit in relation to enhanced antioxidant system and phenylpropanoid pathway. Keywords: pitaya; BTH; ROS metabolism; phenylpropanoid pathway 1. Introduction Pitaya (Hylocereus undatus) is a tropical and subtropical non-climactic fruit, rich in vitamins, amino acids, total phenols and betaine. Pitaya is popular among consumers for its attractive color and high-quality taste. However, the fruit is prone to water loss, wilting, rot and rapid senescence, resulting in a short storage life. Till now, techniques are developed to maintain the quality of harvested pitaya, including chemical treatments (BABA, methyl jasmonate, nitric oxide) [1,2], heat shock [3] and low temperature and bagging [4]. Benzo (1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) is a structural analog of salicylic acid. BTH exerts no direct bacteriostatic effect on pathogens, but induces plants to acquire systemic immune resistance [5,6]. It has been shown that BTH enhances plant dis- ease resistance and improves the quality of horticultural products such as muskmelon [7,8], strawberry [9], apple [10] and mango [11]. BTH also delays fruit ripening in climacteric muskmelon and banana [12,13]. However, it is still unknown whether BTH regulate the senescence of non-climacteric fruit. ROS are generated with aerobic respiration, which are implicated in modulating di- verse important physiological process as signaling molecules. However, when subjected Foods 2021, 10, 846. https://doi.org/10.3390/foods10040846 https://www.mdpi.com/journal/foods

Upload: others

Post on 01-May-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: BTH Treatment Delays the Senescence of Postharvest Pitaya

foods

Article

BTH Treatment Delays the Senescence of Postharvest PitayaFruit in Relation to Enhancing Antioxidant System andPhenylpropanoid Pathway

Xiaochun Ding 1, Xiaoyang Zhu 2 , Wang Zheng 2, Fengjun Li 1,3, Shuangling Xiao 2 and Xuewu Duan 1,*

�����������������

Citation: Ding, X.; Zhu, X.; Zheng,

W.; Li, F.; Xiao, S.; Duan, X. BTH

Treatment Delays the Senescence of

Postharvest Pitaya Fruit in Relation to

Enhancing Antioxidant System and

Phenylpropanoid Pathway. Foods

2021, 10, 846. https://doi.org/

10.3390/foods10040846

Academic Editor: Joaquina Pinheiro

Received: 9 March 2021

Accepted: 8 April 2021

Published: 13 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;[email protected] (X.D.); [email protected] (F.L.)

2 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/GuangdongProvincial Key Laboratory for Postharvest Science and Technology of Fruit and Vegetables, College ofHorticulture, South China Agricultural University, Guangzhou 510642, China;[email protected] (X.Z.); [email protected] (W.Z.); [email protected] (S.X.)

3 College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China* Correspondence: [email protected]; Tel.: +86-20-3725-2960

Abstract: The plant resistance elicitor Benzo (1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester(BTH) can enhance disease resistance of harvested fruit. Nonetheless, it is still unknown whether BTHplays a role in regulating fruit senescence. In this study, exogenous BTH treatment efficiently delayedthe senescence of postharvest pitaya fruit with lower lipid peroxidation level. Furthermore, BTH-treated fruit exhibited lower hydrogen peroxide (H2O2) content, higher contents of reduced ascorbicacid (AsA) and reduced glutathione (GSH) levels and higher ratios of reduced to oxidized glutathione(GSH/GSSG) and ascorbic acid (AsA/DHA), as well as higher activities of ROS scavenging enzymes,including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD)and glutathione reductase (GR) in comparison with control fruit. Moreover, BTH treatment enhancedthe activities of phenylpropanoid pathway-related enzymes, including cinnamate-4-hydroxylase(C4H), phenylalanine ammonia-lyase (PAL) and 4-coumarate/coenzyme A ligase (4CL) and thelevels of phenolics, flavonoids and lignin. In addition, BTH treatment upregulated the expression ofHuSOD1/3/4, HuCAT2, HuAPX1/2 and HuPOD1/2/4 genes. These results suggested that applicationof BTH delayed the senescence of harvested pitaya fruit in relation to enhanced antioxidant systemand phenylpropanoid pathway.

Keywords: pitaya; BTH; ROS metabolism; phenylpropanoid pathway

1. Introduction

Pitaya (Hylocereus undatus) is a tropical and subtropical non-climactic fruit, rich invitamins, amino acids, total phenols and betaine. Pitaya is popular among consumers for itsattractive color and high-quality taste. However, the fruit is prone to water loss, wilting, rotand rapid senescence, resulting in a short storage life. Till now, techniques are developedto maintain the quality of harvested pitaya, including chemical treatments (BABA, methyljasmonate, nitric oxide) [1,2], heat shock [3] and low temperature and bagging [4].

Benzo (1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) is a structural analogof salicylic acid. BTH exerts no direct bacteriostatic effect on pathogens, but induces plantsto acquire systemic immune resistance [5,6]. It has been shown that BTH enhances plant dis-ease resistance and improves the quality of horticultural products such as muskmelon [7,8],strawberry [9], apple [10] and mango [11]. BTH also delays fruit ripening in climactericmuskmelon and banana [12,13]. However, it is still unknown whether BTH regulate thesenescence of non-climacteric fruit.

ROS are generated with aerobic respiration, which are implicated in modulating di-verse important physiological process as signaling molecules. However, when subjected

Foods 2021, 10, 846. https://doi.org/10.3390/foods10040846 https://www.mdpi.com/journal/foods

Page 2: BTH Treatment Delays the Senescence of Postharvest Pitaya

Foods 2021, 10, 846 2 of 11

to environmental stress or during senescence, excessive ROS might accumulate, result-ing in oxidative damage of macromolecules, which, in turn accelerate stresses or senes-cence [14,15]. ROS level is regulated by enzymatic antioxidant system and low molecularmass antioxidants [16–20]. Most fruits have vigorous respiration after harvest, accom-panied by ROS accumulation. It has been shown that ROS accumulation and oxidativedamage to proteins play roles in fruit senescence [21–23]. Previous studies have demon-strated that the postharvest inducer enhances the antioxidant capacity of muskmelon [8],pear [24], blueberry [25] and kiwi fruit [20]. Therefore, maintenance of redox status iscrucial for delaying fruit senescence.

The phenylpropanoid pathway plays key roles in the synthesis of phenolic compounds,flavonoids, lignins and other secondary metabolites [26,27]. In the pathway, 4-coumarate-CoA ligase (4CL) and phenylalanine ammonia-lyase (PAL) account for the critical enzymes.Of the synthesized secondary metabolites, some are antioxidants and antibiotic substances,which are important for maintenance of fruit quality and resistance to fungal infection [28].It has been shown that some exogenous elicitors treatments enhance resistance againstfungi and maintains fruit quality by activation of the phenylopropanoid pathway [8,29].

The present work focused on evaluating the role of BTH in regulating the senescencein harvested pitaya fruit and further reveal the underlying mechanism in term of ROSmetabolism and phenylpropaoid pathway.

2. Materials and Methods2.1. Plant Material and Treatments

Pitaya (H. undatus cv. Bai shui jing) fruit were collected at 30 d after anthesis. Pre-liminary experiment showed that, at a concentration range of 10–100 mg L−1, applying50 mg L−1 BTH effectively postponed the harvested pitaya fruit senescence. Therefore,in this study, 50 mg L−1 BTH was used. Pitaya fruit were immersed in distilled water(containing 0.05% Tween 80) for 15 min as the control group. In the BTH treatment group,pitaya fruit were dipped in 50 mg L−1 BTH solutions (containing 0.05% Tween 80) for15 min. Each group was carried out independently in triplicate. After treatments, the fruitwere placed into 0.02 mm thick unsealed polyethylene bag and stored at room temperature(25 ± 1 ◦C). Ten fruit are packed in one polyethylene bag, and eight bags are included ineach group (BTH and control treatment).

