alexandre schuler - cromatografia

70
SUMÁRIO 1 - Introdução, 1 1.1. Histórico, 1 1.2. Classificação, 1 2 - Tipos de Processos Cromatográficos, 3 2.1. Cromatografia de adsorção, 3 2.2. Cromatografia de partição, 4 2.3. Cromatografia em fase líquida, 6 2.4. Fatores que influem na separação, 7 2.5. Cromatografia em fase gasosa, 11 3 - Tratamento teórico da Cromatografia, 14 3.1. Equação de Van Deemter, 14 3.2. Fase estacionária, 14 3.3. Suporte, 15 3.4. Coluna, 16 3.5. Fase móvel, 16 4 - O Cromatógrafo, 18 4.1. O Cromatógrafo a Gás, 18 4.2. O Cromatógrafo a Líquido, 20 4.3. Detetores, 23 5 - Análise Qualitativa, 30 6 - Análise Quantitativa, 31 6.1. Introdução, 31 6.2. Medição de área, 31 6.3. Métodos de cálculo, 33 6.4. Seleção do melhor método de cálculo, 37 7. Otimização do processo analítico, 39 7.1. Parâmetros analíticos, 39 7.2. Projetando um método analítico, 41 7.3. Validação de um método analítico, 43 8. Técnicas adicionais de identificação, 50

Upload: arlete

Post on 12-Dec-2015

52 views

Category:

Documents


16 download

DESCRIPTION

fundamento da cromatografia

TRANSCRIPT

Page 1: Alexandre Schuler - Cromatografia

SUMÁRIO

1 - Introdução, 1

1.1. Histórico, 1

1.2. Classificação, 1

2 - Tipos de Processos Cromatográficos, 3

2.1. Cromatografia de adsorção, 3

2.2. Cromatografia de partição, 4

2.3. Cromatografia em fase líquida, 6

2.4. Fatores que influem na separação, 7

2.5. Cromatografia em fase gasosa, 11

3 - Tratamento teórico da Cromatografia, 14

3.1. Equação de Van Deemter, 14

3.2. Fase estacionária, 14

3.3. Suporte, 15

3.4. Coluna, 16

3.5. Fase móvel, 16

4 - O Cromatógrafo, 18

4.1. O Cromatógrafo a Gás, 18

4.2. O Cromatógrafo a Líquido, 20

4.3. Detetores, 23

5 - Análise Qualitativa, 30

6 - Análise Quantitativa, 31

6.1. Introdução, 31

6.2. Medição de área, 31

6.3. Métodos de cálculo, 33

6.4. Seleção do melhor método de cálculo, 37

7. Otimização do processo analítico, 39

7.1. Parâmetros analíticos, 39

7.2. Projetando um método analítico, 41

7.3. Validação de um método analítico, 43

8. Técnicas adicionais de identificação, 50

Page 2: Alexandre Schuler - Cromatografia

8.1 Tempo de retenção e retenção relativa, 50

8.2. Índice de retenção, 50

8.3. Equivalência entre fases estacionárias, 51

9. Bibliografia, 52

10. Apêndice 1 (Características Básicas dos Detetores), 53

10.1. Sensibilidade, 53

10.2. Nível de ruído, 53

10.3. Limite de Detecção, 53

10.4. Faixa de Linearidade Dinâmica, 54

11. Apêndice 2 (Técnicas de introdução da amostra), 55

12. Apêndice 3 (Sistemas de aquisição de dados), 57

13. Apêndice 4 (O desenvolvimento cromatográfico), 58

14. Apêndice 5 (Outros detetores utilizados em Cromatografia), 60

15. Apêndice 6 (Estatística), 64

Page 3: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia

1 - INTRODUÇÃO

1.1. Histórico

Cromatografia é um termo genérico, aplicado a um processo de separação

físico-químico, o qual é baseado nos fenômenos de adsorção e partição. Este termo foi

escolhido porque as primeiras separações foram realizadas com substâncias coloridas.

Entretanto, o processo cromatográfico não é restrito a essa classe de substâncias,

constituindo-se na atualidade no método mais eficiente de separação, com aplicações na

Química Analítica Qualitativa e Quantitativa, para compostos orgânicos e inorgânicos,

independentemente de seu estado físico.

1.2. Classificação

Num processo cromatográfico são envolvidas uma fase móvel e uma fase

estacionária. A fase estacionária é um sólido ou um líquido (Figura 1.1). No segundo caso,

este fica impregnado em um sólido (suporte) e o fenômeno mais atuante é a partição. No

primeiro caso, tem predominância a adsorção. Assim, pode-se classificar a Cromatografia

em dois tipos gerais: Cromatografia de Adsorção e Cromatografia de Partição.

Figura 1.1 - O Processo Cromatográfico. A Fase Móvel transporta a amostra através da Fase

Estacionária. A velocidade média das partículas da amostra depende da sua natureza. Desse

modo, cada componente atingirá o final da coluna em um instante diferente.

A fase móvel pode ser um líquido ou um gás. No primeiro caso,

denomina-se o processo de Cromatografia em Fase Líquida e no segundo caso de

Cromatografia em Fase Gasosa, ou simplesmente Cromatografia a Líquido e Cromatografia

a Gás.

A Cromatografia pode ainda ser classificada em função da técnica

empregada:

Cromatografia em Papel

Cromatografia em Camada Delgada

Cromatografia em Coluna Clássica

Page 4: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 2

Cromatografia em Fase Gasosa

Cromatografia em Fase Líquida de Alto Desempenho

Esta última é mais conhecida pela iniciais de seu nome em inglês

(High Performance Liquid Chromatography - HPLC) e constituem-se variantes suas as

seguintes técnicas:

Cromatografia de Permeação em Gel (GPC)

Cromatografia de Troca Iônica (IEC)

GPC (do inglês Gel Permeation Chromatography) é empregada na análise

de polímeros, enquanto a IEC (do inglês Ion Exchange Chromatography) é empregada na

análise de íons (cátions e ânions).

Page 5: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 3

2 - TIPOS DE PROCESSOS CROMATOGRÁFICOS

2.1. Cromatografia de Adsorção

Adsorção é um fenômeno físico-químico através do qual um sólido

(adsorvente) fixa em sua superfície um líquido ou um gás, por meio de interações

semelhantes às “forças de Van Der Waals”. Chama-se coeficiente de adsorção à relação

kN

Na

a

n

onde Na e Nn são respectivamente o número de moles adsorvidos e não adsorvidos de uma

determinada substância. Compostos diferentes possuem diferentes valores de ka, estes

variando com a temperatura e com a natureza do adsorvente. Se uma mistura de vários

componentes é forçada a passar através de um tubo contendo um adsorvente (coluna

cromatográfica), cada componente necessitará de um intervalo de tempo diferente para

transpor a coluna. Esse intervalo de tempo é denominado tempo de retenção (Tr). A Figura

2.1a ilustra um processo de Cromatografia por Adsorção. A substância mais fortemente

adsorvida é mais dificilmente arrastada pela Fase Móvel.

a) Cromatografia de Adsorção b) Cromatografia de Partição

Figura 2.1 - Diferença entre Cromatografia de Adsorção e Cromatografia de Partição.

2.2. Cromatografia de Partição

Page 6: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 4

Se uma substância é adicionada a um recipiente contendo dois líquidos

não miscíveis, ela se dissolverá parcialmente em cada solvente, de modo a ser constante a

relação C1 / C2, onde C1 e C2 são as concentrações da substância em cada um dos dois

líquidos. Denomina-se coeficiente de partição à relação

kC

Cp

1

2

Se M0 é a massa total da substância e M1 é a massa dissolvida no solvente

1, podemos escrever

kM

VM M

V

M

V

V

M Mp

1

1

0 1

2

1

1

2

0 1( )

logo, M Mk V

V k V

p

p

1 01

2 1

. (eq. 1)

Se a substância estava inicialmente dissolvida no solvente 1, M1 é a

massa que permanece neste solvente após adição do solvente 2, o qual extraiu a massa (M0 -

M1). Se as duas fases forem separadas (com auxílio de um funil de separação, por exemplo),

a adição de outra quantidade do solvente 2 vai extrair a massa (M1 - M2), onde

M Mk V

V k V

p

p

2 11

2 1

. (eq. 2)

Substituindo na eq. 2 o valor de M1 (eq. 1 ), fica

M2 = Mo [kpV1(V2 + kpV1)]2 (eq. 3)

A eq. 3 pode ser generalizada para

Mn = Mo [kpV1(V2 + kpV1)]n (eq. 4)

que dá a massa Mn que permanece no solvente 1 após n extrações com o solvente 2. Dá-se ao

processo agora descrito o nome de extração. Por outro lado, tratando-se de uma mistura de, por

exemplo, 2 componentes, com k kp p' , um dos componentes ficará preferencialmente no

solvente 1 e o outro no solvente 2. Assim sendo, à medida que n cresce, cada fase ficará mais

pura em um dos componentes. No caso anterior (extração), a porção de líquido 1 era

sempre a mesma, renovando-se apenas o líquido 2. Agora, ambos são renovados. O

Page 7: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 5

Esquema 2.1, onde o líquido 1 é o superior, ilustra o processo, que pode ser

visualizado a nível molecular na Figura 2.1.b.

Sejam duas substâncias A e B, onde kA é maior que kB. Isto significa que o

líquido 1 vai se enriquecendo de A e o líquido 2, relativamente, vai se enriquecendo de B, a

cada etapa do processo. Os números da esquerda, em cada quadrícula, indicam a fração de

A e os da direita indicam a fração de B. Do mesmo modo, os números superiores indicam a

fração de A e de B no líquido 1 e os inferiores indicam a fração de A e de B no líquido 2.

No exemplo, foi utilizada uma mistura com quantidades iguais de A e de B, cujos

coeficientes de partição valem, respectivamente, 3 e 1/3.

Para este segundo tipo de procedimento, a eq. 4 não é válida. Em seu

lugar, pode ser deduzida, de modo semelhante, a eq. 5, onde Mn é a massa extraída após n

etapas. A partir dos valores de MAn e MBn, pode-se calcular a composição da mistura (ou o

grau de pureza de cada componente) em cada solvente, após n etapas (n partições).

Esquema 2.1 - Distribuição (partição) de duas substâncias (A e B), em dois líquidos (1 e 2)

não miscíveis.

Mn = Mo [V2(V2 + kpV1)]n (eq. 5)

A partição, como entendida neste segundo exemplo, descreve o processo

cromatográfico. O número de “equilíbrios” (etapas) que ocorrem dentro de uma coluna (n) é

conhecido como o “número de pratos teóricos”, prato teórico sendo um ponto de equilíbrio

(entre uma fase e outra). A distância entre dois pontos de equilíbrio consecutivos chama-se

“altura equivalente a um prato teórico” (H). Os parâmetros n e H serão novamente

discutidos mais adiante.

Page 8: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 6

IMPORTANTE ! Se kB também for maior que a unidade, a perda de B será muito grande e

também a purificação de A será muito demorada (exigirá maior número de etapas).

2.3. Cromatografia em Fase Líquida

O exemplo mais simples de cromatografia a líquido é a separação em uma

camada delgada de sílica-gel depositada sobre uma placa de vidro (Cromatografia em

Camada Delgada). A Figura 2.2 ilustra o processo.

O líquido ascende (por capilaridade) e arrasta seletivamente os

componentes de uma mistura binária (A e B) colocada em 1 (ponto de aplicação). Quando

o solvente se aproxima da outra extremidade da placa (2), esta é removida da cuba que

contém o solvente e na qual estava parcialmente mergulhada, na posição vertical e a um

nível abaixo do ponto de aplicação. As razões de frente, RfA = d1 / d3 e RfB = d2 / d3 são

características de cada substância, dependendo da natureza da fase móvel e da fase

estacionária. A Cromatografia em Camada Delgada é a mais empregada em Análise

Qualitativa ou semi-Quantitativa. Em virtude da pequena quantidade de amostra utilizada, é

menos indicada para fins preparativos, quando então se emprega a Cromatografia em

Coluna Clássica. Neste segundo tipo de processo, a fase estacionária é colocada em um tubo

de vidro (coluna cromatográfica) colocado na posição vertical. A coluna é dotada de uma

torneira na extremidade inferior (Fig. 2.3), que é utilizada para controlar a vazão da fase

móvel, que desce por gravidade.

Fig. 2.2 - Cromatografia em Camada

Delgada.

Neste exemplo, a amostra contém dois

componentes, A e B, que são identificados

pelos respectivos valores de Rf

A necessidade de se controlar a vazão da fase móvel e a temperatura da coluna,

além da impossibilidade (naquela época - anos 50) de se bombear um líquido

com fluxo constante e contínuo, levaram os projetistas a abandonar essa técnica, passando a

utilizar um gás como fase móvel (1956).

Page 9: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 7

Figura 2.3

Cromatografia

em Coluna

O ponto A’ indica o nível da fase estacionária e o ponto A

indica o nível da fase móvel. A diferença A’ - A deve ser o

menor possível, para evitar a diluição do material a ser

cromatografado, o que resultaria em zonas (na Fig. 2.3, as faixas

1, 2 e 3) mais largas. Ao se fazer a eluição (passagem da fase

móvel), os componentes afastam-se do ponto de aplicação (topo

da coluna) a uma distância d tal que d/l = Rf (l é o comprimento

da coluna), obtendo-se assim uma coluna desenvolvida. A partir

daí, continuando-se a eluição, cada componente pode ser

coletado isoladamente, quando atingir o final da coluna.

