advantages and disadvantages of techniques used for

12
HAL Id: hal-02082890 https://hal.archives-ouvertes.fr/hal-02082890 Submitted on 28 Mar 2019 HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Advantages and disadvantages of techniques used for wastewater treatment Grégorio Crini, Eric Lichtfouse To cite this version: Grégorio Crini, Eric Lichtfouse. Advantages and disadvantages of techniques used for wastew- ater treatment. Environmental Chemistry Letters, Springer Verlag, 2019, 17 (1), pp.145-155. 10.1007/s10311-018-0785-9. hal-02082890

Upload: others

Post on 01-Oct-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Advantages and disadvantages of techniques used for

HAL Id: hal-02082890https://hal.archives-ouvertes.fr/hal-02082890

Submitted on 28 Mar 2019

HAL is a multi-disciplinary open accessarchive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come fromteaching and research institutions in France orabroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, estdestinée au dépôt et à la diffusion de documentsscientifiques de niveau recherche, publiés ou non,émanant des établissements d’enseignement et derecherche français ou étrangers, des laboratoirespublics ou privés.

Advantages and disadvantages of techniques used forwastewater treatmentGrégorio Crini, Eric Lichtfouse

To cite this version:Grégorio Crini, Eric Lichtfouse. Advantages and disadvantages of techniques used for wastew-ater treatment. Environmental Chemistry Letters, Springer Verlag, 2019, 17 (1), pp.145-155.�10.1007/s10311-018-0785-9�. �hal-02082890�

Page 2: Advantages and disadvantages of techniques used for

Environmental Chemistry Letters (2019) 17:145–155 https://doi.org/10.1007/s10311-018-0785-9Revised version

Advantages and disadvantages of techniques used for wastewater

treatmentGrégorio Crini1  · Eric Lichtfouse2

AbstractDuring the last 30 years, environmental issues about the chemical and biological contaminations of water have become a major concern for society, public authorities and the industry. Most domestic and industrial activities produce wastewaters containing undesirable toxic contaminants. In this context, a constant effort must be made to protect water resources. Cur-rent wastewater treatment methods involve a combination of physical, chemical and biological processes, and operations to remove insoluble particles and soluble contaminants from effluents. This article provides an overview of methods for wastewater treatment, and describes the advantages and disadvantages of available technologies.

Keywords Wastewater treatment · Contaminants · Pollutants · Effluents · Technologies available

Introduction

Actually, water pollution by chemicals has become a major source of concern and a priority for both society and public authorities, but more importantly, for the whole industrial world (Sonune and Ghate 2004; Crini 2005; Cox et al. 2007; Sharma 2015; Rathoure and Dhatwalia 2016). What is water pollution? Water pollution can be defined in many ways. Pollution of water occurs when one or more substances that will modify the water in negative fashion are discharged in it. These substances can cause problems for people, animals and their habitats and also for the environment. There are various classifications of water pollution (Morin-Crini and Crini 2017). The two chief sources can be seen as point and non-point. The first refers to the pollutants that belong to a single source such as emissions from industries into the water, and the second on the other hand means pollutants emitted from multiple sources.

The causes of water pollution are multiple: industrial wastes, mining activities, sewage and waste water, pesti-cides and chemical fertilizers, energy use, radioactive waste, urban development, etc. The very fact that water is used means that it will become polluted: any activities whether domestic or agricultural but also industrial produce effluent containing undesirable pollutants which can also be toxic. In this context, a constant effort must be made to protect water resources (Khalaf 2016; Rathoure and Dhatwalia 2016; Morin-Crini and Crini 2017).

The legislation covering liquid industrial effluent is becoming stricter, especially in the more developed coun-tries, and imposes the treatment of any wastewater before it is released into the environment. Since the end of the 1970s, in Europe, the directives are increasingly severe and zero rejection is being sought by 2020. Currently, the European policy on water results from the Water Framework Direc-tive of 2000 which establishes guidelines for the protection of surface water, underground water and coastal water in Europe (Morin-Crini and Crini 2017).

The Water Framework Directive also classified chemi-cals into two main lists of priority substances. The first, the “Black List,” involves dangerous priority substances considered to be persistent, highly toxic or to lead to bio-accumulation. The second list, the “Grey List”, gathers priority substances presenting a significant risk for the environment. The selection of these substances can either be based on individual substances of families of substances

* Grégorio [email protected]

Eric [email protected]; [email protected]

1 Laboratoire Chrono-environnement, UMR 6249, UFR Sciences et Techniques, Université Bourgogne Franche-Comté, 16 Route de Gray, 25000 Besançon, France

2 Aix Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, Aix-en-Provence, France

Page 3: Advantages and disadvantages of techniques used for

(e.g., metals, chlorobenzenes, alkylphenols) or on the basis of the industrial sector (e.g., agro-food industry, chemicals industry, metal finishing sector). Currently, Europe is now asking industrials to innovate, to reduce and/or eliminate the release of dangerous priority substances and priority sub-stances in their wastewaters. Moreover, recycling wastewater is starting to receive active attention from industry in the context of sustainable development (e.g., protection of the environment, developing concepts of “green chemistry,” use of renewable resources), improved water management (recy-cling of waste water) and also health concerns (Kentish and Stevens 2001; Cox et al. 2007; Sharma and Sanghi 2012; Khalaf 2016; Rathoure and Dhatwalia 2016; Morin-Crini and Crini 2017). Thus, for the industrial world, the treatment of effluents has become a priority.

During the past three decades, several physical, chemi-cal and biological technologies have been reported such as flotation, precipitation, oxidation, solvent extraction, evaporation, carbon adsorption, ion exchange, membrane filtration, electrochemistry, biodegradation and phytoreme-diation (Berefield et al. 1982; Liu and Liptak 2000; Henze 2001; Harvey et al. 2002; Chen 2004; Forgacs et al. 2004; Anjaneyulu et al. 2005; Crini and Badot 2007; Cox et al. 2007; Hai et al. 2007; Barakat 2011; Rathoure and Dhat-walia 2016; Morin-Crini and Crini 2017). Which is the best method? There is no direct answer to this question because each treatment has its own advantages and constraints not only in terms of cost but also in terms of efficiency, feasibil-ity and environmental impact. In general, elimination of pol-lutants is done by physical, chemical and biological means. At the present time, there is no single method capable of adequate treatment, mainly due to the complex nature of industrial effluents. In practice, a combination of different methods is often used to achieve the desired water quality in the most economical way.