During storage, three fruit in each group were sampled every 2 days, followed byimmediate liquid nitrogen freezing and preservation under −80 ◦C for further analysis.Each treatment was replicated three times.

2.2. Weight Loss (WL) Rate

The weights of the pitaya fruit were recorded at 2 d intervals for evaluating weightloss. The WL rate was calculated by the following formula: %WL = (original fruit weight− final fruit weight/original fruit weight) × 100%. Six fruits were used for each replicateof each treatment.

2.3. Malondialdehyde (MDA) Content

Malondialdehyde (MDA) content in pitaya peel was determined according to theMalondialdehyde Assay Kit (Beyotime, Shanghai, China). MDA content was expressed asµmol kg−1 of fresh fruit weight.

2.4. H2O2 Content

The H2O2 content was measured according to the method of Gill et al. [30]. The H2O2content was monitored at 410 nm and displayed in the manner of mmol kg−1 of freshfruit weight.

Page 3: BTH Treatment Delays the Senescence of Postharvest Pitaya

Foods 2021, 10, 846 3 of 11

2.5. Reduced Ascorbate (AsA) and Dehydroascorbate (DHA), Reduced Glutathione (GSH) andOxidized Glutathione (GSSG) Contents

AsA and GSH contents were determined as the method described by Wei et al. [31]. DHAand GSSG contents were determined using DHA and GSSG Detection Assay Kit (Beyotine,Shanghai, China). AsA and DHA contents were expressed as mg kg−1 fresh fruit weight.GSH and GSSG contents were expressed as mmol kg−1 on fruit fresh weight, respectively.

2.6. Lignin, Total Phenolic and Flavonoids Contents

Lignin, total phenolic and flavonoids contents were analyzed according to the ap-proach of Li et al. [2].

2.7. Enzymatic Activity Assays

CAT, APX and GR activities were measured for the reduction in substrates in thereaction systems at 240 nm, 290 nm and 340 nm, respectively, as the methods described inRen et al. [32], and displayed in the manner of U/mg protein. Typically, one enzyme activityunit was referred to the enzyme volume needed to cause 0.01 absorbance units change/min.SOD activity was determined by evaluating the inhibition of photochemical reduction ofnitro blue tetrazolium by the enzyme at 560 nm as the methods previously described inYou et al. [19], and expressed as U mg−1 protein. Notably, one enzyme activity unit referredto the enzyme volume required to induce 50% inhibition of the reduction. The activitiesof POD, PAL, 4CL and C4H were determined by evaluating the changes of substratesor reaction products in the reaction systems at 470 nm, 290 nm, 222 nm and 340 nm,respectively, as the methods described in Liu et al. [8], and expressed as U mg−1 protein.Typically, one enzyme activity unit indicated the enzyme volume required to induce 0.01absorbance change per one min. The Bio-Rad Protein Assay Kit (Bio-Rad, Hercules, CA,USA) was utilized to determine protein concentrations within the enzyme extracts.

2.8. RNA Extraction and Real-Time Quantitative PCR

Total RNA was extracted from 1 g peel tissue using the RNeasy Plant Mini Kit (Tiangen,China). Thereafter, 1 µg of extracted total RNA was used for preparing cDNA with Reverse-iT 1ST Strand Synthesis Kit (Tiangen, China) according to the manufacturer’s instructions.Gene sequences were obtained from transcriptome data of pitaya from Gene ExpressionOmnibus (GEO) database GSE119976.

Real-time quantitative PCR was carried out by adding 2 µL of 10 ng/µL templatecDNA, 1 µL of each primer (10 µM), sterile water and 10 µL SYBRGreen qPCR Master Mixto total volume 20 µL using the ABI PRISM 7500 Sequence Detection System (AppliedBiosystems). PCR was conducted at the conditions shown below, 95 ◦C for 10 min; followedby 95 ◦C for 20 s and 58 ◦C for 40 s for 38 cycles, with HuACTIN being an internal control.Table S1 summarizes the specific primers used in qRT-PCR. Three independent biologicalreplicates were used.

2.9. Statistical Analysis

Data were expressed as the mean ± SE of three biological replicates. Differencesbetween control and BTH-treated fruit were determined by ANOVA, followed by Student’st test (* p < 0.05; ** p < 0.01) using SPSS 19.0. Principal component analysis (PCA) wasperformed using GraphPad Prism9 (GraphPad Software Inc., San Diego, CA, USA). Thedata were normalized by Z-score [Xstd = (Xi −

_X)/Sx] to ensure that the variables being

analyzed were all on similar measurement scales. Xstd is the standardized value, Xi is theoriginal value,

_X is the variable’s mean and Sx is the variable’s standard deviation.

3. Results3.1. Effect of BTH Treatment on Weight Loss and MDA Content of Harvested Pitaya Fruit

Bract yellowing is an important senescence characteristic of harvested pitaya. Thebract of the control fruit and 10 mg L−1 BTH-treated fruit turned to yellow after 10 d of stor-

Page 4: BTH Treatment Delays the Senescence of Postharvest Pitaya

Foods 2021, 10, 846 4 of 11

age, whereas those of 50 mg L−1 and 100 mg L−1 BTH-treated remained green (Figure 1A).In the following experiment, we investigated the effect of 50 mg L−1 BTH on the senescenceof harvested pitaya in relation to redox status and phenylpropanoid pathway.

Moisture plays a vital part in maintaining pitaya fruit quality, while WL can inducefruit wilting. WL was aggravated in control fruit as the storage time extended, which wasas high as 4.2% at 10 d after storage. BTH treatment reduced water loss of harvested pitaya.The water loss rate was 2.1% in the BTH-treated fruit after 10 d of storage (Figure 1B).

MDA is an important index of lipid peroxidation, which is related to oxidative stress orsenescence in organisms. Application of BTH significantly alleviated lipid peroxidation ofharvested pitaya. After 10 d of storage, the MAD contents were 3.6 and 6.0 and µmol kg−1

in BTH-treated and control fruit, respectively (Figure 1C).

Foods 2021, 10, x FOR PEER REVIEW  4 of 12 

data were normalized by Z‐score [Xstd = (Xi X)/Sx] to ensure that the variables being ana‐lyzed were all on similar measurement scales. Xstd is the standardized value, Xi is the orig‐

inal value, X is the variable’s mean and Sx is the variable’s standard deviation. 

3. Results 

3.1. Effect of BTH Treatment on Weight Loss and MDA Content of Harvested Pitaya Fruit 

Bract yellowing  is an  important senescence characteristic of harvested pitaya. The 

bract of the control fruit and 10 mg L−1 BTH‐treated fruit turned to yellow after 10 d of 

storage,  whereas  those  of  50  mg  L−1  and  100  mg  L−1  BTH‐treated  remained  green  

(Figure 1A). In the following experiment, we investigated the effect of 50 mg L−1 BTH on 

the senescence of harvested pitaya in relation to redox status and phenylpropanoid path‐

way. 

 

Figure 1. Senescence characteristics of pitaya fruit during storage at 25 °C. (A) Visual appearance 

of pitaya fruit treated with 0 (control), 10, 50 and 100 mg −1 BTH after 10 d of storage. (B,C) Effect 

of BTH treatment on weight loss rate (B) and malondialdehyde (MDA) content (C) in pitaya fruit 

during storage. The concentration of BTH was 50 mg−1. The data are presented as the mean ± SE of 

three replicates. Asterisks indicate the significant differences between the two groups (Student’s t 

test, * p < 0.05; ** p < 0.01). 

Moisture plays a vital part in maintaining pitaya fruit quality, while WL can induce 

fruit wilting. WL was aggravated in control fruit as the storage time extended, which was 

as high as  4.2% at  10 d after  storage. BTH  treatment  reduced water  loss of harvested 

pitaya.  The water  loss  rate was  2.1%  in  the  BTH‐treated  fruit  after  10  d  of  storage  

(Figure 1B). 