Denomina-se Volume de Retenção (Vr) o volume de fase móvel

necessário para a eluição completa de um componente. Desse

modo, tem-se Vr = V1 / Rf, onde V1 é o volume ocupado pela

fase móvel dentro da coluna. A partir daí pode ser calculado o

volume total de solvente necessário para a eluição de todos os

componentes da amostra. No Apêndice 4, são discutidos mais

detalhes sobre o desenvolvimento da coluna.

2.4. Fatores que influem na separação

Independentemente do processo envolvido na separação cromatográfica

(adsorção ou partição), esta é função de uma série de fatores, a saber:

Natureza da fase estacionária Vazão da fase móvel

Concentração da fase estacionária Temperatura

Natureza da fase móvel Granulometria e geometria do suporte

A polaridade da fase estacionária é um fator importante a se

considerar. Em princípio, quando se tem uma fase estacionária não polar, os

diversos componentes da amostra eluem na ordem crescente de seus pontos de

ebulição e o processo assemelha-se bastante a uma destilação (Figura 2.4). Quando a

fase estacionária apresenta polaridade, essa ordem de eluição em função do ponto de

ebulição fica alterada (Figura 2.5) e só é obedecida quando os componentes

apresentam polaridade de mesma ordem de grandeza (componentes A-C e D-G da

Figura 2.6). Em alguns casos, a diferença de polaridade pode ser equilibrada com a

diferença de ponto de ebulição, fazendo com que dois componentes distintos eluam

juntos (Figura 2.7). Nesses casos, outros fatores podem auxiliar na separação, como

a ponte de hidrogênio entre os componentes D-G da Figura 2.6.

FE: Esqualano (um hidrocarboneto de baixíssima polaridade) FE: TCEP (tris cianoetoxipropano)

Page 10: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 8

A Benzeno (ponto de ebulição = 80,2oC)

B ciclo-Hexano (ponto de ebulição = 81,0oC)

Figura 2.4 – Separação em função da diferença

no ponto de ebulição Figura 2.5 - Efeito da polaridade sobre a

separação cromatográfica

A concentração da fase estacionária líquida também influi na separação,

como pode ser observado na Figura 2.8. Aliás, com o uso, é normal diminuir a

concentração, por arraste pela fase móvel, mesmo à temperatura ambiente, de modo que

colunas com fase estacionária líquida possuem um tempo de vida útil finito, que pode ser

bastante curto, à medida em que a temperatura da análise se aproxima da temperatura

limite, que por definição situa-se 150oC abaixo da temperatura de ebulição da fase

estacionária. Atualmente, tem sido desenvolvidas fases quimicamente ligadas (ver Seção

3.2 - Fase Estacionária; p. 14).

Coluna: diglicerol, 20%, 6 metros

A- n-nonano (154oC)

B- n-decano (174oC)

C- n-undecano (194oC)

D- etanol (78oC)

E- n-propanol (94oC)

F- n-butanol (118oC)

G- n-pentanol (132oC)

H- água (100oC)

não polar, não forma ponte polar, ponte de hidrogênio média polar, ponte de hidrogênio fortíssima

Figura 2.6 – Efeito da ponte de hidrogênio sobre a separação cromatográfica

Page 11: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 9

Outro fator importante,

principalmente em HPLC, é a polaridade da

fase móvel. Aliás, esse é o principal recurso

para implementar uma separação (ver

Gradiente de Polaridade, na Seção 4.2; p.

22). Também a vazão da fase móvel é muito

importante na separação. A Figura 2.9 ilustra a

situação, que foi alvo de um estudo semi-

teórico realizado por van Deemter (Capítulo

3). Também a temperatura (a que está

submetida a coluna) é fator determinante na

separação, particularmente em CFG, conforme

resume o quadro anexo à Figura 2.10.

Finalmente, a granulometria da fase

estacionária sólida (ou do suporte sólido da fase estacionária líquida), conforme mostrado na Tabela

2.1, também influi na separação.

Tabela 2.1 - Efeito da granulometria do suporte/FE sólida sobre a separação cromatográfica

malha/polegada nmáx Hmín Fo (mL/min)

60-80 4300 0,93 20

80-100 4600 0,87 20

100-120 5700 0,70 24

D.E. = 1/8”; l = 4 m; C = 10 %

Figura 2.8 - Efeito da concentração da fase estacionária sobre

FE: Apiezon (um hidrocarboneto)

A Benzeno (ponto de ebulição = 80,2oC)

B ciclo-Hexano (ponto de ebulição = 81,0oC)

Figura 2.7 - Uma separação malsucedida

Page 12: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 10

a separação cromatográfica.

onde: V1 < V2 < V3 < V4

Figura 2.9 - Efeito da vazão da fase móvel sobre a separação

cromatográfica.

Figura 2.10 - Efeito da temperatura sobre a separação cromatográfica.

Page 13: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 11

O quadro apresentado a seguir sumariza a relação entre o efeito e o tipo de processo.

TIPO FASE MÓVEL FASE ESTACIONÁRIA EFEITO

ADSORÇÃO G S DIMINUI TR

L S DIMINUI TR

PARTIÇÃO G L DIMINUI TR

L L NÃO ALTERA TR

2.5. Cromatografia Em Fase Gasosa (CFG)

Na Cromatografia a Gás empregam-se colunas bem mais longas que

aquelas usadas em Cromatografia a Líquido. O princípio é o mesmo, mas a força motora é a

pressão do gás e não a força da gravidade, de modo que as colunas normalmente são

dobradas em espiral, a fim de ocupar menos espaço dentro do cromatógrafo. A Fig. 2.11

esquematiza um cromatógrafo a gás.

A amostra (gás, líquido ou sólido em solução) é injetada (ver Apêndice 2),

com auxílio de uma microseringa ou válvula apropriada, no Injetor, que também é o

Vaporizador (V) e os seus vapores são arrastados para o interior da coluna pela fase móvel

(gás de arraste). Na saída da coluna, a amostra passa pelo Detetor (D), que envia um sinal

Fig. 2.11 - Cromatógrafo a Gás

para o Registrador (R). Como será visto adiante (Detetores, p. 23), este sinal é proporcional

à quantidade de cada componente, o que permitirá uma análise quantitativa. Vale

acrescentar que a Cromatografia a Gás é talvez o método de análise mais preciso. O sinal

eletrônico captado pelo registrador é transformado num movimento da pena do mesmo.

Como o papel de registro está em movimento, obtém-se um gráfico (Fig. 2.12) denominado

cromatograma.

Page 14: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 12

Fig. 2.12 - Cromatograma de uma amostra com dois componentes.

As áreas A1 e A2 sob as duas curvas do cromatograma da Fig. 2.12 são

proporcionais às quantidades dos dois componentes na mistura. Distância de Retenção (Dr)

é a distância, no papel, entre o ponto registrado no momento da injeção (Início) e o ponto

correspondente ao máximo de cada curva (pico). Dr varia com a velocidade do papel (z),

mas o tempo de retenção (Tr = Dr/z) é uma característica da substância que varia com a

vazão da fase móvel, a natureza e a concentração da fase estacionária e com a temperatura.

Por isso, o cromatógrafo possui controladores de vazão da fase móvel e da temperatura do

forno da coluna. A coluna (e consequentemente a fase estacionária) pode ser substituída, até

encontrar-se a coluna ideal para uma dada amostra. Além disso, existe uma vazão ideal para

cada coluna, independentemente da natureza da amostra (ver Fig. 2.13). Assim sendo, a

temperatura da coluna é o principal recurso disponível para obter-se um máximo de

separação entre os diversos componentes da amostra.

Outro parâmetro usado em CFG é a Retenção Relativa (RR), que é

também usado na identificação:

RR = Tr

Tr =

Vr

Vr =

Dr

Dr

2

1

2

1

2

1

Essas relações são equivalentes, desde que Vr2 = F.Tr e F e z são constantes (F = vazão da

fase móvel).

Page 15: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 13

Fig. 2.13 - Relação entre F e n ou H. Fi é a Vazão Ideal (os parâmetros A, B e C são

descritos na Seção 3.1, eq. 6).

Obs.: Experimentalmente determina-se H por medição da distância de retenção e aplicação

das equações:

n = (4Dr/L)2 e H = l /n,

onde l é o comprimento da coluna e L é a largura do pico na base. A Figura 2.14 ilustra o

procedimento. O parâmetro n mede a eficiência de uma coluna cromatográfica (ver

Capítulo 3) .

Figura 2.14 - Procedimento para determinação do

número de pratos teóricos. As duas

grandezas devem ser medidas em

milímetros (ou em minutos ou

segundos).

Page 16: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 14

3 - TRATAMENTO TEÓRICO DA CFG

3.1. Equação de Van Deemter

Van Deemter estabeleceu uma equação empírica (eq. 6) que relaciona as

diversas variáveis da Cromatografia a Gás com H (altura equivalente a um prato teórico).

Como H é igual a l /n e n mede a eficiência do processo, buscam-se condições em que o

valor de H é mínimo:

= parâmetro adimensional que mede as irregularidades no empacotamento da coluna.

dp = diâmetro médio das partículas do suporte.

Dg = coeficiente de difusão da amostra na fase móvel.

= fator de correção para a tortuosidade dos canais entre partículas.

K’ = k.Nl /Ng ; k = coeficiente de partição.

N = fração de fase estacionária (l) ou da fase móvel (g) dentro da coluna.

df = espessura efetiva do filme líquido (película de fase estacionária na superfície do suporte).

Dl = coeficiente de difusão da amostra na fase estacionária.

v = velocidade linear da fase móvel.

A equação de Van Deemter pode ser escrita sob a forma geral

H = A + B/v + C.v (eq. 7)

que é a equação de uma hipérbole (Fig. 2.13). Como pode ser visto na eq. 6, o modo de

empacotamento, o dimensionamento do suporte e o coeficiente de difusão da amostra em

cada fase são fatores que devem ser seriamente considerados, quando é projetada uma

coluna. Temperatura é talvez o fator mais importante, embora não apareça explicitamente

na eq. 6. É que K’ e D são altamente dependentes da temperatura. Realmente, observa-se na

prática que esta é a variável que mais influi na resolução, variando drasticamente a retenção

relativa. De um modo geral, o tempo de retenção depende da natureza da fase estacionária,

da temperatura de operação e da vazão da fase móvel.

3.2. Fase estacionária

A fase estacionária é um sólido (Cromatografia de Adsorção) altamente poroso

(mais de 150 m2/g), ou, mais comumente, um líquido (Cromatografia de Partição). No segundo

caso, o líquido é depositado sobre um sólido (suporte), que será discutido mais adiante.

(eq. 6)

Page 17: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 15

Interações entre dipolos, polaridade e pontes de hidrogênio são os

principais fatores, na fase estacionária, que determinam a separação cromatográfica. Esses

fatores são dependentes da temperatura, daí também a necessidade de um controle dessa

variável. Os Cromatogramas 3.1.a e 3.1.b ilustram a influência da polaridade e da ponte de

hidrogênio sobre a separação. Em ambos, como são usadas fases estacionárias polares, os

picos aparecem na ordem crescente de polaridade dos componentes. Mas, no

Cromatograma 3.1.b, como a fase estacionária (diglicerol) interage com o etanol (ponte de

hidrogênio), o tempo de retenção deste é bastante aumentado (ver também Seção 2.4; p. 7).

Alto ponto de ebulição e inércia química e catalítica (em relação à

amostra, à fase móvel e ao material de que é constituído o tubo da coluna) são os principais

requisitos para uma fase estacionária. Em relação ao ponto de ebulição (PE) deve ser

lembrado que a temperatura limite para operação com uma dada coluna é 1500C abaixo do

PE da fase estacionária. Acima dessa temperatura, a perda por volatilização é excessiva. Em

anos recentes tem sido utilizada a FQL (Fase Quimicamente Ligada), onde a FE une-se ao

suporte mediante uma reação química. As fases estacionárias mais freqüentemente

utilizadas, com um amplo espectro de aplicações, são polímeros derivados de silício, as

polisiloxanas (ou siliconas), como a SE-30, por exemplo. Outra fase também bastante

utilizada é o polietilenoglicol (ex.: Carbowax 20M).

3.3. Suporte

O suporte tem a função de fixar dentro da coluna a fase estacionária. É

necessário que o suporte seja química e cataliticamente inerte. O material a ser empregado

também não pode exibir área superficial maior que 50 m2/g, alta porosidade, nem grande

poder de adsorção. Centros ativos (ácidos ou básicos) podem provocar modificações

estruturais na amostra, devendo ser removidos. Terras diatomáceas, graças à sua baixa

capacidade de adsorção e à sua baixa porosidade, são ainda muito empregadas como

suporte. Um excelente suporte à base de diatomácea é comercializado com um nome

constituído da palavra Chromosorb seguida de uma ou mais letras (ex.: Chr WHP).

Atualmente, têm sido desenvolvidos materiais sintéticos, copolímeros do etilvinilbenzeno

com divinilbenzeno. A depender do processo de fabricação, esses polímeros também podem

ser empregados como fase estacionária (Ex.: Porapak Q, Chromosorb 101, etc). Permitem

um bom empacotamento, graças à uniformidade na granulometria e na própria geometria

das partículas.