This short review proposes a general scheme of wastewa-ter treatment and summarizes the advantages and disadvan-tages of different individual techniques used. This article is an abridged version of the chapter published by Crini and Lichtfouse (2018) in the series Environmental Chemistry for a Sustainable World.

Wastewater treatment

There are various sources of water contamination, e.g., households, industry, mines and infiltration, but one of the greatest remains the large-scale use of water by industry (Anjaneyulu et al. 2005; Hai et al. 2007). Four categories of water are generally distinguished: (1) rainwater (runoff from impermeable surfaces), (2) domestic wastewater, (3) agricultural water and (4) industrial wastewaters (Crini and Badot 2007). The last group can be subdivided into cooling

water, washing effluent (of variable composition) and manu-facturing or process water (biodegradable and/or potentially toxic). In general, process waters (i.e., wastewaters or efflu-ents) pose the greatest problems. Wastewaters differ signifi-cantly from drinking water sources (usually rivers, lakes or reservoirs) in one important way: The contaminant levels in most drinking water sources are quite low as compared with contaminant levels in wastewaters derived from indus-trial-type activities (Cooney 1999). However, their toxic-ity depends, of course, on their composition, which in turn depends on their industrial origin. In general, the problems encountered during wastewater treatment are very complex as the effluent contains pollutants of various types depend-ing on its origin. So, there are different types of effluents to treat, each with its own characteristics requiring specific treatment processes.

General scheme of wastewater treatment

When water is polluted and decontamination becomes nec-essary, the best purification approach should be chosen to reach the decontamination objectives (as established by legislation). A purification process generally consists of five successive steps as described in Fig. 1: (1) preliminary treatment or pre-treatment (physical and mechanical); (2) primary treatment (physicochemical and chemical); (3) secondary treatment or purification (chemical and biologi-cal); (4) tertiary or final treatment (physical and chemical); and (5) treatment of the sludge formed (supervised tipping, recycling or incineration). In general, the first two steps are gathered under the notion of pre-treatment or preliminary step, depending on the situation (Anjaneyulu et al. 2005; Crini and Badot 2007, 2010).

Technologies available for contaminant removal

In general, conventional wastewater treatment consists of a combination of physical, chemical and/or biological pro-cesses and operations to remove solids including colloids, organic matter, nutrients, soluble contaminants (metals, organics, etc.) from effluents. A multitude of techniques classified in conventional methods, established recovery pro-cesses and emerging removal methods can be used (Fig. 2). Table 1 lists the advantages and disadvantages of different individual techniques (Berefield et al. 1982; Henze 2001; Sonune and Ghate 2004; Chen 2004; Pokhrel and Virara-ghavan 2004; Parsons 2004; Anjaneyulu et al. 2005; Chuah et al. 2005; Crini 2005, 2006; Bratby 2006; Crini and Badot 2007, 2010; Cox et al. 2007; Mohan and Pittman 2007; Hai et al. 2007; Wojnárovits and Takács 2008; Barakat 2011; Sharma and Sanghi 2012; Rathoure and Dhatwalia 2016; Morin-Crini and Crini 2017).

Page 4: Advantages and disadvantages of techniques used for

Selection of the method to be used will thus depend on the wastewater characteristics (Anjaneyulu et al. 2005; Crini 2005; Crini and Badot 2007; Cox et al. 2007). Each treatment has its own constraints not only in terms of cost, but also in terms of feasibility, efficiency, practica-bility, reliability, environmental impact, sludge produc-tion, operation difficulty, pre-treatment requirements and the formation of potentially toxic by-products. However,

among the various treatment processes currently cited for wastewater treatment, only a few are commonly employed by the industrial sector for technological and economic reasons. In general, removal of pollutants from effluents is done by physicochemical and/or biological means, with research concentrating on cheaper effective combinations of systems or new alternatives.

pretreated effluent

water dischargewastewater

1. PRETREATMENT(sedimentation, coagulation…)

step 1

Chemical methods

Physical techniques

4. TERTIARYTREATMENT

(oxidation, membrane filtration…)

(step 4)

Physical-chemical methods

Biological treatment

3. SECONDARY TREATMENT

(biodegradation, filtration, adsorption…)

step 3

2. PRIMARY TREATMENT(coagulation, precipitation,

flocculation…)

step 2

treated effluent

post-treated effluent

step 5

TREATMENT of the SLUDGE(supervised tipping, recycling, incineration…)

Mechanical methods

Physical-chemical methods

Chemical methods

Physical-chemical methods

Fig. 1 Main processes for the decontamination of industrial wastewaters

Technologies available for pollutant removal

Emerging removal methods

Established recovery process

Conventional methods

- advanced oxidation- adsorption onto non-

conventional solids- biosorption- biomass- nanofiltration

- solvent extraction- evaporation- oxidation- electrochemical treatment- membrane separation- membrane bioreactors- ion-exchange- incineration

- coagulation/flocculation- precipitation- biodegradation- filtration (sand)- adsorption using AC

Fig. 2 Classification of technologies available for pollutant removal and examples of techniques

Page 5: Advantages and disadvantages of techniques used for

Tabl

e 1

Adv

anta

ges a

nd d

isad

vant

ages

of t

he m

ain

conv

entio

nal m

etho

ds u

sed

for t

he tr

eatm

ent o

f pol

lute

d in

dustr

ial w

aste

wat

er

Proc

ess

Mai

n ch

arac

teris

tic(s

)A

dvan

tage

sD

isad

vant

ages

Che

mic

al p

reci

pita

tion

Upt

ake

of th

e po

lluta

nts a

nd se

para

tion

of th

e pr

oduc

ts fo

rmed

Tech

nolo

gica

lly si

mpl

e (s

impl

e eq

uipm

ent)

Inte

grat

ed p

hysi

coch

emic

al p

roce

ssB

oth

econ

omic

ally

adv

anta

geou

s and

effi

cien

tA

dapt

ed to

hig

h po

lluta

nt lo

ads

Very

effi

cien

t for

met

als a

nd fl

uorid

e el

imin

a-tio

nN

ot m

etal

sele

ctiv

eSi

gnifi

cant

redu

ctio

n in

the

chem

ical

oxy

gen

dem

and

Che

mic

al c

onsu

mpt

ion

(lim

e, o

xida

nts,

H2S

, et

c.)