MDA is an important index of lipid peroxidation, which is related to oxidative stress 

or senescence in organisms. Application of BTH significantly alleviated lipid peroxidation 

of harvested pitaya. After 10 d of storage, the MAD contents were 3.6 and 6.0 and μmol 

kg−1 in BTH‐treated and control fruit, respectively (Figure 1C). 

3.2. H2O2 Content and Activities of CAT, APX and SOD 

The oxidative damage of biological macromolecules caused by reactive oxygen spe‐

cies (ROS) is considered to be a main cause of senescence. H2O2 content in control fruit 

rapidly increased at 8 d after harvest. BTH treatment significantly reduced the accumula‐

tion of H2O2 content at the later stage of storage (Figure 2A). 

Figure 1. Senescence characteristics of pitaya fruit during storage at 25 ◦C. (A) Visual appearanceof pitaya fruit treated with 0 (control), 10, 50 and 100 mg −1 BTH after 10 d of storage. (B,C) Effectof BTH treatment on weight loss rate (B) and malondialdehyde (MDA) content (C) in pitaya fruitduring storage. The concentration of BTH was 50 mg−1. The data are presented as the mean ± SEof three replicates. Asterisks indicate the significant differences between the two groups (Student’st test, * p < 0.05; ** p < 0.01).

3.2. H2O2 Content and Activities of CAT, APX and SOD

The oxidative damage of biological macromolecules caused by reactive oxygen species(ROS) is considered to be a main cause of senescence. H2O2 content in control fruit rapidlyincreased at 8 d after harvest. BTH treatment significantly reduced the accumulation ofH2O2 content at the later stage of storage (Figure 2A).Foods 2021, 10, x FOR PEER REVIEW  5 of 12 

 

Figure 2. Effect of BTH treatment on H2O2 content (A), activities of CAT (B), APX (C) and SOD (D) 

in pitaya fruit during storage. H2O2, hydrogen peroxide; CAT, catalase; APX, ascorbate peroxi‐

dase; SOD, superoxide dismutase. Asterisks indicate the significant differences between the two 

groups (Student’s t test, * p < 0.05; ** p < 0.01). 

CAT, APX and SOD are important antioxidant enzymes responsible for scavenging 

H2O2. As shown in Figure 2B,C, CAT and APX activities slightly increased or was constant 

in control fruit within the first 8 d of storage and then markedly decreased. BTH treatment 

induced the increase in CAT and APX activities at the early stage of storage and main‐

tained higher levels of CAT and APX activities at the later stage of storage (Figure 2B,C). 

SOD activity fluctuated at the later stage of storage, and decreased after 6 days of storage. 

BTH treatment induced and maintained a higher level of SOD activity (Figure 2D). 

3.3. Activities of GR and POD, Contents of GSH and AsA and Ratios of GSH/GSSG and AsA 

and DHA 

GR activity increased within the first 6 d of storage, and then markedly decreased. 

BTH treatment resulted in higher GR activity throughout storage (Figure 3A). POD activ‐

ity tended to decrease in control fruit during storage. BTH treatment delayed the decrease 

in POD activity (Figure 3B). GSH content was generally constant in control fruit during 

storage.  BTH  treatment  resulted  in  higher  GSH  level  at  the  later  stage  of  storage  

(Figure 3C). AsA content tended to increase during storage. BTH treatment maintained 

higher AsA level (Figure 3D). 

Moreover, the ratios of reduced to oxidized glutathione (GSH/GSSG) and ascorbic 

acid (AsA/DHA) were high in BTH‐treated fruit than in control fruit (Figure 3E,F). 

Figure 2. Effect of BTH treatment on H2O2 content (A), activities of CAT (B), APX (C) and SOD (D)in pitaya fruit during storage. H2O2, hydrogen peroxide; CAT, catalase; APX, ascorbate peroxidase;SOD, superoxide dismutase. Asterisks indicate the significant differences between the two groups(Student’s t test, * p < 0.05; ** p < 0.01).

CAT, APX and SOD are important antioxidant enzymes responsible for scavengingH2O2. As shown in Figure 2B,C, CAT and APX activities slightly increased or was constant

Page 5: BTH Treatment Delays the Senescence of Postharvest Pitaya

Foods 2021, 10, 846 5 of 11

in control fruit within the first 8 d of storage and then markedly decreased. BTH treatmentinduced the increase in CAT and APX activities at the early stage of storage and maintainedhigher levels of CAT and APX activities at the later stage of storage (Figure 2B,C). SODactivity fluctuated at the later stage of storage, and decreased after 6 days of storage. BTHtreatment induced and maintained a higher level of SOD activity (Figure 2D).

3.3. Activities of GR and POD, Contents of GSH and AsA and Ratios of GSH/GSSG and AsAand DHA

GR activity increased within the first 6 d of storage, and then markedly decreased.BTH treatment resulted in higher GR activity throughout storage (Figure 3A). POD activitytended to decrease in control fruit during storage. BTH treatment delayed the decreasein POD activity (Figure 3B). GSH content was generally constant in control fruit duringstorage. BTH treatment resulted in higher GSH level at the later stage of storage (Figure 3C).AsA content tended to increase during storage. BTH treatment maintained higher AsAlevel (Figure 3D).

Moreover, the ratios of reduced to oxidized glutathione (GSH/GSSG) and ascorbicacid (AsA/DHA) were high in BTH-treated fruit than in control fruit (Figure 3E,F).

Foods 2021, 10, x FOR PEER REVIEW  6 of 12 

 

Figure 3. Effect of BTH treatment on activities of GR (A) and POD (B), contents of GSH (C) and 

AsA (D) and ratios of GSH/GSSG (E) and ASA/DHA (F) in pitaya fruit during storage. GR, gluta‐

thione reductase; POD, peroxidase; GSH, glutathione; AsA, ascorbic acid; GSSG, oxidized gluta‐

thione; DHA, oxidized ascorbic acid. Asterisks indicate the significant differences between the two 

groups (Student’s t test, * p < 0.05; ** p < 0.01). 

3.4. Activities of PAL, C4H and 4CL 

PAL and C4H activities in control fruit showed a slight increase during storage. BTH 

induced the increases in PAL and C4H activities within the first 4 d of storage and main‐

tained higher levels of PAL and C4H activities in the late storage period (Figure 4A,B). 

4CL activity in control fruit initially increased slightly and then decreased during storage. 

In contrast, BTH treatment initially induced the increase in 4CL activity, and then the ac‐

tivity was maintained at a high level (Figure 4C). 

 

Figure 4. Effect of BTH treatment on activities of PAL (A), C4H (B) and 4CL (C) in pitaya fruit 

during storage. PAL, phenylalanine ammonia‐lyase; C4H, cinnamate‐4‐hydroxylase; 4CL, 4‐

coumarate/coenzyme A ligase. Asterisks indicate the significant differences between the two 

groups (Student’s t test, * p < 0.05; ** p < 0.01). 

3.5. Total Phenols, Flavonoids and Lignin Contents 

Total phenolic content slightly increased within the first 6 d of storage and then de‐

creased in control fruit. Application of BTH promoted the synthesis of total phenolic con‐

tent. Total phenolic content was higher in BTH‐treated fruit than in control fruit through‐

out storage (Figure 5A). Flavonoid content was constant over the first 6 d of storage, then 

decreased in control fruit. BTH treatment resulted in increased accumulation of flavonoids 

during the later stage of storage (Figure 5B). Lignin content was virtually constant in con‐

trol  fruit throughout storage. Application of BTH  increased the synthesis of  lignin and 

maintained a higher level of lignin in harvested pitaya throughout storage (Figure 5C). 

Figure 3. Effect of BTH treatment on activities of GR (A) and POD (B), contents of GSH (C) andAsA (D) and ratios of GSH/GSSG (E) and ASA/DHA (F) in pitaya fruit during storage. GR,glutathione reductase; POD, peroxidase; GSH, glutathione; AsA, ascorbic acid; GSSG, oxidizedglutathione; DHA, oxidized ascorbic acid. Asterisks indicate the significant differences between thetwo groups (Student’s t test, * p < 0.05; ** p < 0.01).