Page 18: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 16

Figura 3.1 - Ausência (a) e presença (b) de ponte de hidrogênio entre FE e etanol

3.4. Coluna

O material de que é constituída a coluna (tubo) pode ser aço inox 316,

alumínio, níquel, vidro ou teflon. Quando não se conhece o material a ser analisado, dá-se

preferência às colunas de vidro (trata-se de um vidro especialmente tratado, para remover

centros ácidos de sua superfície) ou de teflon, sendo que a última tem emprego mais

restrito, devido à sensibilidade ao calor e à pressão. As colunas são classificadas quanto ao

diâmetro externo:

- Coluna microanalítica (capilar) ............ 0,1 a 0,5 mm

- Coluna analítica .................................. 1/8”, 3/16” e 1/4”

- Coluna semi-preparativa ..................... 3/8”, 1/2” e 5/8”

- Coluna preparativa .............................. 5, 7 e 10 cm

As colunas analíticas mais comumente empregadas possuem 2 a 3 m de

comprimento, com 1.000 a 10.000 pratos teóricos. Colunas capilares são bem mais longas. As

primeiras capilares fabricadas possuíam mais de 100 m. Com o avanço da tecnologia, o

comprimento atual situa-se entre 20 e 40 m, embora com cerca de 100.000 pratos teóricos. Tem-se

notícia de uma coluna capilar com cerca de 1600 m de comprimento e 1 milhão de pratos teóricos.

Atualmente foram desenvolvidas colunas com 0,53 mm (colunas

“megabore”) com excelentes resultados. Mais simples de instalar, reúnem as qualidades das

colunas analíticas e das capilares.

As colunas usadas em CLAD (seção 4.2, p. 22) são bem mais curtas (10 a 40 cm)

e os diâmetros encontrados mais comumente no comércio especializado variam entre 3 e 5 mm.

3.5. Fase móvel

Em CFG, a fase móvel é um gás inerte, devendo apresentar-se bastante

puro, principalmente quando tratar-se da análise de traços. Os gases mais empregados são

H2, N2, He, Ar e Ne, podendo também serem utilizados outros, em casos especiais.

Page 19: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 17

Na escolha da fase móvel (ou gás de arraste), devem ser considerados os

seguintes fatores:

- Disponibilidade/custo.

- Eficiência na separação.

- Efeito sobre o tempo de análise.

- Segurança.

- Efeito sobre o sistema de detecção.

OBS.:

1 - A equação de Van Deemter simplificada (eq. 7), aplicada aos gases N2 e H2,

apresenta os seguintes coeficientes (amostra: Propano), com uma dada coluna:

Ha = 0,1 + 0,07/v + 0,05v (N2)

Hb = 0,1 + 0,28/v + 0,05v (H2)

Esses dados comprovam a influência da natureza do gás de arraste sobre a eficiência.

2 - A velocidade relativa de eluição aumenta na ordem H2 < N2 < He < Ar, fato que

demonstra a influência da natureza do gás de arraste sobre o tempo de análise.

A Tabela 3.1 resume a aplicação dos critérios acima mencionados, para

seleção da fase móvel em função do detetor empregado.

Tabela 3.1 - Gases mais recomendados para CFG, por tipo de detetor.

TIPO DE DETETOR GASES MAIS USADOS

(Ordem de prioridade)

Condutividade Térmica H2 > He >> N2

Ionização de Chama N2 > Ne > He

Captura Eletrônica N2 > He

Em Cromatografia a Líquido empregam-se como Fase Móvel

principalmente água deionizada, metanol, acetonitrila, etc. A seleção depende do detetor a

ser empregado e a fase móvel deve ser imiscível com a fase estacionária liquida.

Page 20: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 18

4 - O CROMATÓGRAFO

4.1. O Cromatógrafo a Gás

A Fig. 2.11 (p. 11) representa esquematicamente um Cromatógrafo a Gás.

É possível agora descrever mais detalhadamente o instrumento.

a) Controles de Temperatura

O cromatógrafo dispõe de termostatos para controle independente do

aquecimento dos três principais setores: câmara de vaporização, forno da coluna e bloco do

detetor. O aquecimento da coluna, promovido por uma resistência elétrica localizada na

base do forno, é homogeneizado por um ventilador, que pode permanecer ligado após o

final do aquecimento, de modo a acelerar o resfriamento. Nesse caso, o compartimento do

forno deve permanecer aberto, exceto nos equipamentos que possuam dispositivo de

resfriamento automático.

Figura 4.1 - Fluxímetro de bolha Figura 4.2 - Divisor de fluxo para coletor

b) Controles Pneumáticos

Os cromatógrafos a gás normalmente possuem uma válvula controladora

de pressão e outra para ajuste da vazão da fase móvel. Idênticos sistemas existem para o

controle da vazão dos gases auxiliares (ver seção 4.3.2.b; p. 25). A vazão é medida com o

auxílio de um fluxímetro de bolha, ou bolhômetro (Fig. 4.1). A “pêra” (parte inferior)

contém uma solução de sabão líquido. Comprimindo-se a “pêra”, o nível do líquido sobe e

o gás forma uma bolha que ascende pelo tubo. Para se determinar a vazão, é suficiente

marcar com um cronômetro o tempo gasto para a bolha percorrer os 20 mL do tubo. Na

Page 21: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 19

atualidade, existem no mercado alguns equipamentos totalmente microprocessados,

tornando obsoletos esses acessórios.

c) Coletor de Frações

O coletor de frações é um acessório utilizado em Cromatografia

preparativa. O material efluente da coluna pode passar por um divisor de fluxo (Fig. 4.2), de

modo que uma parte é desviada para o coletor, onde cada componente, isoladamente, é

condensado. Colunas de maiores dimensões permitem a injeção de uma maior quantidade

de amostra, permitindo assim a produção de pequenas quantidades de um material com alta

pureza (maior que 99,9999%), que pode ser empregado como padrão, por exemplo.

d) Detetores

Por ser necessário um estudo mais detalhado, serão discutidos mais adiante.

e) Eletrômetro

O eletrômetro é um amplificador de sinal. Este módulo pode ser

controlado a qualquer instante, de modo que um sinal fraco (componente menor) pode ser

ampliado independentemente dos outros, enquanto que um sinal muito forte (componente

maior) pode ser atenuado o suficiente para que seu pico fique contido no papel do

registrador. Os Cromatogramas 4.1 e 4.2 ilustram, respectivamente, a relação real de áreas e

outro registro da mesma amostra, com ampliação do primeiro sinal e atenuação do terceiro,

ou mais exatamente, atenuação menor para o primeiro e atenuação maior para o terceiro, em

relação à atenuação do segundo. Logicamente, as áreas medidas no segundo cromatograma,

multiplicadas pelos respectivos fatores de atenuação, fornecem os valores reais das áreas

relativas.

Cromatograma 4.1 - Mesma atenuação Cromatograma 4.2 - Atenuações diferentes

Page 22: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 20

f) Registrador

O registrador é um instrumento acessório, que transforma o sinal emitido

pelo detetor e amplificado pelo eletrômetro, em um sinal mecânico. Na extremidade do

sistema mecânico existe uma caneta (pena) e a magnitude de seu deslocamento, acima da

linha de base, é proporcional à quantidade do componente na amostra. Como o papel está

em movimento, obtém-se uma curva (cromatograma), onde a distância do início da análise

(ponto de injeção) ao máximo de cada pico é a distância de retenção (Dr). Dividindo Dr por

z (velocidade do papel), obtém-se o tempo de retenção, Tr. Idealmente, com separação

completa e condições ótimas (incluindo seleção perfeita da fase estacionária), obtém-se uma

curva simétrica. No Apêndice 3 são discutidas outras técnicas de aquisição de dados.

g) Programador Linear de Temperatura

Quando a retenção relativa (RR) de alguns componentes é próxima da

unidade (baixa resolução) e no entanto a temperatura de ebulição dos componentes menos

voláteis é muito alta (Cromatograma 4.3), um aumento na temperatura da análise

(temperatura da coluna), com o objetivo de reduzir o tempo de análise e obter um pico mais

agudo para os últimos componentes (o que inclusive diminuiria o erro na determinação de

Dr), acarretaria uma diminuição na já pequena retenção relativa dos primeiros componentes

(Cromatograma 4.4). Em situações como essa, pode-se aplicar um gradiente de temperatura,

com o auxílio de um Programador Linear de Temperatura (PLT). A velocidade de

aquecimento pode ser controlada, sendo possível também promover um aquecimento

isotérmico em algumas regiões. Em operações desse tipo deve-se indicar no cromatograma

a temperatura inicial (Ti), a temperatura final (Tf), que não deve diferir da temperatura de

ebulição da fase estacionária em menos de 1500C, e a velocidade de aquecimento, para que

o cromatograma possa ser reproduzido posteriormente (Cromatograma 4.5).

Cromatogramas 4.3, 4.4 e 4.5 - Análises em diferentes temperaturas

4.2. O Cromatógrafo a Líquido

Page 23: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 21

O cromatógrafo a líquido (mais comumente conhecido pela sigla inglesa

da técnica, HPLC (High Performance Liquid Chromatography; em português:

Cromatografia Líquida de Alto Desempenho), é um instrumento mais simples que o

cromatógrafo a gás nos seguintes aspectos:

a) só possui um canal analítico, enquanto CG’s podem ter até quatro canais;

b) é modulado, isto é, sistema de bombeamento e detetor são independentes, o

que facilita a substituição de detetores;

c) opera geralmente à temperatura ambiente;

A Figura 4.3 é um diagrama em blocos de um CL típico. Cada bloco é descrito

a seguir:

Figura 4.3 - Diagrama em blocos de um HPLC típico

a) Reservatório de Fase Móvel

A Fase Móvel (um líquido puro ou uma mistura de composição definida) deve

ser filtrada em membranas com 0,46 m de diâmetro de poros e desgaseificada (ver próximo

item).

b) Sistema de desgaseificação

A Fase Móvel deve ser desgaseificada, para evitar a formação de bolhas,

as quais podem provocar cavitação (com conseqüente dano à bomba) ou gerar picos falsos,

ao passarem pela célula do detetor. São conhecidas várias técnicas de desgaseificação:

- aquecimento com agitação;

- borbulhamento de gás hélio;

- ultra-som;

- vácuo

c) Bomba

Page 24: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 22

O bombeamento da Fase Móvel é realizado por uma bomba

controlada por um microprocessador, o qual pode alterar a velocidade de sucção (para

evitar vaporização de fase móvel mais volátil) e a vazão (importante quando a análise

é realizada com Gradiente de Polaridade, em cujo caso há necessidade de uma segunda

bomba; ver mais adiante).

d) Válvula de injeção

A amostra é sempre introduzida com auxílio de uma válvula,

porquanto a pressão de trabalho nunca é menor que 50 atmosferas (Apêndice 2).

e) Coluna

As colunas empregadas em CL são retas, uma vez que seu comprimento

raramente ultrapassa 30 cm, ocupando portanto muito pouco espaço no equipamento.

f) Detetor

Os detetores utilizados em CL serão descritos na próxima seção.

g) Sistema de aquisição de dados.

Os sistemas de aquisição de dados empregados em CL são exatamente os

mesmos empregados em CG, ou seja, registradores, integradores ou microcomputadores

(Apêndice 3).

Gradiente de Polaridade

Quando o CL dispõe de apenas uma bomba, é evidente que a fase

móvel tem uma composição constante, do início ao fim da análise. Nessa situação, a

polaridade da mesma também é constante. Diz-se então que o processo é isocrático.

Quando dispõe-se de duas bombas (ou mais), é possível variar a composição da fase

móvel, colocando-se em cada reservatório um líquido de polaridade diferente. O

microprocessador altera a vazão de cada linha de líquido, de modo que a partir do

ponto de confluência a vazão seja constante. Nesse caso, diz-se que o processo ocorre

com gradiente de polaridade. Substituindo-se temperatura por polaridade, pode-se

utilizar os Cromatogramas 4.3 e 4.4 (p. 20) como ilustração de processos isocráticos

com polaridades diferentes e o Cromatograma 4.5 como ilustração de um processo

com gradiente de polaridade.

4.3. Detetores

4.3.1. Generalidades

Page 25: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 23

Os detetores mais empregados são do tipo diferencial. A sua resposta (R),

dada pelas áreas relativas dos picos, é proporcional à concentração de cada componente

(detetores de condutividade térmica) ou à velocidade de fluxo de massa do componente

(detetores de ionização):

R = K .C R = K .dm

dt1 2

Dentre os detetores dos tipos descritos acima, destacam-se, pelo maior uso, os

seguintes: detetor de condutividade térmica (DCT), detetor de ionização de chama (DIC) e

detetor de índice de refração (DIR), embora existam outros, de mais restrita aplicação.

A escolha do detetor é importante e depende do material a ser analisado.

As principais características dos detetores, que devem ser consideradas quando da seleção

do detetor mais apropriado, são as seguintes (ver Apêndice 1, p 53):

- Sensibilidade

- Nível de ruído

- Resposta

- Faixa de linearidade dinâmica

- Custo/vida útil

- Universalidade

- Especificidade / Seletividade

- Condutividade térmica (para DCT)

4.3.2. Detetores empregados em Cromatografia a Gás

a) Detetor de Condutividade Térmica (DCT)

O sistema de detecção por diferença de condutividade térmica consiste de

dois filamentos (célula para amostra e célula de referência), os quais fazem parte de uma

ponte de Wheatstone (Figuras 4.4a e 4.4b). Faz-se passar corrente pelos filamentos e estes

perdem calor para o gás de arraste. No momento em que a amostra atingir a célula

correspondente, o filamento perderá calor para a solução (gás de arraste + amostra). Como a

solução possui condutividade diferente, a temperatura do filamento é alterada, o mesmo

ocorrendo com a sua resistência elétrica. Essa variação na resistência é medida pela ponte.

Note-se que quanto maior for a concentração do material analisado, maior será a variação

na corrente e portanto maior será o sinal (R = K.C).