Phys

icoc

hem

ical

mon

itorin

g of

the

efflue

nt

(pH

)In

effec

tive

in re

mov

al o

f the

met

al io

ns a

t low

co

ncen

tratio

nRe

quire

s an

oxid

atio

n ste

p if

the

met

als a

re

com

plex

edH

igh

slud

ge p

rodu

ctio

n, h

andl

ing

and

disp

osal

pr

oble

ms (

man

agem

ent,

treat

men

t, co

st)C

oagu

latio

n/flo

ccul

atio

nU

ptak

e of

the

pollu

tant

s and

sepa

ratio

n of

the

prod

ucts

form

edPr

oces

s sim

plic

ityIn

tegr

ated

phy

sico

chem

ical

pro

cess

A w

ide

rang

e of

che

mic

als a

re av

aila

ble

com

-m

erci

ally

Inex

pens

ive

capi

tal c

ost

Very

effi

cien

t for

SS

and

collo

idal

par

ticle

sG

ood

slud

ge se

ttlin

g an

d de

wat

erin

g ch

arac

-te

ristic

sSi

gnifi

cant

redu

ctio

n in

the

chem

ical

oxy

gen

dem

and

and

bioc

hem

ical

oxy

gen

dem

and

Inte

resti

ng re

duct

ion

in to

tal o

rgan

ic c

arbo

n an

d ad

sorb

able

org

anic

hal

ogen

(pul

p an

d pa

per i

ndus

try)

Bac

teria

l ina

ctiv

atio

n ca

pabi

lity

Rap

id a

nd e

ffici

ent f

or in

solu

ble

cont

amin

ants

(p

igm

ents

, etc

.) re

mov

al

Requ

ires a

djun

ctio

n of

non

-reu

sabl

e ch

emic

als

(coa

gula

nts,

flocc

ulan

ts, a

id c

hem

ical

s)Ph

ysic

oche

mic

al m

onito

ring

of th

e effl

uent

(p

H)

Incr

ease

d sl

udge

vol

ume

gene

ratio

n (m

anag

e-m

ent,

treat

men

t, co

st)Lo

w re

mov

al o

f ars

enic

Flot

atio

nFr

oth

flota

tion

Sepa

ratio

n pr

oces

sIn

tegr

ated

phy

sico

chem

ical

pro

cess

Diff

eren

t typ

es o

f col

lect

ors (

noni

onic

or

ioni

c)Effi

cien

t for

rem

oval

of s

mal

l par

ticle

s and

ca

n re

mov

e lo

w-d

ensi

ty p

artic

les w

hich

w

ould

requ

ire lo

ng se

ttlin

g pe

riods

Use

ful f

or p

rimar

y cl

arifi

catio

nM

etal

sele

ctiv

eLo

w re

tent

ion

time

Use

d as

an

effici

ent t

ertia

ry tr

eatm

ent i

n th

e pu

lp a

nd p

aper

indu

stry

Mec

hani

sms:

true

flot

atio

n, e

ntra

inm

ent a

nd

aggr

egat

ion

Hig

h in

itial

cap

ital c

ost

Ener

gy c

osts

Mai

nten

ance

and

ope

ratio

n co

sts n

o ne

glig

ible

Che

mic

als r

equi

red

(to c

ontro

l the

rela

tive

hydr

opho

bici

ties b

etw

een

the

parti

cles

and

to

mai

ntai

n pr

oper

frot

h ch

arac

teris

tics)

Sele

ctiv

ity is

pH

dep

ende

nt

Page 6: Advantages and disadvantages of techniques used for

Tabl

e 1

(con

tinue

d)

Proc

ess

Mai

n ch

arac

teris

tic(s

)A

dvan

tage

sD

isad

vant

ages

Che

mic

al o

xida

tion

Sim

ple

oxid

atio

nO

zone

Hyp

ochl

orite

trea

tmen

tH

ydro

gen

pero

xide

Use

of a

n ox

idan

t (e.

g., O

3, C

l 2, C

lO2,

H2O

2, K

MnO

4)In

tegr

ated

phy

sico

chem

ical

pro

cess

Sim

ple,

rapi

d an

d effi

cien

t pro

cess

Gen

erat

ion

of o

zone

on-site

(no

stora

ge-a

sso-

ciat

ed d

ange

rs)

Qua

lity

of th

e ou

tflow

(effe

ctiv

e de

struc

tion

of th

e po

lluta

nts a

nd e

ffici

ent r

educ

tion

in

colo

r)G

ood

elim

inat

ion

of c

olor

and

odo

r (oz

one)

Effici

ent t

reat

men

t for

cya

nide

and

sulfi

de

rem

oval

Initi

ates

and

acc

eler

ates

azo

bon

d cl

eava

ge

(hyp

ochl

orite

trea

tmen

t)In

crea

ses b

iode

grad

abili

ty o

f pro

duct

Hig

h th

roug

hput

No

slud

ge p

rodu

ctio

nPo

ssib

ility

of w

ater

recy

cle

Dis

infe

ctio

n (b

acte

ria a

nd v

iruse

s)

Che

mic

als r

equi

red

Prod

uctio

n, tr

ansp

ort a

nd m

anag

emen

t of t

he

oxid

ants

(oth

er th

an o

zone

)Pr

e-tre

atm

ent i

ndis

pens

able

Effici

ency

stro

ngly

influ

ence

d by

the

type

of

oxid

ant

Shor

t hal

f-lif

e (o

zone

)A

few

dye

s are

mor

e re

sist

ant t

o tre

atm

ent a

nd

nece

ssita

te h

igh

ozon

e do

ses

Form

atio

n of

(unk

now

n) in

term

edia

tes

No

dim

inut

ion

of c

hem

ical

oxy

gen

dem

and

valu

es o

r lim

ited

effec

t (oz

one)