3.4. Activities of PAL, C4H and 4CL

PAL and C4H activities in control fruit showed a slight increase during storage.BTH induced the increases in PAL and C4H activities within the first 4 d of storage andmaintained higher levels of PAL and C4H activities in the late storage period (Figure 4A,B).4CL activity in control fruit initially increased slightly and then decreased during storage.In contrast, BTH treatment initially induced the increase in 4CL activity, and then theactivity was maintained at a high level (Figure 4C).

Page 6: BTH Treatment Delays the Senescence of Postharvest Pitaya

Foods 2021, 10, 846 6 of 11

Foods 2021, 10, x FOR PEER REVIEW  6 of 12 

 

Figure 3. Effect of BTH treatment on activities of GR (A) and POD (B), contents of GSH (C) and 

AsA (D) and ratios of GSH/GSSG (E) and ASA/DHA (F) in pitaya fruit during storage. GR, gluta‐

thione reductase; POD, peroxidase; GSH, glutathione; AsA, ascorbic acid; GSSG, oxidized gluta‐

thione; DHA, oxidized ascorbic acid. Asterisks indicate the significant differences between the two 

groups (Student’s t test, * p < 0.05; ** p < 0.01). 

3.4. Activities of PAL, C4H and 4CL 

PAL and C4H activities in control fruit showed a slight increase during storage. BTH 

induced the increases in PAL and C4H activities within the first 4 d of storage and main‐

tained higher levels of PAL and C4H activities in the late storage period (Figure 4A,B). 

4CL activity in control fruit initially increased slightly and then decreased during storage. 

In contrast, BTH treatment initially induced the increase in 4CL activity, and then the ac‐

tivity was maintained at a high level (Figure 4C). 

 

Figure 4. Effect of BTH treatment on activities of PAL (A), C4H (B) and 4CL (C) in pitaya fruit 

during storage. PAL, phenylalanine ammonia‐lyase; C4H, cinnamate‐4‐hydroxylase; 4CL, 4‐

coumarate/coenzyme A ligase. Asterisks indicate the significant differences between the two 

groups (Student’s t test, * p < 0.05; ** p < 0.01). 

3.5. Total Phenols, Flavonoids and Lignin Contents 

Total phenolic content slightly increased within the first 6 d of storage and then de‐

creased in control fruit. Application of BTH promoted the synthesis of total phenolic con‐

tent. Total phenolic content was higher in BTH‐treated fruit than in control fruit through‐

out storage (Figure 5A). Flavonoid content was constant over the first 6 d of storage, then 

decreased in control fruit. BTH treatment resulted in increased accumulation of flavonoids 

during the later stage of storage (Figure 5B). Lignin content was virtually constant in con‐

trol  fruit throughout storage. Application of BTH  increased the synthesis of  lignin and 

maintained a higher level of lignin in harvested pitaya throughout storage (Figure 5C). 

Figure 4. Effect of BTH treatment on activities of PAL (A), C4H (B) and 4CL (C) in pitayafruit during storage. PAL, phenylalanine ammonia-lyase; C4H, cinnamate-4-hydroxylase; 4CL,4-coumarate/coenzyme A ligase. Asterisks indicate the significant differences between the twogroups (Student’s t test, * p < 0.05; ** p < 0.01).

3.5. Total Phenols, Flavonoids and Lignin Contents

Total phenolic content slightly increased within the first 6 d of storage and thendecreased in control fruit. Application of BTH promoted the synthesis of total phenoliccontent. Total phenolic content was higher in BTH-treated fruit than in control fruitthroughout storage (Figure 5A). Flavonoid content was constant over the first 6 d ofstorage, then decreased in control fruit. BTH treatment resulted in increased accumulationof flavonoids during the later stage of storage (Figure 5B). Lignin content was virtuallyconstant in control fruit throughout storage. Application of BTH increased the synthesisof lignin and maintained a higher level of lignin in harvested pitaya throughout storage(Figure 5C).

Foods 2021, 10, x FOR PEER REVIEW  7 of 12 

 

Figure 5. Effect of BTH treatment on contents of total phenolics (A), flavonoids (B) and lignin (C) 

in pitaya fruit during storage. Asterisks indicate the significant differences between the two 

groups (Student’s t test, * p < 0.05; ** p < 0.01). 

3.6. Expression of HuSODs, HuAPXs, HuCATs and HuPODs 

To illuminate the response of harvested pitaya fruit to BTH, we evaluated the expres‐

sion profiling of ROS metabolism‐associated genes, including four HuSODs, two HuCATs, 

three  HuAPXs  and  three  HuPODs.  BTH  treatment  upregulated  the  expression  of 

HuSOD1/3/4 genes, but downregulated the expression of the HuSOD2 gene. Except after 

day‐4 and day‐6, the expression of HuCAT1 was not affected by BTH, but the expression 

of HuCAT2 was upregulated by BTH. Of the analyzed three HuAPXs and three HuPODs, 

the expression of HuAPX1/2 and HuPOD1/2/4 were upregulated by BTH in comparison 

with the control. 

4. Discussion 

BTH is a synthetic plant elicitor that has similar function and structure with SA. There 

is mounting evidence that BTH effectively induces disease resistance in harvested fruits, 

such as muskmelons  [7,8], strawberries  [9], apples  [10] and mangos  [11]. BTH‐induced 

disease  resistance might  be  related  to  altered  ROS metabolism,  activated  phenylpro‐

panoid pathway, induced pathogenesis‐related protein and accumulation of resistant sub‐

stances [33]. Recent studies have revealed that BTH also delays fruit ripening in climac‐

teric fruits, such as muskmelon and banana [12,13]. Nonetheless, it remains largely un‐

clear whether BTH is involved in the regulation of the senescence of non‐climacteric fruit. 

Pitaya is a non‐climacteric fruit that undergoes senescence after postharvest, resulting in 

decreased quality [34]. In the present study, BTH pretreatment obviously inhibited turn‐

ing yellow of bract and water loss of harvested pitaya fruit. Moreover, lipid peroxidation, 

a senescence‐related index, was significantly reduced in harvested pitaya fruit by BTH. 

Our results indicate that BTH effectively delays the senescence of harvested pitaya, which 

is possibly related to maintenance of redox status. 

ROS are inevitable by‐products of aerobic metabolism in organisms, which play im‐

portant roles as signaling molecules in regulating growth and development, metabolism 

and response to environmental challenges. In plants, low concentrations of ROS induce 

the synthesis of plant disease‐related proteins and participate in the cross‐linking and lig‐

nification of cell walls to resist fungal infections [35]. However, excessive ROS accumula‐

tion due to imbalance of production and elimination will result in oxidative damage to 

macromolecules, thereby accelerating senescence [15]. Fruit senescence has been recently 

proposed to be associated with ROS accumulation and protein oxidative injury [21,22,36]. 

Qin et al. [22] reported that protein oxidation was intensified with the proceeding of se‐

nescence in peach fruit, and low temperature inhibits ROS accumulation, alleviates pro‐

tein carbonylation and retards fruit senescence whereas H2O2 treatment results in the op‐

posite effect. Wu et al. [36] found that high oxygen concentration resulted in higher H2O2 

accumulation and accelerated fruit senescence in longan fruit whereas exposure of low 

oxygen has the opposite effect. In the present study, H2O2 rapidly accumulated in pitaya 

fruit during the later storage, in consistence with fruit senescence. BTH treatment resulted 

in the increased H2O2 level during the initial storage, which might serve as a signal mole‐

cule to induce antioxidant enzyme activities [37], but reduced H2O2 accumulation at the 

Figure 5. Effect of BTH treatment on contents of total phenolics (A), flavonoids (B) and lignin (C) inpitaya fruit during storage. Asterisks indicate the significant differences between the two groups(Student’s t test, * p < 0.05).