A sensibilidade de um detetor de condutividade térmica pode ser avaliada pela equação:

S = KI . ( )

. (T - T )2 g - s

g

f b

(eq. 8)

onde:

S = sensibilidade (mV.cm3/mg)

K = constante da célula = condutividade térmica do gás de arraste

= condutividade térmica da substância

Page 26: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 24

I = intensidade de corrente

R = resistência do filamento

Tf = temperatura do filamento

Tb = temperatura do bloco

IMPORTANTE ! Se a câmara do detetor contiver ar atmosférico no momento em que o

circuito for energizado ocorrerá queima do filamento. Portanto, deve-se primeiro fazer

circular o gás de arraste.

Figura 4.4.a - Bloco do Detetor de Condutividade Térmica.

b) Detetor de Ionização de Chama (DIC)

A figura 4.5 representa o circuito eletrônico de um DIC. Rv é uma

resistência variável, cujo valor depende do número de partículas entre os eletrodos. O

efluente da coluna, ao passar entre os eletrodos, é ionizado. Nos DIC, a fonte de ionização é

a chama resultante da combustão de hidrogênio com ar (gases auxiliares). A corrente

contínua gerada pela fonte (fonte CC, Fig 4.5.b) é transportada do polarizador para o

coletor (Fig 4.5.a) por impurezas existentes na fase móvel ou por partículas de fase

estacionária líquida arrastada pela fase móvel, por exemplo. No amplificador existe outra

fonte de corrente, sendo esta variável e de sentido contrário, permitindo assim zerar a

corrente resultante no circuito. Quando um componente da amostra atinge o detetor, caso

possua átomos de carbono e átomos de hidrogênio, entrará em combustão, sendo

ionizado. Com a ionização, aumenta a corrente saída do coletor, o que irá gerar uma tensão

(V), a qual é ampliada pelo amplificador eletrométrico e enviada ao

registrador/integrador. Evidentemente, a sensibilidade do detetor dependerá da facilidade

relativa de ionização de cada componente da amostra.

Page 27: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 25

Figura 4.4b- Diagrama Eletrônico do DCT

Fig. 4.5.a- Estrutura física de um DIC

c) Detetor de Captura Eletrônica (DCE)

Embora possuindo circuito semelhante ao de um DIC, o DCE, ao

contrário daquele, mede a queda de corrente quando da passagem de amostra pelos

eletrodos (Rv). Uma fonte de 3H

-1 ou de

63Ni ioniza as moléculas do gás de arraste (N2),

liberando os elétrons responsáveis pela corrente (corrente de fundo). Se uma substância

capaz de absorver esses elétrons passar pelo detetor, haverá uma queda na corrente,

resultando num sinal que também será amplificado e enviado ao registrador.

Aqui, a sensibilidade do detetor depende da capacidade de absorção de

elétrons por parte dos diversos componentes da amostra.

Page 28: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 26

Fig. 4.5.b- Circuito eletrônico de um DIC / DCE

d) Propriedades dos detetores

A Tabela 4.1 é auto-explicativa e sumariza as principais propriedades dos

detetores, auxiliando no trabalho de seleção do detetor mais apropriado para uma análise. O

Apêndice 5 descreve outros detetores de uso menos extensivo, como o DNP.

Tabela 4.1 - Propriedades dos principais tipos de detetores empregados em CFG.

PROPRIEDADES DCT DIC DNP DCE

Limite de detecção 1 ppm 100 ppb 0,1 ppb 0,1 ppb

Faixa de linearidade 104 10

7 10

4 10

2

Vazão da fase móvel 1-103 mL/min 1-200 mL/min 10-100 mL/min 10-100 mL/min

Quant. Típica amostra 1 - 40 L 0,05 - 5 L 1 - 5 L 1 - 5 L

Comp. Detectados todos orgânicos nitrogenados e

fosforados

halogenados

Áreas de aplicação uso geral orgânicos resíduos de

pesticidas

resíduos de

pesticidas

4.3.3. Detetores empregados em CLAD

Os detetores mais empregados em Cromatografia a Líquido de Alto

Desempenho (CLAD), embora existam outros tipos de detetores são:

a) Detetores de índice de refração

Page 29: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 27

À semelhança do detetor de condutividade térmica, o detetor de índice de

refração é o mais antigo, menos sensível e o único universal, dentre os detetores

empregados em CLAD. Baseando-se na diferença de índice de refração entre a fase móvel e

cada componente da amostra, conhecem-se dois tipos de detetores IR:

Os detetores tipo deflexão utilizam como elemento ativo um diodo capaz de gerar

uma corrente contínua cuja intensidade é proporcional ao ângulo de incidência

da luz que atravessa a célula (Figura 4.6). Ao passar pela célula analítica uma

substância com índice de refração diferente daquele da fase móvel, haverá uma

alteração no ângulo de incidência, resultando numa variação na intensidade de

corrente, que é proporcional à concentração dessa substância na célula e

consequentemente também proporcional à sua concentração na amostra.

Figura 4.6 - Detetor de Índice de Refração tipo deflexão.

Os detetores tipo Fresnel baseiam-se no fato da luz incidente sobre o sistema mostrado

na Fig. 4.7 ser fracionada em dois feixes: uma parte da luz é refletida e a outra parte é

refratada. De acordo com a Lei de Fresnel, a relação entre essas duas frações é função

do índice de refração. Assim, ao passar uma substância (transportada pela fase móvel)

pela célula, altera-se o índice de refração e portanto o percentual de luz refratada.

Utilizando-se como foto-detetor um diodo sensível à intensidade de luz, a corrente

gerada por este será alterada de um modo proporcional à concentração dessa substância

na amostra.

b) Detetores de UV-VIS

Os detetores de ultravioleta-visível (UV-VIS) baseiam-se na Lei de

Lambert-Beer, que estabelece uma relação linear entre Absorbância e Concentração:

A = . l . c

Page 30: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 28

onde l é o caminho ótico (distância percorrida pela luz dentro da solução; espessura da

célula). A constante de proporcionalidade denomina-se absortividade molar. A

absorbância, por sua vez, é proporcional à transmitância, fração de luz transmitida.

Quando o conteúdo da célula (Fig. 4.8) é transparente à radiação

empregada (UV ou VIS), a transmitância é 100 % e evidentemente a absorbância é ZERO.

Entretanto, quando chega à célula uma substância que absorva essa luz, o

sistema de detecção mede a diferença em intensidade, gerando o cromatograma

correspondente.

Os instrumentos mais comuns (e mais baratos) utilizam como fonte de

radiação uma lâmpada de mercúrio, cujo comprimento de onda principal (90 % do total da

radiação) mede 254 nm. Esses instrumentos, portanto, operam com um comprimento de

onda fixo (e único). A Fig. 4.8 representa um diagrama esquemático desse tipo de

instrumento. Como a região útil da radiação UV varia de 190 a 300 nm, é de se esperar que

mesmos os compostos que absorvem luz UV não venham a ser detectados em um detetor do

tipo fixo, ou que sejam detectados com baixa sensibilidade. Para se conseguir uma

varredura em toda a região UV, é primordial, evidentemente, que a fonte de radiação

(lâmpada de deutério) possa emitir luz com todos os comprimentos de onda da faixa de

interesse (fonte não monocromática). Desse modo, o instrumento (UV variável) necessita de

um dispositivo que selecione um determinado comprimento de onda, de modo a irradiar a

amostra com uma luz monocromática. Esse dispositivo chama-se “monocromador”. Para se

operar na faixa visível (400-750 nm), emprega-se uma lâmpada de tungstênio.

Figura 4.7 - Detetor de Índice de Refração tipo Fresnel.

Page 31: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 29

Figura 4.8 - Detetor de Ultravioleta fixo

Page 32: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 30

6 - ANÁLISE QUALITATIVA

O tempo de retenção (Tr) é uma característica físico-química e como tal

permite que se faça análise qualitativa, desde que se disponha de um padrão. Na falta do

padrão, é necessário coletar cada componente isoladamente e identificá-lo por outros

métodos analíticos; espectrometria, por exemplo. Atualmente, são comercializados

cromatógrafos cujo detetor é um espectrômetro de massas.

Quando uma amostra é submetida à análise, é preciso fornecer ao analista

alguns dados a respeito da mesma:

- Origem (de síntese, natural, etc ?).

- Componentes prováveis (espécie, número).

- Composição quantitativa provável.

- Faixa de ponto de ebulição (amostra líquida).

- Outros dados relacionados com as variáveis do processo.

Quanto maior for o número de informações, mais rapidamente o analista

encontrará as condições ideais de análise.

Como existe apenas uma vazão ideal para cada coluna, resta ao analista

procurar a coluna e a temperatura (ou programação de temperatura) ideais.

Existem outros modos de efetuar a identificação, os quais serão estudados

mais adiante (Capítulo 8).

Page 33: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 31

6 - ANÁLISE QUANTITATIVA

6.1. Introdução

Para se determinar a composição de uma mistura (Análise Quantitativa) é

necessário medir as áreas relativas dos picos de todos os componentes. Entretanto, nem

sempre o número de picos é igual ao número de componentes, pois além da probabilidade

de ocorrer superposição, alguns componentes poderão não ser detectados, o tempo de

análise poderá ser inferior ao tempo de retenção de um componente menos volátil, etc.

O uso de uma referência (padrão) permite, contudo, determinar a

percentagem de um dado componente, mesmo que não apareçam os picos dos outros

componentes.

Antes de se efetuar o cálculo da composição, entretanto, é preciso fazer as

correções das áreas, pois a relação das áreas de dois componentes quase sempre é diferente

da relação entre as suas massas (composição em massa). Isto porque a sensibilidade

(Resposta) de um detetor a duas diferentes substâncias normalmente é diferente.

Analisando a eq. 8 (p. 23), observamos que além de outros fatores, a

sensibilidade dos detetores de condutividade térmica depende da diferença g - s Como s

varia de substância para substância, podemos dizer que uma mistura binária qualquer

contendo 50% de cada componente muito provavelmente terá uma relação de áreas

diferente da unidade.

Com os detetores de ionização de chama (e também com os de captura de

elétrons) existe esse mesmo problema, pois a facilidade de se ionizar (ou de capturar

elétrons) varia de substância para substância. Aliás, essa afirmação vale para qualquer outro

tipo de detetor, inclusive aqueles empregados em Cromatografia a Líquido.

Assim sendo, vale a pena repetir, é necessário primeiro determinar os

fatores de resposta para as áreas e só depois efetuar o cálculo da composição.

6.2. Medição de Área

A área de um pico pode ser medida por vários métodos, a saber:

i - Com auxílio de um planímetro.

ii - Por pesagem (recorta-se cada pico e pesa-se em balança analítica).

iii - Com auxílio de um integrador:

Page 34: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 32

a) de disco (eletromecânico) ou

b) eletrônico

iv - Determinação gráfica:

a) S = h.L ou b) S = h.L’,

onde h é a altura do pico, medida desde a linha de base até o ápice do mesmo, L é

a largura na base (distância entre os pontos em que a linha de base é interceptada

pelas tangentes traçadas nos dois ramos da curva) e L’ é a largura do pico na

metade de sua altura, como se vê na Figura 6.1. Essas grandezas devem ser

medidas em milímetro.

O planímetro é um dispositivo mecânico, articulado. À medida em

que se percorre o perímetro do pico, um ponteiro percorre uma escala. A leitura

ao final do perímetro é a área do pico. O traçado do integrador de disco é

mostrado abaixo do pico, na fig. 6.1. O uso de um integrador permite determinar a

área com um erro da ordem de 0,1%. Entretanto, os erros dos outros métodos, em

torno de 0,5 - 1%, é bastante aceitável para a maioria das finalidades. Dado o alto

custo dos integradores, principalmente os eletrônicos, muitos Laboratórios ainda

utilizam o método gráfico. Atualmente, encontram-se no mercado várias versões

de softwares (com a respectiva interface), que substituem com muitas vantagens

(inclusive de custo) os integradores eletrônicos.

A utilização do planímetro exige habilidade do operador, de modo

que o erro poderá ser bem maior que 1% (a precisão normalmente é baixa). O

método de pesagem, por sua vez, é pouco empregado em virtude de exigir a

destruição do cromatograma. Dentre os métodos gráficos (a e b), o da meia altura

(b) é recomendado para os picos cuja linha de base não está bem definida e

também por causa da imprecisão no traçado das tangentes. Entretanto, a medição

de uma largura L’ (da ordem de 5 mm) muitas vezes acarreta um erro da mesma

magnitude do erro da medida de L, de modo que os dois processos, em geral,

podem ser considerados igualmente precisos. A experiência indicará, em cada

ocasião, qual método deverá ser empregado.

Se os picos não estão completamente separados, ao ponto de não se

poder medir a largura L’, utiliza-se o método “a” (S = h.L), medindo-se L do

seguinte modo (Fig. 6.2):

1) Traçar, como na Fig. 6.1, a tangente do pico; mas só as mostradas na fig. 6.2;

2) A partir do ponto A (Fig. 6.2), traçar uma vertical até cortar a linha de base;

3) L1 e L2 são as bases dos dois picos da Fig. 6.2 e as suas áreas são h1L1 e h2L2.

Page 35: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 33

Fig. 6.1 - Método gráfico para determinação de áreas relativas em

cromatografia.

OBS.: Essa técnica pode ser empregada também nos casos

em que A fica abaixo de L’ e é denominada CORREÇÃO VERTICAL.