No

effec

t on

salin

ity (o

zone

)Re

leas

e of

vol

atile

com

poun

ds a

nd a

rom

atic

am

ines

(hyp

ochl

orite

trea

tmen

t)G

ener

ates

slud

ge

Bio

logi

cal m

etho

dsB

iore

acto

rsB

iolo

gica

l act

ivat

ed sl

udge

(BA

S)M

icro

biol

ogic

al tr

eatm

ents

Enzy

mat

ic d

ecom

posi

tion

Lago

on

Use

of b

iolo

gica

l (pu

re o

r mix

ed) c

ultu

res

The

appl

icat

ion

of m

icro

orga

nism

s for

the

biod

egra

datio

n of

org

anic

con

tam

inan

ts is

si

mpl

e, e

cono

mic

ally

attr

activ

e an

d w

ell

acce

pted

by

the

publ

icLa

rge

num

ber o

f spe

cies

use

d in

mix

ed

cultu

res (

cons

ortiu

ms)

or p

ure

cultu

res

(whi

te-ro

t fun

gus)

Whi

te-ro

t fun

gi p

rodu

ce a

wid

e va

riety

of

extra

cellu

lar e

nzym

es w

ith h

igh

biod

egra

da-

bilit

y ca

paci

tyEffi

cien

tly e

limin

ates

bio

degr

adab

le o

rgan

ic

mat

ter,

NH

3, N

H4+

, iro

nA

ttenu

ates

col

or w

ell

Hig

h re

mov

al o

f bio

chem

ical

oxy

gen

dem

and

and

susp

ende

d so

lids (

BAS)

Dec

isiv

e ro

le o

f mic

robi

olog

ical

pro

cess

es in

th

e fu

ture

tech

nolo

gies

use

d fo

r the

rem

oval

of

em

erge

nt c

onta

min

ants

from

wat

ers

Nec

essa

ry to

cre

ate

an o

ptim

ally

favo

rabl

e en

viro

nmen

tRe

quire

s man

agem

ent a

nd m

aint

enan

ce o

f th

e m

icro

orga

nism

s and

/or p

hysi

coch

emic

al

pre-

treat

men

t (in

effici

ent o

n no

n-de

grad

able

co

mpo

unds

or w

hen

toxi

c co

mpo

unds

are

pr

esen

t)Sl

ow p

roce

ss (p

robl

ems o

f kin

etic

s)Lo

w b

iode

grad

abili

ty o

f cer

tain

mol

ecul

es

(dye

s)Po

or d

ecol

oriz

atio

n (B

AS)

Poss

ible

slud

ge b

ulki

ng a

nd fo

amin

g (B

AS)

Gen

erat

ion

of b

iolo

gica

l slu

dge

and

unco

n-tro

lled

degr

adat

ion

prod

ucts

The

com

posi

tion

of m

ixed

cul

ture

s may

cha

nge

durin

g th

e de

com

posi

tion

proc

ess

Com

plex

ity o

f the

mic

robi

olog

ical

mec

hani

sms

Nec

essi

ty to

hav

e a

good

kno

wle

dge

of th

e en

zym

atic

pro

cess

es g

over

ning

the

deco

mpo

-si

tion

of th

e su

bsta

nces

Page 7: Advantages and disadvantages of techniques used for

Tabl

e 1

(con

tinue

d)

Proc

ess

Mai

n ch

arac

teris

tic(s

)A

dvan

tage

sD

isad

vant

ages

Ads

orpt

ion/

filtra

tion

Com

mer

cial

act

ivat

ed c

arbo

ns (C

AC

)C

omm

erci

al a

ctiv

ated

alu

min

a (C

AA

)Sa

ndM

ixed

mat

eria

lsSi

lica

gel

Non

destr

uctiv

e pr

oces

sU

se o

f a so

lid m

ater

ial

Tech

nolo

gica

lly si

mpl

e (s

impl

e eq

uipm

ent)

and

adap

tabl

e to

man

y tre

atm

ent f

orm

ats

Wid

e ra

nge

of c

omm

erci

al p

rodu

cts

Wid

e va

riety

of t

arge

t con

tam

inan

ts (a

dsor

p-tio

n)H

ighl

y eff

ectiv

e pr

oces

s (ad

sorp

tion)

with

fast

kine

tics

Exce

llent

qua

lity

of th

e tre

ated

effl

uent

Glo

bal e

limin

atio

n (C

AC

) but

pos

sibl

y se

lec-

tive

depe

ndin

g on

ads

orbe

ntEx

celle

nt a

bilit

y to

sepa

rate

a w

ide

rang

e of

po

lluta

nts,

in p

artic

ular

refr

acto

ry m

olec

ules

(C

AC

is th

e m

ost e

ffect

ive

mat

eria

l)CA

C: e

ffici

ent f

or c

hem

ical

oxy

gen

dem

and

rem

oval

; hig

hly

effici

ent t

reat

men

t whe

n co

uple

d to

coa

gula

tion

to re

duce

susp

ende

d so

lids,

chem

ical

oxy

gen

dem

and

and

colo

rSa

nd: e

ffici

ent f

or tu

rbid

ity a

nd su

spen

ded

solid

s rem

oval

Alu

min

a: e

ffici

ent f

or fl

uorid

e re

mov

al

Rela

tivel

y hi

gh in

vestm

ent (

CAC

)C

ost o

f mat

eria

ls (C

AC

, CA

A)

Non

destr

uctiv

e pr

oces

ses

Non

-sel

ectiv

e m

etho

dsPe

rform

ance

dep

ends

on

the

type

of m

ater

ial

(CA

C)

Requ

irem

ent f

or se

vera

l typ

es o

f ads

orbe

nts

Che

mic

al d

eriv

atiz

atio

n to

impr

ove

thei

r ad

sorp

tion

capa

city

Rap

id sa

tura

tion

and

clog

ging

of t

he re

acto

rs

(reg

ener

atio

n co

stly)

Not

effi

cien

t with

cer

tain

type

s of d

yestu

ffs a

nd

som

e m

etal

s (CA

C)

Elim

inat

ion

of th

e ad

sorb

ent (

requ

ires i

ncin

-er

atio

n, re

gene

ratio

n or

repl

acem

ent o

f the

m

ater

ial)

Rege

nera

tion

is e

xpen

sive

and

resu

lts in

loss

of

mat

eria

l (CA

C)

Econ

omic

ally

non

-via

ble

for c

erta

in in

dustr

ies

(pul

p an

d pa

per,

text

ile, e

tc.)