3.6. Expression of HuSODs, HuAPXs, HuCATs and HuPODs

To illuminate the response of harvested pitaya fruit to BTH, we evaluated the expres-sion profiling of ROS metabolism-associated genes, including four HuSODs, two HuCATs,three HuAPXs and three HuPODs. BTH treatment upregulated the expression of Hu-SOD1/3/4 genes, but downregulated the expression of the HuSOD2 gene. Except afterday-4 and day-6, the expression of HuCAT1 was not affected by BTH, but the expression ofHuCAT2 was upregulated by BTH. Of the analyzed three HuAPXs and three HuPODs, theexpression of HuAPX1/2 and HuPOD1/2/4 were upregulated by BTH in comparison withthe control.

4. Discussion

BTH is a synthetic plant elicitor that has similar function and structure with SA.There is mounting evidence that BTH effectively induces disease resistance in harvestedfruits, such as muskmelons [7,8], strawberries [9], apples [10] and mangos [11]. BTH-induced disease resistance might be related to altered ROS metabolism, activated phenyl-propanoid pathway, induced pathogenesis-related protein and accumulation of resistantsubstances [33]. Recent studies have revealed that BTH also delays fruit ripening in cli-macteric fruits, such as muskmelon and banana [12,13]. Nonetheless, it remains largelyunclear whether BTH is involved in the regulation of the senescence of non-climacteric fruit.

Page 7: BTH Treatment Delays the Senescence of Postharvest Pitaya

Foods 2021, 10, 846 7 of 11

Pitaya is a non-climacteric fruit that undergoes senescence after postharvest, resulting indecreased quality [34]. In the present study, BTH pretreatment obviously inhibited turningyellow of bract and water loss of harvested pitaya fruit. Moreover, lipid peroxidation, asenescence-related index, was significantly reduced in harvested pitaya fruit by BTH. Ourresults indicate that BTH effectively delays the senescence of harvested pitaya, which ispossibly related to maintenance of redox status.

ROS are inevitable by-products of aerobic metabolism in organisms, which play im-portant roles as signaling molecules in regulating growth and development, metabolismand response to environmental challenges. In plants, low concentrations of ROS inducethe synthesis of plant disease-related proteins and participate in the cross-linking andlignification of cell walls to resist fungal infections [35]. However, excessive ROS accumu-lation due to imbalance of production and elimination will result in oxidative damage tomacromolecules, thereby accelerating senescence [15]. Fruit senescence has been recentlyproposed to be associated with ROS accumulation and protein oxidative injury [21,22,36].Qin et al. [22] reported that protein oxidation was intensified with the proceeding of senes-cence in peach fruit, and low temperature inhibits ROS accumulation, alleviates proteincarbonylation and retards fruit senescence whereas H2O2 treatment results in the oppositeeffect. Wu et al. [36] found that high oxygen concentration resulted in higher H2O2 accu-mulation and accelerated fruit senescence in longan fruit whereas exposure of low oxygenhas the opposite effect. In the present study, H2O2 rapidly accumulated in pitaya fruitduring the later storage, in consistence with fruit senescence. BTH treatment resulted inthe increased H2O2 level during the initial storage, which might serve as a signal moleculeto induce antioxidant enzyme activities [37], but reduced H2O2 accumulation at the laterstage of storage. It is suggested that the delayed senescence by BTH is related to decreasedaccumulation of ROS.

A complicated non-enzymatic and enzymatic antioxidant mechanism has evolved inplants to cope with oxidative stress [30,38,39]. Those major antioxidants are APX, SOD andCAT. SOD is responsible for catalyzing superoxide radical dismutation into H2O2. CATdirectly eliminates H2O2 while APX degrades H2O2 using AsA as the electron donor [40].In addition, GR catalyzes the reduction of oxidized glutathione, which facilitates APX tofunction [40]. Apart from antioxidant enzymes, glutathione, ascorbic acid, tocopherolsand phenolic compounds constitute the majority of non-enzymatic antioxidants in plants,which directly eliminate ROS, provide reducing power or maintain redox state of microen-vironment [18,41,42]. Numerous studies have shown that upregulated expression of SOD,CAT and APX or increased activities of antioxidant enzymes reduce ROS accumulationand therefore increase resistance to abiotic stress in plants [17–19]. BTH-induced diseaseresistance also might be related to enhanced antioxidant enzyme activities [9,32]. In thisstudy, application of BTH upregulated expression of HuSOD1/3/4, HuCAT2 and HuAPX1/2,HuPOD1/2/4 (Figure 6) and increased activities of SOD, CAT and APX (Figure 2B–D), inconsistence with the alleviated accumulation of H2O2 (Figure 2A). Moreover, the increase inGR activity (Figure 3A), contents of GSH and AsA and ratios of GSH/GSSG and ASA/DHA(Figure 3C–F) in BTH-treated fruit compared with control fruit indicated that the redoxstate was well maintained by BTH, which are important for APX to eliminate H2O2. Per-oxidase (POD) is a hemoprotein catalyzing the oxidation of a number of substrates, suchas phenols, amine compounds and hydrocarbon oxidation products, using hydrogen per-oxide as the electron acceptor. POD works with other antioxidant enzymes to eliminateexcess ROS [43,44]. Our results showed that BTH treatment up-regulated expression ofHuPOD1/2/4 and increased POD activity in harvested pitaya fruit (Figures 3B and 6). Thus,BTH treatment activated the gene expression and activities of antioxidant enzymes, andwell maintained the redox status, which might be responsible for the alleviated H2O2accumulation and the delayed senescence in harvested pitaya fruit (Figure 7). To furtherpredict the key redox parameters of enzyme activity, metabolite content and related geneexpression in the BTH-treated pitaya fruit, we performed a multivariate PCA analysisbetween BTH-treated and control fruit (Figure S1A,B). The results showed that PC1 and

Page 8: BTH Treatment Delays the Senescence of Postharvest Pitaya

Foods 2021, 10, 846 8 of 11

PC2 together accounted for 6.34% of the cumulative proportion of variance and 22 re-dox variables were significantly separated between the BTH-treated and control group(Figure S1A). In the loadings plot for our data, the activity of CAT, GR, the content ofH2O2, AsA and GSH, the ratio of AsA/DHA and GSH/GSSG, the mRNA transcripts levelsof HuSOD1, HuSOD2, HuSOD3, HuSOD4, HuCAT2, HuAPX1, HuPOD1, HuPOD2 andHuPOD4 were strongly correlated (values close to 1 or −1, p < 0.05) (Figure S1B).

Foods 2021, 10, x FOR PEER REVIEW  9 of 12 

 

Figure 6. Expression levels of HuSODs (A–D), HuCATs (E–F), HuAPXs (G–I) and HuPODs (J–L) in 

pitaya fruit treated with or without BTH during storage. HuACT was used as the reference gene. 

Gene expression of the sample from 0 d was set as 1. Asterisks indicate the significant differences 

between the two groups (Student’s t test, * p < 0.05; ** p < 0.01). 

 

Figure 7. A proposed model of the involvement of BTH in the regulation of fruit senescence in 

pitaya. Arrow up means promotion, arrow down indicates suppression. 

The phenylpropanoid pathway is considered as a rich source of secondary metabo‐

lites, such as phenolic compounds, flavonoids, coumarins and lignins in plants. In phe‐

nylpropanoid pathway, PAL, 4CL and C4H serve as the critical enzymes, of which PAL 

and C4H are the first and second rate‐limiting enzymes [45,46], whereas 4CL is the key 

enzyme leading to the branch of phenylpropanoid pathway [26]. Phenols and flavonoids 

are  the end products of phenylpropanoid pathway, and  their accumulation are closely 

associated with plant resistance and senescence [47–51]. Lignin enhances the mechanical 

strength of plant cell walls and prevents microbial invasion [29], and is involved in regu‐

lation of senescence [52–55]. In the present study, application of BTH promoted PAL, 4CL 

and C4H activities (Figure 4), in consistence with the increased synthesis of phenols, fla‐

vonoids and  lignin  (Figure 5)  in pitaya  fruit. Li and colleagues also came  to consistent 

results  in  red pitaya  [1], who  found  that beta‐aminobutyric acid  treatment  induces  re‐

Figure 6. Expression levels of HuSODs (A–D), HuCATs (E–F), HuAPXs (G–I) and HuPODs (J–L) inpitaya fruit treated with or without BTH during storage. HuACT was used as the reference gene.Gene expression of the sample from 0 d was set as 1. Asterisks indicate the significant differencesbetween the two groups (Student’s t test, ** p < 0.01).