Se o primeiro pico for muito menor que o segundo (Fig. 6.3), o

procedimento é exatamente igual. Por outro lado, na situação inversa, a

medição da área do segundo pico é feita como mostrado na Fig. 6.4. Essa

segunda técnica chama-se CORREÇÃO TANGENCIAL. Se houver um

outro pico sobre a cauda do primeiro e o ponto A estiver acima da

tangente, procede-se a uma correção vertical entre os dois pequenos.

Figura 6.2 - Correção vertical Figura 6.3 - Correção vertical Fig. 6.4 - Correção horizontal

6.3. Métodos de Cálculo

Os métodos de cálculo descritos a seguir já incluem a correção da área.

a) Normalização de área

Usa-se um dos componentes da mistura como referência. Seja uma

mistura das substâncias S1, S2, ... , Sn e Sr, onde Sr é a referência.

A seguinte relação é válida para um cromatograma dessa mistura:

m

A =

m

A A =

m

m . A

r

r

i

c

ci

r

r

i

i (eq. 9)

onde Aci é a área corrigida de uma substância qualquer i. Por outro lado, podemos dizer que:

Page 36: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 34

A A Fc i ii . (eq. 10)

onde Fi é o fator de correção. Igualando-se os segundos membros das equações 9 e 10, fica:

A .F = m

m . A ou F =

m

m .

A

Ai i

i

r

r ii

r

r

i

(eq. 11)

OBS.: Para uma mesma solução, mi / mr = Ci / Cr, logo Fi = Ci / Cr . Ar /Ai (eq. 11’) aplicando-

se a eq. 11 a uma amostra de concentração conhecida (mistura padrão), encontra-se Fi. Então, a

partir da eq. 10 (aplicada à amostra de concentração desconhecida), é calculada a área corrigida

Aci. Finalmente, a composição é dada pela eq. 12:

C = A

A. 100i

c

c

i

i (eq. 12)

Quando todos os componentes de uma mistura pertencem a uma

mesma função química, os fatores de correção (também denominados fatores de

conversão - pois convertem a área em concentração ou massa - ou fatores de

resposta) são praticamente iguais. Assim, admitindo-se que F1 = F2 = ... = Fn = F,

pode-se fazer F = 1 e a equação 12 simplifica-se:

CA

A. 100i =

i

i (eq. 12’)

O caso geral é conhecido como Normalização de Área com Fator de

Resposta (Norm %) e o caso particular (eq. 12’) como Normalização de Área sem Fator de

Resposta, ou simplesmente Área %.

b) Padronização Interna

Para a determinação da composição de uma amostra pelo método da

Normalização de Área, é necessário que todos os seus diversos componentes sejam

detectados (a eq. 12 exige que sejam calculadas todas as áreas: Aci). Entretanto, não é fácil

ter certeza absoluta de que todos os componentes foram realmente detectados. Além disso,

se apenas um único componente interessa ao analista, a sua determinação a partir de uma

amostra com muitos componentes traria dois outros agravantes:

i) Todo trabalho de medição e cálculo dos picos de interesse.

ii) A probabilidade maior de um outro componente ter o mesmo tempo de

retenção do componente de interesse.

Page 37: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 35

Para resolver o problema (ii) o analista preferiria usar um detetor que se

possível só detectasse o componente de interesse. Mas, como resolver o problema inicial ?

A resposta a essas questões está na adição à amostra de uma substância nova, com as

seguintes características:

- Solúvel na amostra.

- Detectável.

- Possuir Tr diferente de qualquer componente detectável.

- Não reagir com a amostra.

Essa substância é denominada de padrão interno.

Seja uma solução padrão contendo todas as substâncias de interesse e o

padrão interno (Pi), cujas concentrações e áreas sejam respectivamente:

Ai e Ci - um componente qualquer de interesse.

APi e CPi - o padrão interno.

As relações Ci /Ai = Ri (eq. 13) e CPi /APi = RPi (eq. 14) dão a resposta do

detetor para qualquer componente, inclusive Pi. Numa mesma solução, a relação Ri / RPi é

constante e igual a Fi (comparar com a eq. 11).

C

A .

A

C = F

i

i

p

p

i

i

i (eq. 15)

A adição do padrão interno a uma amostra de concentração desconhecida,

resulta em uma solução para a qual são válidas as relações:

C

Ai

i

'

' = R (eq. 16) e

C

A = R (eq. 17),i

P

'

P

'P

i

i

i

equivalentes às equações 13 e 14. Logo,

C

A . F = R =

C

AP

'

P

'i i

i

'

i

'

i

i

(eq. 18)

Assim, C = A

A . C . Fi

' i

'

P

' P

'i

i

i (eq. 19)

Page 38: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 36

OBS.: A precisão desse método, bem como a do método “a”, independe do erro de

injeção, mas a precisão de ambos depende do erro na preparação dos padrões.

c) Padronização externa

Mais prático que o método anterior e não necessitando também da

detecção de todos os componentes da amostra, o método do padrão externo, entretanto,

depende do volume injetado, de modo que sua precisão é influenciada pelo erro de injeção.

Considerem-se as equações 13 e 16. Numa solução de composição

conhecida (solução padrão) e numa amostra desconhecida, têm-se respectivamente:

C

A = R e

C

A = R

i

i

ii

'

i

'i

Igualando-se os dois primeiros membros, tem-se, tirando o valor de Ci' :

C = A . C

Ai

'

i

' i

i

(eq. 20)

Como Ri é constante, uma vez determinado o seu valor, a partir da solução

padrão e para cada componente de interesse, o analista terá apenas que aplicar a eq. 21:

C = A . Ri

'

i

'i (eq. 21)

OBS.:

1 - Os valores de Ri, obtidos num determinado laboratório, podem ser tabelados,

ou fornecidos a um computador (integrador/processador), para agilização das análises.

Devido a alterações na sensibilidade do detetor (variação na relação de fluxo dos gases

auxiliares no DIC, corrosão, decaimento natural na fonte radioativa do DCE, etc.), os

valores de Fi (ou de Ri) devem ser recalculados periodicamente. O analista deverá

determinar experimentalmente a periodicidade.

2 - O método do padrão externo (regra de três simples) é uma simplificação do

método do padrão interno (regra de três composta), onde se faz Vip = Via , onde Vip é o

volume injetado de solução padrão e Via é o volume injetado da amostra. Portanto, a

precisão deste método de cálculo depende da perícia do analista na medição do volume a

ser injetado.

d) Técnica para fechar uma análise

Page 39: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 37

Muitas vezes é necessário fazer duas injeções. Isso acontece quando uma

única coluna não consegue separar todos os componentes e/ou um único detetor não detecta

todas as substâncias.

Considere-se o método de Normalização de Área e uma situação em que

um dos componentes aparece isolado nos dois cromatogramas. Como nas duas injeções o

volume não foi exatamente o mesmo, haveria um erro grosseiro se as diversas áreas dos

dois cromatogramas fossem somadas diretamente.

No exemplo a seguir, a amostra possui cinco componentes, sendo que os

componentes (1), (2) e (4) são quantificados no cromatograma A. Observa-se que (2)

aparece nos dois cromatogramas. Teoricamente as suas áreas, nos dois cromatogramas (Aa2

e Ab2) seriam iguais. Na prática, geralmente encontra-se A Aa b2 2 . Qualquer uma das

áreas é correta, de modo que A ou B pode ser tomada como referência, indiferentemente.

Tomando o cromatograma A como referência, tem-se:

A

A

a

b

2

2

= K (para corrigir as áreas no cromatograma B)

A .F + A .F + A .K.F + A .F + A .F .K = Aa1 1 a2 2 b3 3 a4 4 b5 5 ci ,

onde Aci é qualquer termo do 1o membro. A concentração de qualquer componente é

calculada a partir da eq. 12.

6.4. Seleção do melhor método de cálculo

Para se decidir sobre o melhor método de cálculo para uma dada amostra,

basta responder às questões apresentadas no Esquema 6.1.

Page 40: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 38

Esquema 6.1 - Critérios para seleção do melhor método de cálculo.

Page 41: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 39

7 - OTIMIZAÇÃO DO PROCESSO ANALÍTICO

7.1. Parâmetros analíticos

Conforme foi visto ao longo dos capítulos anteriores, muitos fatores

influem no processo cromatográfico. Essa influência não é aleatória, podendo portanto ser

controlada pelo operador, com o objetivo de otimizar o processo de separação.

A Tabela 7.1 mostra a importância do correto dimensionamento de uma

coluna cromatográfica, enquanto que a Tabela 7.2 mostra a influência do volume injetado

sobre L (largura do pico na base; ver Fig. 2.14, p. 13), n e H (ver Fig. 2.13, p. 13). O

Gráfico 7.1 mostra a relação entre C e nmax () e entre C e Hmin(), onde C é a

concentração da fase estacionária. O Gráfico 7.2 mostra como esses parâmetros (n e H)

variam com o comprimento da coluna (l).

A temperatura (T) modifica o tempo de retenção (tr). A variação do tr com

T não é linear. A relação

tr / T

depende do composto em estudo e da faixa de temperatura empregada. A Tabela 7.3, o

Gráfico 7.3 e os Cromatogramas 7.1.a,b e 7.2.a,b,c evidenciam essas afirmações.

Finalmente, a Tabela 7.4 mostra que nmax, Hmin e Fo (vazão ideal) dependem inclusive da

granulometria do suporte.

Tabela 7.1 - Efeito do comprimento da coluna e da concentração da FE sobre a eficiência.

Coluna * Vazão Ideal

l (m) C (%) m (g) Fo n x 10-3

H (mm)

(mL/min)

1

2

4

9

16

4

4

4

4

10

10

10

10

10

1

2

5

20

0,13

0,24

0,57

1,24

2,15

0,05

0,12

0,26

1,18

30+5

20+5

28+5

21+5

38+5

18+5

26+5

34+5

37+5

0,8

1,4

4,3

8,0

16,0

1,9

2,0

2,7

3,3

1,25

1,43

0,93

1,13

1,00

2,11

2,00

1,48

1,21

(*) a) Fase estacionária: Apiezon L; DE = 1/8”; DI = 2,04 mm; Suporte: Chromosorb P; 60-80 mesh

b) l = comprimento da coluna; C = conc. da FE; m = massa da FE na coluna.

Page 42: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 40

Tabela 7.2 - Efeito do volume injetado sobre L, n e H.

Volume (L) L (mm) n H (mm)

0,5

1,0

1,5

2,0

7

9

11

12

15.800

9760

6800

5270

1,01

1,64

2,35

3,03

Tabela 7.3 - Efeito da temperatura sobre o tempo de retenção

Composto 70oC 100

oC 130

oC 160

oC

n-pentano 1,60 1,17 0,85 0,68

n-hexano 3,29 1,93 1,23 0,77

n-heptano 7,38 3,65 1,92 1,35

n-octano 18,88 7,08 3,25 2,00

A partir dessas informações é possível estabelecer, por exemplo, para uma

coluna com 1/8” de diâmetro externo (coluna analítica), que:

Para uma mesma FE, mesmo suporte e mesma granulometria, nmax é função linear de l.

O valor de nmax aumenta, quando diminui a granulometria do suporte.

O valor de nmax varia com C, sendo máximo quando C = 12 %, para suporte com faixa

de granulometria de 60-80 mesh ( malhas por polegada linear; equivale a um

diâmetro de partícula de 175-230 mm).

A faixa de vazão ideal não varia com a temperatura.

Page 43: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 41

O tempo de retenção diminui de maneira não linear com o aumento da temperatura; a

relação tr / T varia com a natureza do composto e o intervalo de temperatura

considerado.

7.2. Projetando um método analítico

Para se projetar um novo método analítico por cromatografia, são

necessárias várias avaliações, relacionadas a seguir:

Seleção do tipo de cromatógrafo (a gás ou a líquido);

Seleção do detetor, em função dos compostos a serem analisados e de suas concentrações;

Parâmetros de funcionamento do detetor;

Seleção da coluna:

natureza da Fase Estacionária (e sua granulometria, caso seja sólida);

dimensões da coluna (comprimento e diâmetro);

concentração da Fase Estacionária (FE), natureza e granulometria do suporte, no

caso de FE líquida;

Seleção da temperatura (ou programação de temperatura) para a coluna, no caso de CFG;

Seleção do Gradiente de Polaridade, se necessário, no caso de CFL (HPLC);

Determinação do Limite de Detecção (LD) e da Faixa de Linearidade Dinâmica (FLD);

Determinação dos Fatores de Resposta;

Determinação das demais condições de análise: volume injetado, técnica de injeção,

atenuação (se não dispuser de sistema de integração), temperatura do vaporizador (em

CFG) e do detetor e vazão da fase móvel (ou gradiente);

Concentração dos componentes na solução padrão, natureza do solvente empregado e

técnicas de amostragem e de preparação da amostra e da solução padrão;

Método de cálculo utilizado;

Número mínimo de determinações em paralelo e erro máximo (reprodutibilidade);

Avaliação do erro estatístico global, associado às diversas operações (preparação de

soluções, técnica de amostragem, técnica de injeção e medição de área); expressão do

resultado final;

Observações:

a) na seleção do detetor, verificar se o material a ser analisado é detectável por ele e se

o seu Limite de Detecção é compatível com a faixa de concentração de interesse

(ver, por exemplo, a Tabela 4.1 na p. 26);

b) na avaliação dos erros estatísticos, considerar todas as operações envolvidas, tais como

pesagem, medição de volume, diluição, técnicas de amostragem e de injeção, etc;

Page 44: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 42

c) para cálculos estatísticos, utilizar o Apêndice 6 (ver Seção 7.3).;

d) em relação aos diversos métodos de cálculo, lembrar que:

Método prep.

Padrão

prep.