Ion

exch

ange

Che

latin

g re

sins

Sele

ctiv

e re

sins

Mac

ropo

rous

resi

nsPo

lym

eric

ads

orbe

nts

Poly

mer

-bas

ed h

ybrid

ads

orbe

nts

Non

destr

uctiv

e pr

oces

sW

ide

rang

e of

com

mer

cial

pro

duct

s ava

ilabl

e fro

m se

vera

l man

ufac

ture

rsTe

chno

logi

cally

sim

ple

(sim

ple

equi

pmen

t)W

ell-e

stab

lishe

d an

d te

sted

proc

edur

es; e

asy

cont

rol a

nd m

aint

enan

ceEa

sy to

use

with

oth

er te

chni

ques

(e.g

., pr

ecip

itatio

n an

d fil

tratio

n in

an

inte

grat

ed

was

tew

ater

pro

cess

)C

an b

e ap

plie

d to

diff

eren

t flow

regi

mes

(con

-tin

uous

and

bat

ch)

Hig

h re

gene

ratio

n w

ith p

ossi

bilit

y of

ext

erna

l re

gene

ratio

n of

resi

nR

apid

and

effi

cien

t pro

cess

Prod

uce

a hi

gh-q

ualit

y tre

ated

effl

uent

Con

cent

rate

s all

type

s of p

ollu

tant

s, pa

rticu

-la

rly m

iner

als

Rela

tivel

y in

expe

nsiv

e an

d effi

cien

t for

met

al

rem

oval

; cle

anup

to p

pb le

vels

(to

ppt l

evel

s fo

r sel

ectiv

e re

sins

)C

an b

e se

lect

ive

for c

erta

in m

etal

s (w

ith su

it-ab

le re

sins

)In

tere

sting

and

effi

cien

t tec

hnol

ogy

for t

he

reco

very

of v

alua

ble

met

als

Econ

omic

con

strai

nts (

initi

al c

ost o

f the

sele

c-tiv

e re

sin,

mai

nten

ance

cos

ts, r

egen

erat

ion

time-

cons

umin

g, e

tc.)

Larg

e vo

lum

e re

quire

s lar

ge c

olum

nsR

apid

satu

ratio

n an

d cl

oggi

ng o

f the

reac

tors

Satu

ratio

n of

the

catio

nic

exch

ange

r bef

ore

the

anio

nic

resi

n (p

reci

pita

tion

of m

etal

s and

bl

ocki

ng o

f rea

ctor

)B

eads

eas

ily fo

uled

by

parti

cula

tes a

nd o

rgan

ic

mat

ter (

orga

nics

and

oils

); re

quire

s a p

hysi

co-

chem

ical

pre

-trea

tmen

t (e.

g., s

and

filtra

tion

or

carb

on a

dsor

ptio

n) to

rem

ove

thes

e co

ntam

i-na

nts

Mat

rix d

egra

des w

ith ti

me

and

with

cer

tain

w

aste

mat

eria

ls (r

adio

activ

e, st

rong

oxi

dant

s, et

c.)

Perfo

rman

ce se

nsiti

ve to

pH

of e

fflue

ntC

onve

ntio

nal r

esin

s not

sele

ctiv

eSe

lect

ive

resi

ns h

ave

limite

d co

mm

erci

al u

seN

ot e

ffect

ive

for c

erta

in ta

rget

pol

luta

nts (

dis-

pers

e dy

es, d

rugs

, etc

.)El

imin

atio

n of

the

resi

n

Page 8: Advantages and disadvantages of techniques used for

Tabl

e 1

(con

tinue

d)

Proc

ess

Mai

n ch

arac

teris

tic(s

)A

dvan

tage

sD

isad

vant

ages

Inci

nera

tion

Ther

mal

oxi

datio

nC

atal

ytic

oxi

datio

nPh

otoc

atal

ytic

des

truct

ion

Des

truct

ion

by c

ombu

stion

Sim

ple

proc

ess

Use

ful f

or c

once

ntra

ted

efflue

nts o

r slu

dges

Hig

hly

effici

ent

Elim

inat

es a

ll ty

pes o

f org

anic

sPr

oduc

tion

of e

nerg

y

Initi

al in

vestm

ent c

osts

Tran

spor

t and

stor

age

of th

e effl

uent

sH

igh

runn

ing

costs

Form

atio

n of

dio

xins

and

oth

ers p

ollu

tant

s (m

etal

s, et

c.)

Loca

l com

mun

ities

alw

ays h

ave

oppo

sed

the

pres

ence

of i

ncin

erat

ing

plan

t in

the

loca

lity

Elec

troch

emist

ryEl

ectro

depo

sitio

nEl

ectro

-coa

gula

tion

(EC

)El

ectro

-floc

cula

tion

(EF)

Elec

tro-fl

otat

ion

Elec

tro-o

xida

tion

Elec

troch

emic

al o

xida

tion

Elec

troch

emic

al re

duct

ion

Cem

enta

tion

Indi

rect

ele

ctro

-oxi

datio

n w

ith st

rong

oxi

dant

sPh

oto-

assi

sted

elec

troch

emic

al m

etho

ds

Elec

troly

sis (

E)Effi

cien

t tec

hnol

ogy

for t

he re

cove

ry/re

cycl

ing

of v

alua

ble

met

als (

E); i

nter

estin

g m

etho

d fo

r the

reco

very

of g

old

and

silv

er fr

om ri

nse

bath

sA

dapt

atio

n to

diff

eren

t pol

luta

nt lo

ads a

nd

diffe

rent

flow

rate

s (E)

Incr

ease

s bio

degr

adab

ility

(E)

Mor

e eff

ectiv

e an

d ra

pid

orga

nic

mat

ter s

epa-

ratio

n th

an in

trad

ition

al c

oagu

latio

n (E

C);

pH c

ontro

l is n

ot n

eces

sary

; gen

erat

ion

of

coag

ulan

ts in

 situ

; eco

nom

ical

ly fe

asib

le a

nd

very

effe

ctiv

e in

rem

ovin

g su

spen

ded

solid

s, di

ssol

ved

met

als,

tann

ins a

nd d

yes (

efflue

nts

from

text

ile, c

ater

ing,

pet

role

um, m

unic

ipal

se

wag

e, o

il–w

ater

em

ulsi

on, d

yestu

ff, c

lay

susp

ensi

on, e

tc.)