Foods 2021, 10, x FOR PEER REVIEW  9 of 12 

 

Figure 6. Expression levels of HuSODs (A–D), HuCATs (E–F), HuAPXs (G–I) and HuPODs (J–L) in 

pitaya fruit treated with or without BTH during storage. HuACT was used as the reference gene. 

Gene expression of the sample from 0 d was set as 1. Asterisks indicate the significant differences 

between the two groups (Student’s t test, * p < 0.05; ** p < 0.01). 

 

Figure 7. A proposed model of the involvement of BTH in the regulation of fruit senescence in 

pitaya. Arrow up means promotion, arrow down indicates suppression. 

The phenylpropanoid pathway is considered as a rich source of secondary metabo‐

lites, such as phenolic compounds, flavonoids, coumarins and lignins in plants. In phe‐

nylpropanoid pathway, PAL, 4CL and C4H serve as the critical enzymes, of which PAL 

and C4H are the first and second rate‐limiting enzymes [45,46], whereas 4CL is the key 

enzyme leading to the branch of phenylpropanoid pathway [26]. Phenols and flavonoids 

are  the end products of phenylpropanoid pathway, and  their accumulation are closely 

associated with plant resistance and senescence [47–51]. Lignin enhances the mechanical 

strength of plant cell walls and prevents microbial invasion [29], and is involved in regu‐

lation of senescence [52–55]. In the present study, application of BTH promoted PAL, 4CL 

and C4H activities (Figure 4), in consistence with the increased synthesis of phenols, fla‐

vonoids and  lignin  (Figure 5)  in pitaya  fruit. Li and colleagues also came  to consistent 

results  in  red pitaya  [1], who  found  that beta‐aminobutyric acid  treatment  induces  re‐

Figure 7. A proposed model of the involvement of BTH in the regulation of fruit senescence in pitaya.Arrow up means promotion, arrow down indicates suppression.

The phenylpropanoid pathway is considered as a rich source of secondary metabolites,such as phenolic compounds, flavonoids, coumarins and lignins in plants. In phenyl-propanoid pathway, PAL, 4CL and C4H serve as the critical enzymes, of which PAL andC4H are the first and second rate-limiting enzymes [45,46], whereas 4CL is the key enzymeleading to the branch of phenylpropanoid pathway [26]. Phenols and flavonoids are theend products of phenylpropanoid pathway, and their accumulation are closely associated

Page 9: BTH Treatment Delays the Senescence of Postharvest Pitaya

Foods 2021, 10, 846 9 of 11

with plant resistance and senescence [47–51]. Lignin enhances the mechanical strengthof plant cell walls and prevents microbial invasion [29], and is involved in regulation ofsenescence [52–55]. In the present study, application of BTH promoted PAL, 4CL and C4Hactivities (Figure 4), in consistence with the increased synthesis of phenols, flavonoids andlignin (Figure 5) in pitaya fruit. Li and colleagues also came to consistent results in redpitaya [1], who found that beta-aminobutyric acid treatment induces resistance against rotcaused by Gilbertella persicaria via activating phenylpropanoid. It appears that the increasedsynthesis of phenols, flavonoids and lignin in BTH-treated pitaya fruit is important tomaintain redox state and increase resistance, thereby delaying postharvest pitaya fruitsenescence (Figure 7).

5. Conclusions

BTH treatment effectively delayed postharvest pitaya fruit senescence. The delayedsenescence was related to enhanced antioxidant system and phenylpropanoid pathway.BTH treatment upregulated expression of antioxidant enzyme genes, increased activitiesof antioxidant enzymes and regenerative capacity of glutathione and ascorbic acid. More-over, BTH treatment also induced PAL, C4H and 4CL activities, resulting in the increasedsynthesis of phenols, flavonoids and lignin. Nevertheless, the investigation of the mech-anism of BTH to delay pitaya fruit senescence is still needed to be further studied at themolecular level.

Supplementary Materials: The supplementary are available online at https://www.mdpi.com/article/10.3390/foods10040846/s1. Figure S1. PCA scores analysis of the metabolites, enzymes andtranscripts in antioxidant system in pitaya fruit after BTH treatment (A). Loadings plots for PCA ofthe metabolites, enzymes and transcripts in antioxidant system in pitaya fruit after BTH treatment(B). A total of 22 variables are considered, including the activities of SOD, CAT, APX, GR, POD, thecontent of H2O2, AsA and GSH, the ratio of AsA/DHA and GSH/GSSG, the mRNA transcriptslevels of HuSOD1, HuSOD2, HuSOD3, HuSOD4, HuCAT1, HuCAT2, HuAPX1, HuAPX2, HuAPX3,HuPOD1, HuPOD2 and HuPOD4. PC1 and PC2 account for 45.28% and 15.06% of the cumulativeproportion of variance respectively. Table S1. Primers for Real-time PCR.

Author Contributions: X.D. (Xiaochun Ding): conceptualization, data curation, formal analysis,investigation, methodology, software, writing—original draft, funding acquisition. X.Z., W.Z., F.L.,S.X.: investigation, formal analysis, methodology. X.D. (Xuewu Duan): project administration,supervision, funding acquisition, writing—review and editing. All authors have read and agreed tothe published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (32002103),Science and Technology Planning Project of Guangzhou (201804020041), China Postdoctoral ScienceFoundation funded project (2019M650218), and Guangdong Basic and Applied Basic ResearchFoundation (2020A1515110092).

Data Availability Statement: The data presented in this study are available on request from thecorresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References1. Li, G.L.; Meng, F.B.; Wei, X.P.; Lin, M. Postharvest dipping treatment with BABA induced resistance against rot caused by

Gilbertella persicaria in red pitaya fruit. Sci. Hortic. 2019, 257, 108713. [CrossRef]2. Li, X.A.; Li, M.L.; Wang, J.; Wang, L.; Han, C.; Jin, P.; Zheng, Y.H. Methyl jasmonate enhances wound-induced phenolic

accumulation in pitaya fruit by regulating sugar content and energy status. Postharvest Biol. Tec. 2018, 137, 106–112. [CrossRef]3. Narvaez-Cuenca, C.E.; Espinal-Ruiz, M.; Restrepo-Sanchez, L.P. Heat shock reduces both chilling injury and the overproduction

of reactive oxygen species in yellow pitaya (Hylocereus Megalanthus) fruits. J. Food Qual. 2011, 34, 327–332. [CrossRef]4. de Freitas, S.T.; Mitcham, E.J. Quality of pitaya fruit (Hylocereus undatus) as influenced by storage temperature and packaging. Sci.