Amostra

injeção comp. Não

detectados

altura(1)

Área % Não Não Não Sim Sim

Norm % Sim Não Não Sim Sim

P. Ext. Sim Não Sim Não Não(2)

P. Int. Sim Sim Não Não Não(2)

(1) como medida da “área”; (2) dentro de uma faixa mais ou menos estreita de concentração.

Page 45: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 43

Tabela 7.4 – Efeito da granulometria do suporte sobre a eficiência

Malha/polegada nmáx Hmín Fo (mL/min)

60-80 4300 0,93 20

80-100 4600 0,87 20

100-120 5700 0,70 24

D.E. = 1/8”; l = 4 m; C = 10 %

Page 46: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 44

7.3. Validação de um método analítico

7.3.1. Objetivo

A identificação por Cromatografia (a gás ou a líquido) é feita por

comparação dos tempos de retenção, para uma dada substância, entre uma solução

padrão e a amostra. Entretanto, é sabido que num determinado sistema

cromatográfico (Fase Móvel, Fase Estacionária e Detetor), mesmo empregando-se

como fluxo da Fase Móvel aquele encontrado por ser o ideal (de acordo com os

experimentos de van Deemter), não é nula a probabilidade de outro componente da

amostra apresentar o mesmo tempo de retenção que o da substância de interesse.

Validar um método analítico consiste em garantir que nas condições analíticas, a

substância-problema e apenas ela apresenta aquele tempo de retenção. Evidentemente

um método validado deve ser operacionalizado através de um manual (Norma), o qual

determina condições padronizadas que garantam a sua

repetibilidade/reprodutibilidade. Deve ser enfatizado que um determinado método

analítico validado para um determinado tipo de amostra não é necessariamente válido

para outro tipo de amostra (ex.: dosagem de um princípio ativo existente em um

determinado medicamento versus a mesma determinação nas vísceras do cadáver de

uma suposta vítima de super-dosagem), posto que outro tipo de amostra pode conter

outras substâncias também passíveis de ser detectadas no mesmo tempo de retenção do

analito e que não tenham sido incluídas na pesquisa de validação.

7.3.2. Conceitos

Com o objetivo de garantir uma correta compreensão deste texto,

são apresentados a seguir os termos técnicos aqui empregados, com suas

respectivas definições.

Nome notação descrição

Analito Substância-problema.

Amostra Qualquer material, independentemente de

sua origem, que contenha o analito.

Padrão O analito, comercializado com alta pureza.

United States Pharmacopea USP Farmacopéia Americana. Fonte de consulta.

Concentração c Concentração do analito (ou do padrão).

Solução Estoque SE Solução do padrão a alta concentração

(pode ser guardada por alguns meses,

dependendo da natureza da substância).

Solução Intermediária SI Solução do padrão, necessária para se

chegar à Solução de Trabalho.

Solução de Trabalho ST Solução do padrão com concentração

Page 47: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 45

semelhante ao que se espera da amostra.

Faixa de Linearidade FL Intervalo de concentração em que existe

relação linear com a área do pico.

Curva de Calibração Curva construída com os dados da Faixa de

Trabalho.

Coeficiente de Correlação r Parâmetro que mede a precisão com que a

Curva de Calibração relaciona as áreas com

as respectivas concentrações. É usado para

avaliar o fim da região linear na construção da

FL.

Faixa de Trabalho FT Intervalo contido na FL, compreendendo as

concentrações usuais da amostra.

Limite de Detecção do

Equipamento

LDE Concentração mínima detectável do analito

no extrato injetado.

Limite de Detecção da

Amostra

LDA Concentração mínima detectável do analito na

amostra.

Limite Efetivo LE Concentração mínima do analito que

corresponde a um erro máximo aceitável.

Seletividade Capacidade de separar a substância-problema

dos demais componentes da amostra.

Resolução Rs Mede a seletividade.

Precisão Avalia a repetibi l idade ou a

reprodutibilidade de um método analítico,

por medida da 1a ou da 2

a estimativa do

desvio padrão (Apêndice 6).

Exatidão Grau de fidelidade com que o resultado

exprime o valor real da concentração do

analito. Avaliado com auxílio do teste t1 (de

Student), por comparação com uma solução

padrão (Apêndice 6).

Recuperação Nos casos em que se faz uma extração, é

necessário determinar o percentual de

extração e sua repetibilidade. Recomenda-

se que a solução padrão seja submetida à

mesma operação.

Repetibilidade Mede a dispersão dos resultados obtidos por

repetição da análise, num mesmo Laboratório,

com o mesmo equipamento e mesmo analista.

Ver Precisão.

Reprodutibilidade Mede a dispersão dos resultados obtidos por

repetição da análise, em diferentes Laboratórios,

diferentes equipamentos ou diferentes analistas.

Page 48: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 46

Usa o teste F (Apêndice 6).

Consistência Mede a influência sobre a repetibilidade,

das diversas operações constantes do

método.

Robustez Mede a influência sobre a Reprodutibilidade,

das diversas operações constantes do método.

7.3.3. Procedimento

a) Seletividade / Identificação

A principal fase do trabalho é aquela em que é testada a confiabilidade da

identificação. Isso inclui a determinação do tempo de retenção de toda e qualquer

substância que possa eventualmente existir na amostra, quais sejam:

impurezas de síntese (no caso de produtos naturais, esse trabalho poderá ser bastante penoso);

impurezas de degradação (essas informações podem ser obtidas de estudos shelf-life);

excipientes, conservantes, aditivos e outros princípios ativos constantes da formulação (no

caso de associações);

Deve ser lembrado que a identificação pura e simples por

cromatografia (método não validado) não tem valor científico. Assim, o ideal, o

recomendado mesmo, é associar à técnica cromatográfica, a técnica de Espectrometria

de Massas. Essa associação pode ser manual, através da separação física, por coleta

na saída da coluna, seguida da obtenção do espectro de massas. A identificação

pode ser ainda complementada com auxílio de outra técnica analítica, como a

Espectrometria de Ressonância Magnética Nuclear, Espectrofotometria no

Ultravioleta-Visível ou a Espectrofotometria no Infravermelho. Atualmente existem

cromatógrafos (CFG ou HPLC) acoplados a um espectrômetro de massas, o qual

substitui o detetor tradicional do cromatógrafo.

Embora os exemplos aqui apresentados sejam típicos da indústria

farmacêutica, os diversos procedimentos são igualmente aplicáveis a qualquer outro tipo de

amostra. De um modo geral, produtos de síntese (de uso farmacêutico ou não) podem ter

seu método analítico validado sem auxílio da espectrometria (embora seu emprego dê maior

credibilidade à validação). Por outro lado, qualquer outro material (inclusive de uso

farmacêutico) exige a associação de métodos espectrométricos.

Já se sabe que a eficiência (n) de uma coluna é diretamente proporcional

ao tempo de retenção. Portanto, quanto maior for o tempo de eluição, maior será a sua

eficiência. Assim, a seletividade pode ser medida como a razão dos tempos de retenção:

Page 49: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 47

= tr1/tr2

Essa relação é também denominada retenção relativa (p. 12) ou ainda fator de separação e

demonstra-se que é equivalente às relações dos coeficientes de partição:

= kp1/kp2

Entretanto, esse critério é algo insatisfatório, posto que colunas com diferentes eficiências

podem apresentar mesmos fatores de separação, conforme pode ser visto na Figura 7.1.a,b.

Porisso, em vez da seletividade, emprega-se a resolução (Rs), como medida efetiva da

capacidade de separação:

Rs = 2(tr2 – tr1)/(L1 + L2)

ou seja, a resolução é igual à diferença entre os tempos de retenção dividida pela média da

larguras na base (Figura 2.14, p. 13).

É óbvio que a resolução diminui com o alargamento do pico e

evidentemente também diminui se a cauda, resultante de uma interação excessiva com a

fase estacionária, é bastante pronunciada (Figura 7.2). Essa deformação do pico deve ser

considerada quando da seleção da coluna. Chama-se fator de deformação ou fator de

assimetria (TF, do inglês tailing factor) a relação

TF = BC

AB

onde a distância BD é igual a 10 % da altura do pico ( DE ). O TF máximo admissível é 3.

Page 50: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 48

Figura 7.2 – Pico com cauda (deformação)

Figura 7.1 – Resolução a) baixa; b) alta

b) Detalhamento da Metodologia

A metodologia analítica inclui todos os parâmetros explicitados na Seção

7.2 (página 41).

c) Avaliação estatística

Para realização dos testes estatísticos, sugere-se que qualquer

operação (preparação da solução padrão, tomada de alíquotas, etc) seja realizada

em triplicata (ou mais) e que cada solução obtida seja injetada pelo menos cinco

vezes. Nesses casos, deve ser empregada a 2a estimativa do desvio padrão (sR;

Apêndice 6). A 1a estimativa (s) só deve ser empregada em conjuntos de dados

com mais de 10 itens.

d) Exemplo

A seguir, é apresentado um exemplo, para ilustrar toda a operação. Para

este exemplo, foi selecionado o produto aspirina. A aspirina é comercializada em várias

formas, sendo selecionado como amostra o comprimido.

A aspirina (ácido acetilsalicílico) é produzida industrialmente a partir do

ácido salicílico:

Page 51: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 49

Desse modo, é de se esperar que o precursor (AS) seja um contaminante

comum no produto (AAS). Consequentemente, o AS é uma das substâncias que devem ter

seu tempo de retenção medido, para verificar se coincide ou não com o do AAS.

Uma vez completada a etapa de identificação (vale repetir: confirmação

de que nada que eventualmente possa estar presente na amostra apresente o mesmo tempo

de retenção do AAS), parte-se para as avaliações estatísticas.

i. Condições analíticas:

Cromatógrafo a líquido modelo CG 480E, com detetor de ultravioleta CG 437B.

Comprimento de onda: 254 nm.

Coluna: RP-18, 250 mm X 4,6 mm, 10 m; temperatura ambiente.

Fase Móvel: H2O:Metanol:Ácido Acético (46:52,5:1,5); 1,5 mL/min (isocrático).

Preparação das soluções padrão (para AAS e AS):

A solução estoque foi de 500 mg/100 mL. As demais soluções foram de 200, 100, 20, 10 e

5 mg/100 mL.

Preparação da amostra:

A partir de 5 comprimidos pulverizados em almofariz, foi tomada uma alíquota pesando 55

mg (10% do peso médio de um comprimido). O material foi dissolvido em 10 mL da fase

móvel, com auxílio de ultra-som e em seguida filtrado (0,46 m).

Injeção da amostra: válvula Rheodyne, com loop de 20 L.

ii. Faixa de Linearidade e Limite de Detecção

As soluções padrão foram injetadas em triplicata, sendo que a mais diluída foi injetada

dez vezes. A partir da médias das áreas obtidas, foram construídas as respectivas Faixas de

Linearidade (Gráficos 7.4 e 7.5), onde evidencia-se que as massas injetadas conforme prescrito

em Preparação da amostra permanecem dentro da região linear. O ruído (medido com

Page 52: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 50

atenuação mínima necessária para uma altura não inferior a 5 mm) foi de 7 mm, o que por

comparação com a média das alturas dos picos das dez injeções da solução mais diluída resultou

em um Limite de Detecção (para AAS e AS), da ordem de 0,3 mg/100 mL.

0 500 1000 1500 2000

0,0

2,0x102

4,0x102

6,0x102

8,0x102

r = 0,99996

Áre

a d

o p

ico

Concentração (mg/L)

0 100 200 300 400 500

0

100

200

300

400

r = 0,99999

Áre

a d

o p

ico

Concentração (mg/L)

Gráfico 7.4 – FLD do AAS. Gráfico 7.5 – FLD do AS.

iii. Precisão e expressão dos resultados

A partir dos dados (áreas) das dez injeções da solução mais diluída referida no

item ii acima, pode ser calculado o erro analítico (de repetibilidade) e a partir deste (1,2%),

determinar a forma correta de expressão do resultado (válida para ambos os compostos):

Re = X 0,01 mg/L

Page 53: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 51

8 – TÉCNICAS ADICIONAIS DE IDENTIFICAÇÃO

8.1. Tempo de retenção e retenção relativa

A identificação é feita tradicionalmente através da medição do tempo de

retenção (tr). Entretanto, a essa forma de medição está associado um erro, decorrente de

uma natural variação no tempo transcorrido entre a injeção e o acionamento do sistema de

registro. Esse erro costuma ser da ordem de 2 % em relação ao tempo de retenção. É

pequeno demais, na maioria das vezes. Mas há casos em que a diferença de tr entre dois

componentes é dessa mesma ordem de grandeza. Em tais casos é recomendável o emprego

da Retenção Relativa (RR). Um dos componentes é tomado como referência (RR = 1) e as

RR’s dos demais são calculadas com auxílio da relação:

RRb = trb/tra ,

onde tra e trb são, respectivamente, os tempos de retenção da referência e de outro componente.

8.2. Índice de retenção

Outro parâmetro utilizado para identificação, o Índice de Retenção (Ir) é

determinado experimentalmente a partir do cromatograma da mistura do desconhecido (i)

com duas parafinas normais com n e m (m = n + 1) átomos de carbono, desde que:

Vrn < Vri <Vrm onde Vr = volume de retenção = F.tr

A relação

pode ser substituída por:

Nesse sistema, assume-se que:

Padrões para determinação do Ir :

a) como visto acima, as parafinas normais são, por definição, padrões primários,

com Ir = 100n.

b) em qualquer série homóloga com mais de 5 átomos de carbono, o Ir cresce de 100

unidades para cada CH2 adicional e não é influenciado pela temperatura. Esses

compostos podem, portanto, ser utilizados como padrões secundários.