Effici

ent e

limin

atio

n of

SS,

oils

, gre

ases

, col

or

and

met

als (

EC, E

F)EF

: wid

ely

used

in th

e m

imin

g in

dustr

ies

Effec

tive

in tr

eatm

ent o

f drin

king

wat

er su

p-pl

ies f

or sm

all-

or m

ediu

m-s

ized

com

mun

i-tie

s (EC

)Ve

ry e

ffect

ive

treat

men

t for

the

redu

ctio

n,

coag

ulat

ion

and

sepa

ratio

n of

cop

per (

EC)

Cem

enta

tion:

effi

cien

t for

cop

per r

emov

al

Hig

h in

itial

cos

t of t

he e

quip

men

tC

ost o

f the

mai

nten

ance

(sac

rifici

al a

node

s, et

c.)

Requ

ires a

dditi

on o

f che

mic

als (

coag

ulan

ts,

flocc

ulan

ts, s

alts

)A

node

pas

siva

tion

and

slud

ge d

epos

ition

on

the

elec

trode

s tha

t can

inhi

bit t

he e

lect

roly

tic

proc

ess i

n co

ntin

uous

ope

ratio

nRe

quire

s pos

t-tre

atm

ent t

o re

mov

e hi

gh c

once

n-tra

tions

of i

ron

and

alum

inum

ions

EF: s

epar

atio

n effi

cien

cy d

epen

ds st

rong

ly o

n bu

bble

size

sFi

ltrat

ion

proc

ess f

or fl

ocs

Form

atio

n of

slud

ge (fi

lterin

g pr

oble

ms)

Cos

t of s

ludg

e tre

atm

ent (

elec

tro-c

oagu

latio

n)

Page 9: Advantages and disadvantages of techniques used for

Tabl

e 1

(con

tinue

d)

Proc

ess

Mai

n ch

arac

teris

tic(s

)A

dvan

tage

sD

isad

vant

ages

Mem

bran

e fil

tratio

nM

icro

filtra

tion

(MF)

Ultr

afiltr

atio

n (U

F)N

anofi

ltrat

ion

(NF)

Reve

rse

osm

osis

Dia

lysi

sEl

ectro

dial

ysis

(ED

)El

ectro

-ele

ctro

dial

ysis

(EED

)Em

ulsi

on li

quid

mem

bran

es (E

LM)

Supp

orte

d liq

uid

mem

bran

es

Non

destr

uctiv

e se

para

tion

Sem

iper

mea

ble

barr

ier

Wid

e ra

nge

of c

omm

erci

al m

embr

ane

avai

l-ab

le fr

om se

vera

l man

ufac

ture

rs; l

arge

nu

mbe

r of a

pplic

atio

ns a

nd m

odul

e co

nfigu

-ra

tions

Smal

l spa

ce re

quire

men

tSi

mpl

e, ra

pid

and

effici

ent,

even

at h

igh

conc

entra

tions

Prod

uces

a h

igh-

qual

ity-tr

eate

d effl

uent

No

chem

ical

s req

uire

dLo

w so

lid w

aste

gen

erat

ion

Elim

inat

es a

ll ty

pes o

f dye

s, sa

lts a

nd m

iner

al

deriv

ativ

esEffi

cien

t elim

inat

ion

of p

artic

les,

susp

ende

d so

lids a

nd m

icro

orga

nism

s (M

F, U

F, N

F,

reve

rse

osm

osis

), vo

latil

e an

d no

nvol

atile

or

gani

cs (N

F, re

vers

e os

mos

is),

diss

olve

d in

orga

nic

mat

ter (

ED, E

ED),

and

phen

ols,

cyan

ide

and

zinc

(ELM

)Po

ssib

le to

be

met

al se

lect

ive

A w

ide

rang

e of

real

app

licat

ions

: cla

rifica

tion

or st

erile

filtr

atio

n (M

F), s

epar

atio

n of

pol

y-m

ers (

UF)

, mul

tival

ent i

ons (

NF)

, sal

ts fr

om

poly

mer

solu

tions

(dia

lysi

s) a

nd n

onio

nic

solu

tes (

ED),

desa

linat

ion

and

prod

uctio

n of

pu

re w

ater

(rev

erse

osm

osis

)W

ell-k

now

n se

para

tion

mec

hani

sms:

size

-ex

clus

ion

(NF,

UF,

MF)

, sol

ubili

ty/d

iffus

iv-

ity (r

ever

se o

smos

is, p

erva

pora

tion)

, cha

rge

(ele

ctro

dial

ysis

)

Inve

stmen

t cos

ts a

re o

ften

too

high

for s

mal

l an

d m

ediu

m in

dustr

ies

Hig

h en

ergy

requ

irem

ents

The

desi

gn o

f mem

bran

e fil

tratio

n sy

stem

s can

di

ffer s

igni

fican

tlyH

igh

mai

nten

ance

and

ope

ratio

n co

stsR

apid

mem

bran

e cl

oggi

ng (f

oulin

g w

ith h

igh

conc

entra

tions

)Lo

w th

roug

hput

Lim

ited

flow

rate

sN

ot in

tere

sting

at l

ow so

lute

feed

con

cent

ra-

tions

The

choi

ce o

f the

mem

bran

e is

det

erm

ined

by

the

spec

ific

appl

icat

ion

(har

dnes

s red

uctio

n,

parti

cula

te o

r tot

al o

rgan

ic c

arbo

n re

mov

al,

pota

ble

wat

er p

rodu

ctio

n, e

tc.)

Spec

ific

proc

esse

sEl

imin

atio

n of

the

conc

entra

te

Page 10: Advantages and disadvantages of techniques used for

Tabl

e 1

(con

tinue

d)

Proc

ess

Mai

n ch

arac

teris

tic(s

)A

dvan

tage

sD

isad

vant

ages

Evap

orat

ion

Mem

bran

e pe

rvap

orat

ion

Con

cent

ratio

n te

chni

que

Ther

mal

pro

cess

Sepa

ratio

n pr

oces

s

Seve

ral t

ypes

of e

vapo

rato

rs e

xist

on th

e m

arke

tVe

rsat

ile te

chni

que

(the

num

ber o

f cel

ls c

an

be a

dapt

ed to

the

requ

ired

evap

orat

ion

capa

city

)Th

e en

ergy

cos

ts a

re w

ell k

now

n fo

r the

dif-

fere

nt c

onfig

urat

ions

Effici

ent p

roce

sses

Inte

resti

ng fo

r the

pro

duct

ion

of w

ater

for

rinsi

ng o

pera

tions

(rec

yclin

g of

dist

illat

es),

the

conc

entra

tion

of ri

nsin

g effl

uent

s for

re

-intro

duct

ion

into

the

proc

ess a

nd fo

r the

pu

rifica

tion

of tr

eatm

ent b

aths

(to

mai

ntai

n th

eir n

omin

al c

once

ntra

tion)