Agric. 2013, 70, 257–262. [CrossRef]5. Lavergne, F.; Richard, C.; Saudreau, M.; Venisse, J.S.; Fumanal, B.; Goupil, P. Effect of acibenzolar-S-methyl phototransformation

on its elicitation activity in tobacco cells. Plant Physiol. Biochem. 2017, 118, 370–376. [CrossRef] [PubMed]

Page 10: BTH Treatment Delays the Senescence of Postharvest Pitaya

Foods 2021, 10, 846 10 of 11

6. Mandal, B.; Mandal, S.; Csinos, A.S.; Martinez, N.; Culbreath, A.K.; Pappu, H.R. Biological and molecular analyses of theacibenzolar-S-methyl-induced systemic acquired resistance in flue-cured tobacco against tomato spotted wilt virus. Phytopathology2008, 98, 196–204. [CrossRef] [PubMed]

7. Ge, Y.H.; Deng, H.W.; Bi, Y.; Li, C.Y.; Liu, Y.Y.; Dong, B.Y. Postharvest ASM dipping and DPI pre-treatment regulated reactiveoxygen species metabolism in muskmelon (Cucumis melo L.) fruit. Postharvest Biol. Technol. 2015, 99, 160–167. [CrossRef]

8. Liu, Y.Y.; Ge, Y.H.; Bi, Y.; Li, C.Y.; Deng, H.W.; Dong, B.Y. Effect of postharvest acibenzolar-S-methyl dipping on phenylpropanoidpathway metabolism in muskmelon (Cucumis melo L.) fruits. Sci. Hortic. 2014, 168, 113–119. [CrossRef]

9. Cao, S.F.; Hu, Z.C.; Zheng, Y.H.; Yang, Z.F.; Lu, B.H. Effect of BTH on antioxidant enzymes, radical-scavenging activity and decayin strawberry fruit. Food Chem. 2011, 125, 145–149. [CrossRef]

10. Johnson, K.B.; Smith, T.J.; Temple, T.N.; Gutierrez, E.; Elkins, R.B.; Castagnoli, S.P. Integration of acibenzolar-S-methyl withantibiotics for protection of pear and apple from fire blight caused by Erwinia amylovora. Crop Prot. 2016, 88, 149–154. [CrossRef]

11. Zhu, X.; Cao, J.; Wang, Q.; Jiang, W. Postharvest infiltration of BTH reduces infection of mango fruits (Mangifera indica L. cv.Tainong) by colletotrichum gloeosporioides and enhances resistance inducing compounds. J. Phytopathol. 2008, 156, 68–74. [CrossRef]

12. Li, X.; Bi, Y.; Wang, J.J.; Dong, B.Y.; Li, H.J.; Gong, D.; Zhao, Y.; Tang, Y.M.; Yu, X.Y.; Shang, Q. BTH treatment caused physiological,biochemical and proteomic changes of muskmelon (Cucumis melo L.) fruit during ripening. J. Proteom. 2015, 120, 179–193.[CrossRef] [PubMed]

13. Zhu, X.Y.; Lin, H.Z.; Si, Z.W.; Xia, Y.H.; Chen, W.X.; Li, X.P. Benzothiadiazole-mediated induced resistance to colletotrichummusae and delayed ripening of harvested banana fruit. J. Agric. Food Chem. 2016, 64, 1494–1502. [CrossRef] [PubMed]

14. Decros, G.; Baldet, P.; Beauvoit, B.; Stevens, R.; Flandin, A.; Colombié, S.; Gibon, Y.; Pétriacq, P. Get the balance right: ROShomeostasis and redox signalling in fruit. Front. Plant Sci. 2019, 10, 1091. [CrossRef]

15. Ugarte, N.; Petropoulos, I.; Friguet, B. Oxidized mitochondrial protein degradation and repair in aging and oxidative stress.Antioxid. Redox Signal. 2010, 13, 539–549. [CrossRef]

16. Chen, Y.H.; Hung, Y.C.; Chen, M.Y.; Lin, M.S.; Lin, H.T. Enhanced storability of blueberries by acidic electrolyzed oxidizing waterapplication may be mediated by regulating ROS metabolism. Food Chem. 2019, 270, 229–235. [CrossRef]

17. Li, T.T.; Wu, Q.X.; Zhou, Y.J.; Yun, Z.; Duan, X.W.; Jiang, Y.M. L-Cysteine hydrochloride delays senescence of harvested longanfruit in relation to modification of redox status. Postharvest Biol. Technol. 2018, 143, 35–42. [CrossRef]

18. Sarker, U.; Oba, S. The response of salinity stress-induced A. tricolor to growth, anatomy, physiology, non-enzymatic andenzymatic antioxidants. Front. Plant Sci. 2020, 11, 559876. [CrossRef]

19. You, Y.L.; Jiang, Y.M.; Sun, J.; Liu, H.; Song, L.L.; Duan, X.W. Effects of short-term anoxia treatment on browning of fresh-cutChinese water chestnut in relation to antioxidant activity. Food Chem. 2012, 132, 1191–1196. [CrossRef]

20. Zhu, S.H.; Sun, L.; Liu, M.C.; Zhou, J. Effect of nitric oxide on reactive oxygen species and antioxidant enzymes in kiwifruitduring storage. J. Sci. Food Agric. 2008, 88, 2324–2331. [CrossRef]

21. Jiang, G.X.; Xiao, L.; Yan, H.L.; Zhang, D.D.; Wu, F.W.; Liu, X.C.; Su, X.G.; Dong, X.H.; Wang, J.S.; Duan, X.W.; et al. Redoxregulation of methionine in calmodulin affects the activity levels of senescence-related transcription factors in litchi. BBA Gen.Subj. 2017, 1861, 1140–1151. [CrossRef] [PubMed]

22. Qin, G.Z.; Meng, X.H.; Wang, Q.; Tian, S.P. Oxidative damage of mitochondrial proteins contributes to fruit senescence: A redoxproteomics analysis. J. Proteome Res. 2009, 8, 2449–2462. [CrossRef]

23. Tian, S.P.; Qin, G.Z.; Li, B.Q. Reactive oxygen species involved in regulating fruit senescence and fungal pathogenicity. Plant Mol.Biol. 2013, 82, 593–602. [CrossRef] [PubMed]

24. Li, X.; Li, C.Y.; Cheng, Y.; Hou, J.B.; Zhang, J.H.; Ge, Y.H. Postharvest application of acibenzolar-S-methyl delays the senescence ofpear fruit by regulating reactive oxygen species and fatty acid metabolism. J. Agric. Food Chem. 2020, 68, 4991–4999. [CrossRef][PubMed]

25. Ge, Y.H.; Li, X.; Li, C.Y.; Tang, Q.; Duan, B.; Cheng, Y.; Hou, J.B.; Li, J.R. Effect of sodium nitroprusside on antioxidative enzymesand the phenylpropanoid pathway in blueberry fruit. Food Chem. 2019, 295, 607–612. [CrossRef] [PubMed]

26. Vogt, T. Phenylpropanoid biosynthesis. Mol. Plant 2010, 3, 2–20. [CrossRef] [PubMed]27. Zhou, Y.H.; Ma, J.H.; Xie, J.; Deng, L.L.; Yao, S.X.; Zeng, K.F. Transcriptomic and biochemical analysis of highlighted induction of

phenylpropanoid pathway metabolism of citrus fruit in response to salicylic acid, Pichia membranaefaciens and oligochitosan.Postharvest Biol. Technol. 2018, 142, 81–92. [CrossRef]

28. Shivashankar, S.; Sumathi, M.; Krishnakumar, N.K.; Rao, V.K. Role of phenolic acids and enzymes of phenylpropanoid pathwayin resistance of chayote fruit (Sechium edule) against infestation by melon fly, bactrocera cucurbitae. Ann. Appl. Biol. 2015, 166,420–433. [CrossRef]

29. Jiang, H.; Wang, B.; Ma, L.; Zheng, X.Y.; Gong, D.; Xue, H.L.; Bi, Y.; Wang, Y.; Zhang, Z.; Prusky, D. Benzo-(1,2,3)-thiadiazole-7-carbothioic acid s-methyl ester (BTH) promotes tuber wound healing of potato by elevation of phenylpropanoid metabolism.Postharvest Biol. Technol. 2019, 153, 125–132. [CrossRef]

30. Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol.Biochem. 2010, 48, 909–930. [CrossRef]

31. Wei, M.L.; Ge, Y.H.; Li, C.Y.; Han, X.; Qin, S.C.; Chen, Y.R.; Tang, Q.; Li, J.R. G6PDH regulated NADPH production and reactiveoxygen species metabolism to enhance disease resistance against blue mold in apple fruit by acibenzolar-S-methyl. PostharvestBiol. Technol. 2019, 148, 228–235. [CrossRef]