Page 54: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 52

8.3. Equivalência entre fases estacionárias

É conhecida a relação I Irp

rn

i i onde Ir

p

i e Ir

n

i são, respectivamente,

os índices de retenção de um composto i numa fase polar qualquer e numa fase estacionária

não polar tomada como referência (geralmente esqualano), medidos a uma mesma

temperatura. Essa relação permite avaliar a influência, na separação, da fase estacionária e

de grupos substituintes presentes na molécula da substância considerada.

McReynolds, baseado em trabalho inicial de Rohrschneider, tomou cinco

compostos como referência e associou o somatório dos seus valores de I com a polaridade

da fase estacionária, chegando a classificar centenas de fases estacionárias. A Tabela 8.1

apresenta alguns exemplos (observe-se que as FE’s estão colocadas em ordem crescente de

polaridade). Os valores de I, denominados constantes de McReynolds, foram

determinados a 120oC. Os valores de Ir para os cinco compostos, com a fase estacionária

esqualano, são: benzeno, 653; n-butanol, 590; 2-pentanona, 627; nitropropano, 652 e

piridina, 699. Por comparação entre os números de McReynolds de duas diferentes fases

estacionárias, é possível concluir se as mesmas são equivalentes ou não. É possível também

prever como melhor uma separação, comparando-se a natureza de duas substâncias-

problema com duas das cinco substâncias tomadas como referência.

Tabela 8.1 – Valores do Número de McReynolds (I) para algumas fases estacionárias.

FASE VALORES DE I

ESTACIONÁRIA A B C D E I

Esqualano (*)

0 0 0 0 0 0

Nujol 9 5 2 6 11 33

Apiezon L 32 22 15 32 42 143

SE-30 15 53 44 64 41 217

SE-52 32 72 65 98 67 334

Hallcomid M-18 OL 89 280 143 239 165 916

QF-1 144 233 355 463 305 1500

Carbowax 20M 322 536 368 572 510 2308

Diglicerol 371 826 560 676 854 3287

DEGS 492 733 581 833 791 3430

TCEP 593 857 752 1028 915 4145

9 – BIBLIOGRAFIA(*)

1. Heftmann, E. Chromatography. Van Nostrand Reinhold, Holland. 1967.

Page 55: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 53

2. Ciola, R. Fundamentos da Cromatografia a Gás. Ed. Edgard Blücher Ltda., São Paulo, 1985.

3. Ciola, R. Tópicos em Cromatografia a Líquido. Inst. Científicos C. G. Ltda., São Paulo, 1984.

4. Hadden, N. e Col. Basic Liquid Chromatography. Varian Aerograph, Cal. USA, 1971.

5. McNair, H. e Bonelli, E. Basic Gas Chromatography. Varian Aerograph, Cal. USA, 1968.

6. Basics of Liquid Chromatography. Spectra-Physics, Cal. USA, 1977.

7. Fundamentals of Gas Analysis by Gas Chromatography. Varian Aerograph, Cal. USA, 1977.

8. Schuler, A. Caderno de Práticas de Cromatografia. Depto. Eng. Química/UFPE, 1994.

(*) A Literatura aqui apresentada serviu de base para a elaboração deste texto e é recomendada

àqueles que pretendem aprofundar-se na matéria.

Page 56: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 54

10 – APÊNDICE 1

Características básicas dos detetores

10.1. Sensibilidade

A sensibilidade de um detetor é medida pela sua Resposta, que é a

magnitude do sinal recebido pelo Sistema de Aquisição de Dados (Registrador

potenciométrico, Integrador ou Software), sob a forma de área do pico. Assim, quanto

maior for a área do pico de uma mesma amostra, maior será a sensibilidade do detetor

empregado.

10.2. Nível de ruído

O ruído é uma característica indesejável dos detetores, ou melhor, de

qualquer dispositivo eletrônico. No caso do cromatógrafo, o ruído é devido a um

conjunto de fatores, tais como:

- impurezas dos componentes eletrônicos - mau contato em cabos e conectores

- interferências na rede elétrica - sangramento da coluna

- defeitos em circuitos eletrônicos - contaminação na válvula de amostragem

- contaminação no septo da coluna - contaminação no detetor

- vazamento de fase móvel - contaminação na coluna

Essas causas podem ser removidas, exceto a primeira, que depende

não só da qualidade do produto, mas também de suas características próprias. Assim,

existe um nível mínimo de ruído que não pode ser removido. Evidentemente, um pico

com altura igual à do ruído não poderá ser reconhecido como tal. O ruído faz com que

a linha de base não seja uma reta perfeita, mas algo parecido com o traçado mostrado

na Fig. 10.1.

Fig. 10.1. Linha de base com ruído.

10.3. Limite de Detecção

Limite de Detecção (LD), ou Quantidade Mínima Detectável (QMD),

como o próprio nome o diz, é a massa mínima injetável que produza um pico que

possa ser identificado como tal. Por definição, LD é uma massa cujo pico tenha uma

altura igual ao dobro da altura média do ruído (hr, Fig. 10.1).

10.4. Faixa de Linearidade Dinâmica

Page 57: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 55

Entende-se por Faixa de Linearidade Dinâmica (FLD) o intervalo

compreendido entre a Quantidade Mínima Detectável (QMD) e a massa máxima injetável

cuja Resposta ainda seja linear. A Fig. 10.2 ilustra a situação. A linha vermelha

compreende a região linear. Alguns detetores, possuem uma faixa ampla (DIC), enquanto

outros apresentam linearidade numa faixa bem mais estreita (DCE). Alguns operam com

massas altas (DCT, DIR), enquanto outros só apresentam linearidade a altas diluições

(DCE, DUV). Para se determinar a FLD

de um detetor, em relação a um

determinado composto, é necessário

preparar soluções dentro do intervalo de

interesse e montar um gráfico equivalente

ao apresentado na Fig. 10.2. Em seguida,

o analista deve calcular o coeficiente de

correlação (r; Apêndice 6) para todos os

pontos e depois recalcular o coeficiente de

correlação após retirar, sucessivamente, os

pontos n, (n-1), (n-2), etc, até que o valor

de r permaneça estável e próximo de 1.

Não tendo havido erro grosseiro na

preparação das soluções, nas injeções,

nem nas medições de áreas, deve-se

encontrar um valor de r maior ou igual a

0,999.

Figura 10.2 – Faixa de Linearidade Dinâmica.

Page 58: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 56

11. APÊNDICE 2

Técnicas de introdução da amostra

Tradicionalmente a amostra (sólido em solução, líquido ou gás) é

introduzida com auxílio de uma microseringa (Figura 11.1). Em Cromatografia a Gás

(CFG), exceto com colunas capilares ou megabore (ver abaixo), recomenda-se injetar de 3

a 5 microlitros (L), sendo que o erro de medição é inversamente proporcional ao volume.

Figura 11.1 – Microseringa para amostras líquidas em CFG

Em se tratando de amostras gasosas, existem duas outras técnicas:

seringa especial para gases (seringas gas-tight, que previnem contaminação ou

diluição da amostra com ar), que é utilizada quando a amostra não está pressurizada e

a válvula injetora de sete vias (Figura 11.2).

Em Cromatografia a Líquido (HPLC), a amostra (líquido ou sólido em

solução) é introduzida com auxílio de uma seringa numa válvula equivalente à válvula

da Figura 11.2, sendo do tipo rotativa e resistente à alta pressão empregada neste tipo

de equipamento. Ambas as válvulas encarregam-se de medir o volume injetado, que

varia de umas poucas dezenas de microlitros (HPLC) a 1 – 2 mL (CFG).

No caso de colunas capilares (ou megabore), o volume máximo

injetável é muito pequeno para ser medido por uma microlitros (0,01 a 1 L). Além

disso, o diâmetro das mesmas é tão pequeno ( 0,53 mm) que a injeção não pode ser

feita diretamente na coluna, como acontece com as colunas de maior diâmetro (CFG).

Nesses casos, é necessário um injetor especial, onde a amostra, uma vez vaporizada, é

dissolvida na fase móvel e esta solução sofre uma divisão (divisor pneumático), de

modo que 1/100 ou uma fração ainda menor é realmente enviada para a coluna,

enquanto que o restante é descartado.

Page 59: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 57

Figura 11.2.a – Válvula de injeção de amostra gasosa (posição carga)

Figura 11.2.b – Válvula de injeção de amostra gasosa (posição injeção)

Page 60: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 58

12. APÊNDICE 3

Sistemas de aquisição de dados

Mesmo na atualidade ainda são empregados registradores para a

aquisição dos dados cromatográficos. Qualquer que seja o detetor empregado (CFG ou

HPLC), o sinal gerado pelo mesmo é uma tensão (corrente contínua). Trabalhando-se com

registrador, obtém-se um gráfico (cromatograma), com auxílio do qual são medidos os

tempos de retenção e as áreas dos diferentes picos. O tempo gasto nesse trabalho é muito

grande e o erro é às vezes bastante expressivo (5 a 10 %).

O integrador eletromecânico realizou uma verdadeira revolução na

Cromatografia, particularmente em laboratórios de Controle de Qualidade, acelerando e

aumentando bastante a precisão do trabalho analítico (erro da ordem de 0,5 %).

Com o desenvolvimento da eletrônica, alguns registradores passaram a ser

comercializados com um integrador eletrônico cujo registro gráfico era igual ao do

integrador eletromecânico, de modo que não houve diminuição visível no erro de

integração, pois a leitura continuava sendo analógica. Mas logo em seguida surgiram os

verdadeiros integradores eletrônicos. Os primeiros limitavam-se a imprimir a área medida.

Os cálculos eram ainda realizados pelo analista, embora com uma precisão na integração

(medida da área) da ordem de 0,001 %. A Segunda geração de integradores veio

complementar o trabalho. Após a integração, o equipamento, utilizando o método de

cálculo previamente selecionado pelo analista, realizava a operação final, chegando a

imprimir a concentração na unidade desejada. Esses equipamentos denominam-se

integradores-processadores. Alguns, mais sofisticados, imprimem o cromatograma, em

tempo real, utilizando os recursos de correção vertical e correção tangencial e inclusive

realizando cálculos pós-análise (geralmente em BASIC), além de automatizar o

acionamento de válvulas. Na realidade esses integradores de última geração são

computadores dedicados. Seu alto custo, aliado a uma curta vida tecnológica, decretou o

fim desses equipamentos.

Na atualidade, os laboratórios de cromatografia estão substituindo os

integradores por softwares bastante completos e sofisticados, que com auxílio de um

microcomputador tipo PC e de uma interface, realizam o trabalho do integrador com a

mesma eficiência, a um preço bem menor, além de poderem monitorar até quatro

cromatógrafos de um modo totalmente independente.

Page 61: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 59

13. APÊNDICE 4

O desenvolvimento cromatográfico

As Figuras 1.1 (p. 1) e 2.1 (p. 3) mostram, respectivamente, a distribuição

das partículas sólidas (fase estacionária sólida ou suporte, no caso da fase estacionária

líquida) dentro de uma coluna empacotada e o processo de separação a nível molecular

(pictoricamente). Na Seção 2.2 (p. 4) é dado um pequeno tratamento matemático ao

processo de separação por partição, quando então há referência a etapas ou pontos de

equilíbrio. Entre as páginas 6 e 7 é oferecida uma pequena discussão a respeito do que

acontece numa coluna de cromatografia clássica (fase estacionária sólida), quando faz-se

referência a uma coluna desenvolvida. No final da Seção 2.5, ao discutir as Figuras 2.13 e

2.14 (p. 13), é feita referência ao número de pratos teóricos (n), como medida da eficiência

(capacidade de separação) de uma coluna cromatográfica. Finalmente, no Capítulo 3 (p.

14), é apresentada a equação de van Deemter e seus diversos parâmetros são discutidos.

O processo de separação cromatográfica pode ser analisado, por analogia,

como uma destilação fracionada. No projeto de uma coluna de destilação contínua, o

engenheiro químico calcula em que pontos devem ser colocadas bandejas (pratos) para a

retirada de frações de diferentes pontos de ebulição. Numa destilação em batelada não

existem essas bandejas, mas evidentemente o cálculo é o mesmo. Como não existem pontos

de remoção ao longo da coluna, tudo sai pelo topo da mesma, na ordem crescente do ponto

de ebulição. O mesmo acontece com a cromatografia. A diferença é que outros fatores

também interferem no processo, tornando-o mais complexo, porém também mais completo,

mais eficiente. Assim, enquanto uma coluna de destilação contém cerca de 40-60 bandejas,

uma coluna de cromatografia possui algumas centenas ou mesmo milhares de bandejas

(pratos teóricos).