Als

o in

tere

sting

for t

he se

para

tion

of p

heno

l by

stea

m d

istill

atio

nM

embr

ane

perv

apor

atio

n: a

qui

te re

cent

tech

-no

logy

app

lied

to th

e re

mov

al o

f org

anic

s fro

m w

ater

Expe

nsiv

e co

sts fo

r hig

h vo

lum

es o

f was

tew

ater

(e

nerg

y co

nsum

ptio

n, v

olum

e of

the

conc

en-

trate

and

cos

ts o

f dis

posa

l)In

vestm

ent c

osts

are

ofte

n to

o hi

gh fo

r sm

all

and

med

ium

indu

strie

sH

igh

pollu

tion

load

in th

e co

ncen

trate

sC

ryst

alliz

atio

n du

e to

the

conc

entra

tion

of th

e w

aste

wat

er a

nd c

orro

sion

of t

he h

eatin

g el

e-m

ents

in th

e ev

apor

ator

due

to th

e ch

emic

al

aggr

essi

vene

ss o

f the

con

cent

rate

d effl

uent

Prob

lem

with

the

evap

orat

ion

of e

fflue

nts c

on-

tain

ing

free

cya

nide

Requ

ires t

he in

stal

latio

n of

a c

lean

ing

circ

uit

(to p

reve

nt a

tmos

pher

ic p

ollu

tion)

Pote

ntia

l con

tam

inat

ion

of th

e di

stilla

te p

re-

vent

ing

reus

e (d

ue to

the

pres

ence

of s

ome

vola

tile

orga

nic

com

poun

ds o

r hyd

roca

rbon

s in

the

efflue

nt)

Liqu

id–l

iqui

d (s

olve

nt) e

xtra

ctio

nM

embr

ane-

base

d so

lven

t ext

ract

ion

Sepa

ratio

n te

chno

logy

Solv

ent e

xtra

ctio

nA

wel

l-kno

wn

esta

blis

hed

sepa

ratio

n te

chno

l-og

y fo

r was

tew

ater

recy

clin

gPr

inci

pally

use

d fo

r lar

ge-s

cale

ope

ratio

ns

whe

re th

e lo

ad o

f con

tam

inan

ts a

re h

igh

Extra

ctio

n/str

ippi

ng o

pera

tions

eas

y to

pe

rform

Sim

ple

cont

rol a

nd m

onito

ring

of p

roce

ssEc

onom

ical

ly v

iabl

e w

hen

both

solu

te c

on-

cent

ratio

ns a

nd w

aste

wat

er fl

ow ra

tes a

re

high

Rela

tivel

y lo

w o

pera

ting

costs

Recy

clab

ility

of e

xtra

ctan

tsSe

lect

ivity

of t

he e

xcha

nger

s for

met

als

effici

ent f

or m

etal

rem

oval

(cat

ions

, ani

ons,

ion

pairs

)Effi

cien

t for

the

sepa

ratio

n of

phe

nol

A g

ood

alte

rnat

ive

to c

lass

ical

lim

e pr

ecip

ita-

tion

for p

hosp

horic

aci

d re

cupe

ratio

n

Hig

h in

vestm

ent (

equi

pmen

t)U

neco

nom

ic w

hen

cont

amin

ant c

once

ntra

tions

ar

e lo

w (<

0.5 

g/L)

Use

of l

arge

vol

umes

of o

rgan

ic e

xtra

ctan

tsU

se o

f pot

entia

l tox

ic so

lven

tsN

ot in

tere

sting

at l

ow so

lute

feed

con

cent

ra-

tions

Hyd

rody

nam

ic c

onstr

aint

s (flo

odin

g an

d en

train

men

t)En

train

men

t of p

hase

s giv

ing

poor

effl

uent

qu

ality

Poss

ible

cro

ss-c

onta

min

atio

n of

the

aque

ous

strea

mEm

ulsi

ficat

ion

of p

hase

with

poo

r sep

arat

ion

Fire

risk

from

use

of o

rgan

ic so

lven

ts a

nd v

ola-

tile

orga

nic

com

poun

ds e

mis

sion

s

Page 11: Advantages and disadvantages of techniques used for

Conclusion

The development of cheaper, effective and novel methods of decontamination is currently an active field of research, as shown by the numerous publications appearing each year. Preserving the environment, and in particular the problem of water pollution, has become a major preoccu-pation for everyone—the public, industry, scientists and researchers as well as decision-makers on a national, Euro-pean or international level. The public demand for pol-lutant-free waste discharge to receiving waters has made decontamination of industrial wastewaters a top priority. However, this is a difficult and challenging task (Sonune and Ghate 2004; Anjaneyulu et al. 2005; Crini 2005; Crini and Badot 2007; Barakat 2011; Sharma and Sanghi 2012). It is also difficult to define a universal method that could be used for the elimination of all pollutants from wastewa-ters. This review described the advantages and disadvan-tages of technologies available. A multitude of techniques classified in conventional methods, established recovery processes and emerging removal methods can be used. However, among the numerous and various treatment pro-cesses currently cited for wastewater treatment, only a few are commonly used by the industrial sector for economic and technological reasons. Adsorption onto activated car-bons is nevertheless often cited as the procedure of choice to remove many different types of pollutants because it gives the best results in terms of efficiency and technical feasibility at the industrial scale.