Page 11: BTH Treatment Delays the Senescence of Postharvest Pitaya

Foods 2021, 10, 846 11 of 11

32. Ren, Y.L.; Wang, Y.F.; Bi, Y.; Ge, Y.H.; Wang, Y.; Fan, C.F.; Li, D.Q.; Deng, H.W. Postharvest BTH treatment induced diseaseresistance and enhanced reactive oxygen species metabolism in muskmelon fruit. Eur. Food Res. Technol. 2012, 234, 963–971.[CrossRef]

33. Li, S.E.; Jiang, H.; Wang, Y.; Lyu, L.; Prusky, D.; Ji, Y.; Zheng, X.L.; Bi, Y. Effect of benzothiadiazole treatment on improving themitochondrial energy metabolism involved in induced resistance of apple fruit during postharvest storage. Food Chem. 2020, 302,125288. [CrossRef] [PubMed]

34. Fan, P.H.; Huber, D.J.; Su, Z.H.; Hu, M.J.; Gao, Z.Y.; Li, M.; Shi, X.Q.; Zhang, Z.K. Effect of postharvest spray of apple polyphenolson the quality of fresh-cut red pitaya fruit during shelf life. Food Chem. 2018, 243, 19–25. [CrossRef] [PubMed]

35. Shi, L.; Gong, L.; Zhang, X.Y.; Ren, A.; Gao, T.; Zhao, M.W. The regulation of methyl jasmonate on hyphal branching andGA biosynthesis in Ganoderma lucidum partly via ROS generated by NADPH oxidase. Fungal Genet. Biol. 2015, 81, 201–211.[CrossRef] [PubMed]

36. Wu, F.; Jiang, G.; Yan, H.; Xiao, L.; Liang, H.; Zhang, D.; Jiang, Y.; Duan, X. Redox regulation of glutathione peroxidase bythioredoxin in longan fruit in relation to senescence and quality deterioration. Food Chem. 2021, 345, 128664. [CrossRef]

37. Pandey, V.P.; Singh, S.; Jaiswal, N.; Awasthi, M.; Pandey, B.; Dwivedi, U.N. Papaya fruit ripening: ROS metabolism, gene cloning,characterization and molecular docking of peroxidase. J. Mol. Catal. B Enzym. 2013, 98, 98–105. [CrossRef]

38. Quan, L.J.; Zhang, B.; Shi, W.W.; Li, H.Y. Hydrogen peroxide in plants: A versatile molecule of the reactive oxygen speciesnetwork. J. Integr. Plant Biol. 2008, 50, 2–18. [CrossRef] [PubMed]

39. Torres, M.A.; Jones, J.D.G.; Dangl, J.L. Reactive oxygen species signaling in response to pathogens. Plant Physiol. 2006, 141,373–378. [CrossRef]

40. Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002, 7, 405–410. [CrossRef]41. Duan, X.W.; You, Y.L.; Su, X.G.; Qu, H.X.; Joyce, D.C.; Jiang, Y.M. Influence of the nitric, oxide donor, sodium nitroprusside, on

lipid peroxidation and anti-oxidant activity in pericarp tissue of longan fruit. J. Hortic. Sci. Biotechnol. 2007, 82, 467–473.42. Mariz-Ponte, N.; Mendes, R.J.; Sario, S.; de Oliveira, J.M.P.F.; Melo, P.; Santos, C. Tomato plants use non-enzymatic antioxidant

pathways to cope with moderate UV-A/B irradiation: A contribution to the use of UV-A/B in horticulture. J. Plant Physiol. 2018,221, 32–42. [CrossRef] [PubMed]

43. Baysal, O.; Turgut, C.; Mao, G. Acibenzolar-S-methyl induced resistance to Phytophthora capsici in pepper leaves. Biol. Plant. 2005,49, 599–604. [CrossRef]

44. Faize, M.; Faize, L.; Koike, N.; Ishizaka, M.; Ishii, H. Acibenzolar-S-methyl-induced resistance to Japanese pear scab is associatedwith potentiation of multiple defense responses. Phytopathology 2004, 94, 604–612. [CrossRef]

45. Ferrer, J.L.; Austin, M.B.; Stewart, C.; Noe, J.P. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids.Plant Physiol. Biochem. 2008, 46, 356–370. [CrossRef]

46. Stadnik, M.J.; Buchenauer, H. Inhibition of phenylalanine ammonia-lyase suppresses the resistance induced by benzothiadiazolein wheat to Blumeria graminis f. sp tritici. Physiol. Mol. Plant Pathol. 2000, 57, 25–34. [CrossRef]

47. Jan, R.; Khan, M.A.; Asaf, S.; Lee, I.J.; Kim, K.M. Overexpression of OsF3H modulates WBPH stress by alteration of phenyl-propanoid pathway at a transcriptomic and metabolomic level in Oryza sativa. Sci. Rep. UK 2020, 10, 14685. [CrossRef]

48. Li, Y.; Yu, T.; Wu, T.Q.; Wang, R.; Wang, H.M.; Du, H.; Xu, X.W.; Xie, D.S.; Xu, X.M. The dynamic transcriptome of pepper(Capsicum annuum) whole roots reveals an important role for the phenylpropanoid biosynthesis pathway in root resistance toPhytophthora capsici. Gene 2020, 728, 144288. [CrossRef]

49. Li, Z.B.; Wang, N.; Wei, Y.Y.; Zou, X.R.; Jiang, S.; Xu, F.; Wang, H.F.; Shao, X.F. Terpinen-4-ol enhances disease resistance ofpostharvest strawberry fruit more effectively than tea tree oil by activating the phenylpropanoid metabolism pathway. J. Agric.Food Chem. 2020, 68, 6739–6747. [CrossRef]

50. Shull, T.E.; Kurepa, J.; Miller, R.D.; Martinez-Ochoa, N.; Smalle, J.A. Inhibition of fusarium oxysporum f. sp. nicotianae growth byphenylpropanoid pathway intermediates. Plant Pathol. J. 2020, 36, 637–642. [CrossRef]

51. Xoca-Orozco, L.A.; Aguilera-Aguirre, S.; Vega-Arreguin, J.; Acevedo-Hernandez, G.; Tovar-Perez, E.; Stoll, A.; Herrera-Estrella, L.;Chacon-Lopez, A. Activation of the phenylpropanoid biosynthesis pathway reveals a novel action mechanism of the elicitoreffect of chitosan on avocado fruit epicarp. Food Res. Int. 2019, 121, 586–592. [CrossRef]

52. Deng, L.; Yin, B.; Yao, S.; Wang, W.; Zeng, K. Postharvest application of oligochitosan and chitosan reduces calyx alterations ofcitrus fruit induced by ethephon degreening treatment. J. Agric. Food Chem. 2016, 64, 7394–7403. [CrossRef]

53. Li, C.B.; Xin, M.; Li, L.; He, X.M.; Liu, G.M.; Li, J.M.; Sheng, J.F.; Sun, J. Transcriptome profiling helps to elucidate the mechanismsof ripening and epidermal senescence in passion fruit (Passiflora edulia Sims). PLoS ONE 2020, 15, e0236535. [CrossRef] [PubMed]

54. Ma, Q.L.; Ding, Y.D.; Chang, J.W.; Sun, X.H.; Zhang, L.; Wei, Q.J.; Cheng, Y.J.; Chen, L.L.; Xu, J.; Deng, X.X. Comprehensive insightson how 2,4-dichlorophenoxyacetic acid retards senescence in post-harvest citrus fruits using transcriptomic and proteomicapproaches. J. Exp. Bot. 2014, 65, 61–74. [CrossRef] [PubMed]

55. Torres, C.A.; Azocar, C.; Ramos, P.; Perez-Diaz, R.; Sepulveda, G.; Moya-Leon, M.A. Photooxidative stress activates a complexmultigenic response integrating the phenylpropanoid pathway and ethylene, leading to lignin accumulation in apple (Malusdomestica Borkh.) fruit. Hortic. Res. Engl. 2020, 7, 22. [CrossRef] [PubMed]