Cada componente da amostra, com diferente coeficiente de partição (ou

de adsorção), movimenta-se ao longo da coluna, transportado pela fase móvel, com uma

velocidade média diferente: quanto maior for sua afinidade com a fase estacionária (ou

menor com a fase móvel), maior será o coeficiente e portanto maior será seu tempo de

residência (tempo de retenção) na coluna, ou seja, menor será sua velocidade média. O

material eluído comporta-se como um pistão móvel, com concentração máxima nas

proximidades da parte central e distribuição de concentração quase gaussiana. À medida em

que o tempo passa, a largura do pistão aumenta (por efeito da difusão), de modo que se o

tempo de eluição for muito grande, os picos coalescem e a separação será incompleta (ver

Figura 2.9, vazão V1, na página 10). Por outro lado, se o tempo for muito curto, (vazão V4

da Figura 2.9), pode ser insuficiente para permitir separação completa. Esse raciocínio

levou à elaboração da equação abaixo, para o cálculo da eficiência de uma coluna

cromatográfica (Fig. 2.14, p. 13):

n = (4Dr/L)2

Page 62: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 60

Pictoricamente, uma mistura de três componentes apresentaria o

comportamento mostrado na Figura 13.1 e a distribuição de concentração (ou de massa) de

cada componente é mostrada na Figura 13.2. Observe-se que a Figura 13.2 não é um

cromatograma. A substância que sai primeiro da coluna é a primeira a atingir o detetor. Do

mesmo modo, a primeira porção de cada componente a atingir o detetor é a da extremidade

direita (na Figura). O cromatograma, por outro lado, é traçado da esquerda para a direita

(neste livro). Assim, enquanto a Figura 13.2 mostra uma cauda frontal, o cromatograma

correspondente mostraria uma cauda no ramo negativo (descendente) do pico de cada

componente.

Figura 13.1 – Desenvolvimento cromatográfico de uma

mistura ternária. Figura 13.2 – Distribuição de massa.

Page 63: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 61

14. APÊNDICE 5

Outros detetores empregados em Cromatografia

14.1. Detetor de Nitrogênio e Fósforo (DNP)

O DNP é um detetor utilizado em cromatografia a gás e foi projetado

especificamente para a detecção de compostos nitrogenados (N) e fosforados (P) a nível de

traços (concentrações da ordem de ppb). Também conhecido como detetor termoiônico, o

DNP utiliza uma eletrônica (e o próprio hardware) equivalente ao DIC, inclusive com os

mesmos gases (Nitrogênio como fase móvel e Hidrogênio e Ar Sintético como gases da

chama). O polarizador contém uma pastilha alcalina e a razão de fluxos dos três gases (que

é diferente para compostos nitrogenados ou fosforados) é insuficiente para produzir chama,

mas o potencial elétrico estabelecido no local gera um estado de plasma, que aumenta de 14-

105 a sensibilidade do detetor frente a esses compostos, relativamente a outros compostos.

Devido a essas características, o DNP é dito seletivo para compostos nitrogenados e

fosforados, unicamente para soluções extremamente diluídas, sendo portanto ideal para a

detecção de traços de pesticidas organo-clorados e organo-fosforados.

14.2. Detetor Fotométrico de Chama (DFC)

O DFC é basicamente um detetor de ionização de chama, no que diz

respeito ao hardware. Entretanto, a detecção baseia-se na absorção da radiação emitida pelo

enxofre (e também pelo fósforo e ainda outros elementos) na região visível do espectro

eletromagnético. Trata-se portanto de um espectrofotômetro, obedecendo assim à Lei de

Beer. A radiação emitida pela chama atravessa um filtro, o qual seleciona o comprimento de

onda desejado (394 nm para o enxofre e 526 nm para o fósforo). Para compostos contendo

um desses elementos, sua sensibilidade é da mesma ordem de grandeza do DNP, sendo

portanto indicado para a detecção de traços (ppb) de pesticidas fosforados e sulfurados.

14.3. Detetor de Íons

Até os anos 70 a Cromatografia Instrumental apenas não era empregada

na análise de íons (cátions e ânions). Posteriormente foi observado que o bombeamento em

paralelo de um reagente complexante poderia transformar o íon em um derivado (na saída

da coluna), colorido, o qual seria detectado num espectrofotômetro (ex.: detetor UV-VIS).

A separação cromatográfica de íons, não discutida neste livro, ocorre

numa coluna contendo uma resina trocadora de íons apropriada, tratando-se portanto de

uma técnica bastante antiga, mais largamente empregada na purificação de águas

(deionização). O equipamento é, em última análise, um HPLC típico.

Para evitar o trabalho de derivação, foi desenvolvido um detetor

específico, o detetor de íons, que é, em última análise, um condutivímetro. Consta de um

Page 64: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 62

par de eletrodos contidos numa célula termostatizada. Aplica-se um campo elétrico entre os

eletrodos. O efluente da coluna passa pela célula, variando a resistência ® entre os

eletrodos, de acordo com a Lei de Ohm. A condutância (L) é inversamente proporcional à

resistência e é medida em Ohm-1

. Essa unidade atualmente denomina-se Siemens. Quando a

distância entre os eletrodos é de 1 cm, tem-se:

k = L/A

onde k é a condutância específica e A é a área do eletrodo. Por outro lado, a condutância

equivalente (Ce) é relacionada com a condutância específica como:

Ce = 1000 k/c

onde c é a concentração do íon em equivalente-grama/L.

14.4. Detetor de Fluorescência

O Detetor de Fluorescência, utilizado em HPLC, é equivalente a um

Detetor de Ultravioleta. A única diferença consiste na localização (ortogonal e não linear)

em relação ao caminho ótico. Desse modo, é captada apenas a radiação proveniente do

processo de fluorescência, característico de certas classes de compostos. Assim, substâncias

que não fluorescem podem existir na amostra sem interferir na detecção. Uma importante

aplicação é a análise de aminoácidos em materiais biológicos (ex.: teste do pezinho). Neste

exemplo, os aminoácidos são transformados em derivados fluorescentes com o reagente

AQC (carbamato de aminoquinolil-N-hidroxisuccinimidila). Nove aminoácidos podem ser

analisados em aproximadamente dez minutos, em gradiente ternário, com limite de detecção

menor que 10 mg/L.

14.4. Detetor Eletroquímico

O Detetor Eletroquímico, também utilizado em HPLC, é basicamente uma

célula eletroquímica. O analito oriundo da coluna, ao passar pela célula, é oxidado (ou

reduzido) pelo potencial aplicado, gerando uma corrente elétrica que é proporcional à sua

concentração.

Existem dois tipos de detetores:

a) Detetor coulométrico: a amostra passa através da célula. Desse modo, todo o

material é oxidado (ou reduzido);

b) Detetor amperométrico: a amostra passa pela superfície do eletrodo. Assim,

apenas cerca de 1% a 5% do material é realmente oxidado (ou reduzido).

Page 65: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 63

Desenvolvido para detectar traços (ppb a ppt) de íons, este detetor exige alta

pureza de solventes e reagentes. A água, por exemplo, deve ser deionizada, purificada em

sistema Milli-Q ou equivalente e filtrada em filtros com 0,2 m (membrana de nylon 66) e

sua resistividade deve ser ao menos 18,2 Mohm.cm. O fabricante inclusive aconselha que

ao sair do sistema Milli-Q a água passe em coluna com fase móvel C18 para extração.

Page 66: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 64

15. APÊNDICE 6

Estatística

15.1. Erro estatístico

Todo trabalho experimental é dotado de erro. Trata-se aqui de dois

tipos de erro: a) erro estatístico e b) erro sistemático.

O erro estatístico possui características aleatórias. Pode ser avaliado e

minimizado, mas nunca anulado. Apresenta um comportamento gaussiano, isto é, em um

certo número de repetições, os valores que mais se afastam da média (aritmética) ocorrem

com menor freqüência e erros positivos e negativos de mesma grandeza ocorrem com igual

freqüência. O erro sistemático, por outro lado, é um erro determinado, possui sinal (é

positivo ou negativo). Em Cromatografia, o erro sistemático é corrigido automaticamente

pelo próprio método de cálculo (Seção 6.3; p. 33).

15.2. Avaliação do erro estatístico

Uma das maneiras de se medir o grau de dispersão de um conjunto de

resultados analíticos (repetições) é o desvio padrão (s), o qual pode ser calculado com

auxílio da equação

s = [(xi - x )/(n – 1)]1/2

(eq. 22)

onde xi é um resultado qualquer, x é a média aritmética e n o número de repetições. Esse

parâmetro é denominado primeira estimativa do desvio padrão, já que o verdadeiro desvio

padrão só pode ser calculado quando n tende para infinito. Entretanto, s só pode ser empregado

quando n é maior que 10. Como normalmente n é muito pequeno (3 a 5 determinação em

paralelo), emprega-se em seu lugar a segunda estimativa do desvio padrão (sR):

sR = Kn R (eq. 23)

onde R é a amplitude, ou seja, a diferença entre o valor (resultado analítico) maior e o valor

menor. O valor de Kn é obtido da Tabela 15.1.

15.3. Avaliação da exatidão

Na realidade, erro de exatidão é o erro sistemático, que seria corrigido

pelo próprio método analítico, conforme afirmado acima. Entretanto, o analista pode

cometer erros operacionais que resultem em erro sistemático (ex.: uso de solventes

contendo impurezas que interfiram na identificação). O erro sistemático pode ser avaliado

com auxílio do teste t (de Student), que compara a concentração real de uma solução

Page 67: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 65

padrão, preparada com todo critério (por exemplo, preparada por um Laboratório de

Referência) com a concentração do padrão empregado na calibração do equipamento. A

equação seguinte é aplicada, com auxílio da Tabela 15.2:

Tabela 15.1 - Valores de Kn para cálculo de sR.

n 2 3 4 5 6 7 8 9 10

Kn 0,8862 0,5908 0,4857 0,4299 0,3946 0,3698 0,3512 0,3367 0,3249

tX n

s

(eq.24)

onde X é a média aritmética das n determinações, é a concentração real, s é calculado de

acordo com a eq. 22 (p. 63) e t é comparado com o valor tabelado (Tabela 15.2). Se o valor

de tcalc for menor ou igual ao de ttab na coluna P = 95%, para o correspondente valor de n-1,

o Laboratório em avaliação está correto.

Tabela 15.2 - Valores de t para aplicação do teste t.

P (%)

n - 1 90 95 99

1 6,314 12,706 63,657

2 2,920 4,303 9,925

3 2,353 3,182 5,841

4 2,132 2,776 4,608

5 2,015 2,571 4,032

6 1,943 2,447 3,707

7 1,895 2,365 3,499

8 1,860 2,306 3,355

9 1,833 2,262 3,250

10 1,812 2,228 3,169

15.4. Avaliação da reprodutibilidade

O objetivo é comparar a precisão de um Laboratório, de um analista, de

um equipamento ou de um método (ou um determinado procedimento) com outro. Aplica-se

o teste F, que compara a dispersão de um conjunto de dados com a de outro. Se as

diferenças em precisão forem estatisticamente significativas, o valor de Fcalc será maior que

o valor de Ftab (Tabela 15.3). Para uso da eq. 25, o maior desvio padrão é colocado no

numerador, de modo a ter-se um valor de F maior que 1.

Page 68: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 66

Fs

s

A2

B2

(eq. 25)

Tabela 15.3 - Valores de F para aplicação do teste F

(n -1) (n - 1) PARA O MÉTODO A

de B 1 2 3 4 5 6 7 8 9 10

1 161 200 216 225 230 234 237 239 241 242

2 18,5 19 19,2 19,2 19,3 19,3 19,4 19,4 19,4 19,4

3 10,1 8,6 9,9 9,1 9,0 8,9 8,8 8,8 8,8 8,8

4 7,7 6,9 6,6 6,4 6,3 6,2 6,1 6,1 6,0 6,0

5 6,6 5,8 5,4 5,2 5,1 5,0 4,9 4,8 4,8 4,8

6 6,0 5,1 4,8 4,5 4,4 4,3 4,2 4,2 4,1 4,1

7 5,6 4,7 4,4 4,1 4,0 3,9 3,6 3,7 3,6 3,6

8 5,3 4,5 4,1 3,8 3,7 3,6 3,5 3,4 3,3 3,3

9 5,1 4,3 3,9 3,6 3,5 3,4 3,3 3,2 3,1 3,1

10 5,0 4,1 3,7 3,5 3,3 3,2 3,1 3,1 3,0 3,0

15.5. Número ideal de repetições

O número ideal de repetições (determinações em paralelo) é calculado

com aplicação das eq. 26 e 27:

= t.sR

n (eq. 26) L = 100/ (eq. 27)

Os dados são organizados no Quadro abaixo (os valores são exemplo fictício), para facilitar

a interpretação. Na última coluna é indicada a diferença entre o valor de L atual e o da linha

anterior. No momento em que a diferença (vale dizer, a diminuição na dispersão dos

valores, ou ainda o aumento na precisão) fica desprezível, a critério do analista, este adota o

número anterior como sendo o número ideal de repetições.

n amostra A: = 1%

L Dif.

Page 69: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 67

2 0,260 26,0 -

3 0,072 7,2 18,8

4 0,046 4,6 2,6

5 0,036 3,6 1,0

6 0,030 3,0 0,6

15.6. Expressão do resultado final

Para explicitar o grau de confiabilidade em uma análise, é necessário

indicar os limites de confiança. Na prática, é comum definir os limites a partir da amplitude.

Assim, um resultado Re é representado como:

Re = X + R/2

Na realidade, caso o método tenha sido submetido a uma avaliação

estatística completa, emprega-se a relação:

Re X t.K .R

nn

15.7. Cálculo do coeficiente de correlação (r)

Na Seção 10.4 (p. 54) foi solicitado o cálculo do coeficiente de

correlação. Este cálculo é realizado com uso da eq. 28:

(eq. 28)

Para ordenar os cálculos, faz-se uso do quadro abaixo, onde x e y são,

respectivamente, concentração e área do pico.

Ponto no x y x.y x2 y

2

1 x1 y1 x1.y1 x12 y1

2

Page 70: Alexandre Schuler - Cromatografia

Alexandre Schuler - Cromatografia 68

2 x2 y2 x2.y2 x22 y2

2

... ... ... ... ... ...

... ... ... ... ... ...

... ... ... ... ... ...

n xn yn xn.yn xn2 yn

2

Totais x y x.y x2 y

2