References

Anjaneyulu Y, Sreedhara Chary N, Samuel Suman Raj D (2005) Decolourization of industrial effluents: available methods and emerging technologies—a review. Rev Environ Sci Bio/Technol 4:245–273. https ://doi.org/10.1007/s1115 7-005-1246-z

Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4:361–377. https ://doi.org/10.1016/j.arabj c.2010.07.019

Berefield LD, Judkins JF, Weand BL (1982) Process chemistry for water and wastewater treatment. Prentice-Hall, New Jersey

Bratby J (ed) (2006) Coagulation and flocculation in water and wastewater treatment. IWA Publishing, London, p 407

Chen G (2004) Electrochemical technologies in wastewater treat-ment. Sep Purif Technol 38:11–41. https ://doi.org/10.1016/j.seppu r.2003.10.006

Chuah TG, Jumasiah A, Azni I, Katayon S, Choong SYT (2005) Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview. Desalination 175:305–316. https ://doi.org/10.1016/j.desal .2004.10.014

Cooney DO (1999) Adsorption design for wastewater treatment. Lewis Publishers, Boca Raton

Cox M, Négré P, Yurramendi L (2007) Industrial liquid effluents. INASMET Tecnalia, San Sebastian, p 283

Tabl

e 1

(con

tinue

d)

Proc

ess

Mai

n ch

arac

teris

tic(s

)A

dvan

tage

sD

isad

vant

ages

Adv

ance

d ox

idat

ion

proc

esse

s (A

OP)

Phot

olys

isH

eter

ogen

eous

and

hom

ogen

eous

pho

toca

ta-

lytic

reac

tions

Non

-cat

alyt

ic w

et a

ir ox

idat

ion

(WA

O)

Cat

alyt

ic w

et a

ir ox

idat

ion

(CW

AO

)Su

perc

ritic

al w

ater

gas

ifica

tion

Emer

ging

pro

cess

esD

estru

ctiv

e te

chni

ques

In si

tu p

rodu

ctio

n of

reac

tive

radi

cals

Littl

e or

no

cons

umpt

ion

of c

hem

ical

sM

iner

aliz

atio

n of

the

pollu

tant

sN

o pr

oduc

tion

of sl

udge

Rap

id d

egra

datio

nEffi

cien

t for

reca

lcitr

ant m

olec

ules

(dye

s, dr

ugs,

etc.

)Ve

ry g

ood

abat

emen

t of c

hem

ical

oxy

gen

dem

and

and

tota

l oxy

gen

dem

and

WA

O: t

echn

olog

y su

itabl

e fo

r effl

uent

too

dilu

te fo

r inc

iner

atio

n an

d to

o to

xic

and/

or

conc

entra

ted

for b

iolo

gica

l tre

atm

ent

Des

truct

ion

of p

heno

l in

wat

er so

lutio

n:

WA

O, C

WA

OIn

solu

ble

orga

nic

mat

ter i

s con

verte

d to

sim

-pl

er so

lubl

e co

mpo

unds

with

out e

mis

sion

s of

dan

gero

us su

bsta

nces

(WA

O)

Labo

rato

ry sc

ale

Econ

omic

ally

non

-via

ble

for s

mal

l and

med

ium

in

dustr

ies

Tech

nica

l con

strai

nts

Form

atio

n of

by-

prod

ucts

Low

thro

ughp

utH

igh-

pres

sure

and

ene

rgy-

inte

nsiv

e co

nditi

ons

(WA

O)

pH d

epen

denc

e (in

par

ticul

ar fo

r WA

O)

WA

O: c

ompl

eted

min

eral

izat

ion

not a

chie

ved

Page 12: Advantages and disadvantages of techniques used for

Crini G (2005) Recent developments in polysaccharide-based materi-als used as adsorbents in wastewater treatment. Prog Polym Sci 30:38–70. https ://doi.org/10.1016/j.progp olyms ci.2004.11.002

Crini G (2006) Non-conventional low-cost adsorbents for dye removal. Bioresour Technol 97:1061–1085. https ://doi.org/10.1016/j.biort ech.2005.05.001

Crini G, Badot PM (eds) (2007) Traitement et épuration des eaux industrielles polluées. PUFC, Besançon

Crini G, Badot PM (eds) (2010) Sorption processes and pollution. PUFC, Besançon

Crini G, Lichtfouse E (2018) Wastewater treatment: an overview, chap-ter 1. In: Crini G, Lichtfouse E (eds) Green adsorbents for pollut-ant removal—fundamentals and design, environmental chemistry for a sustainable world, vol 1. Springer, Berlin, pp 1–21. https ://doi.org/10.1007/978-3-319-92111 -2_1. ISBN 978-3-319-92111-2

Forgacs E, Cserhati T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30:953–971. https ://doi.org/10.1016/j.envin t.2004.02.001

Hai FI, Yamamoto K, Fukushi K (2007) Hybrid treatment systems for dye wastewater. Crit Rev Environ Sci Technol 37:315–377. https ://doi.org/10.1080/10643 38060 11747 23

Harvey PJ, Campanella BF, Castro PM, Harms H, Lichtfouse E, Schäffner AR, Smrcek S, Werck-Reichhart D (2002) Phytore-mediation of polyaromatic hydrocarbons, anilines and phenols. Environ Sci Pollut Res Int 9:29–47

Henze M (ed) (2001) Wastewater treatment—biological and chemical processes. Springer, Berlin

Kentish SE, Stevens GW (2001) Innovations in separations technology for the recycling and re-use of liquid waste streams. Chem Eng J 84:149–159

Khalaf MN (ed) (2016) Green polymers and environmental pollution control. CRC Press, Oakville

Liu DHF, Liptak BG (eds) (2000) Wastewater treatment. CRC Press, Boca Raton

Mohan D, Pittman CU (2007) Arsenic removal from waste/wastewater using adsorbents—a critical review. J Hazard Mater 142:1–53. https ://doi.org/10.1016/j.jhazm at.2007.01.006

Morin-Crini N, Crini G (eds) (2017) Eaux industrielles contaminées. PUFC, Besançon

Parsons S (ed) (2004) Advanced oxidation process for water and waste-water treatment. IWA Publishing, London

Pokhrel D, Viraraghavan T (2004) Treatment of pulp and paper mill wastewater—a review. Sci Total Technol 333:37–58. https ://doi.org/10.1016/j.scito tenv.2004.05.017

Rathoure AK, Dhatwalia VK (eds) (2016) Toxicity and waste manage-ment using bioremediation. IGI Global, Hershey

Sharma SK (ed) (2015) Green chemistry for dyes removal from waste-water. Scrivener Publishing LLC Wiley, Beverley

Sharma SK, Sanghi R (eds) (2012) Advances in water treatment and pollution prevention. Springer, Dordrecht

Sonune A, Ghate R (2004) Developments in wastewater treatment methods. Desalination 167:55–63. https ://doi.org/10.1016/j.desal .2004.06.113

Wojnárovits L, Takács E (2008) Irradiation treatment of azo dye con-taining wastewater: an overview. Rad Phys Chem 77:225–244. https ://doi.org/10.1016/j.radph ysche m.2007.05.003