web.ece.ucsb.edu...1 transistor and ic design for 50ghz and above mark rodwell, ucsb short course,...

234
1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB mm-wave ICs S-K Kim, R. Maurer, A. Ahmed, H. Yu, H-C. Park, T. Reed, UCSB Prof. J. Buckwalter & group, UCSB J. Hacker, Z. Griffith: Teledyne Scientific and Imaging M. Seo: Sungkyunkwan University mm-Wave Transistors : J. Rode, P. Choudhary, B. Markman, Y. Fang, J. Wu, A.C. Gossard, B. Thibeault, W. Mitchell: UCSB M. Urteaga, B. Brar: Teledyne Scientific and Imaging

Upload: others

Post on 28-Jul-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

1

Transistor and IC design

for 50GHz and above

Mark Rodwell, UCSB

Short Course, July 26, 2017, Qualcomm San Diego

mm-wave systenms:Prof. U. Madhow & group: UCSB

mm-wave ICsS-K Kim, R. Maurer, A. Ahmed, H. Yu, H-C. Park, T. Reed, UCSBProf. J. Buckwalter & group, UCSBJ. Hacker, Z. Griffith: Teledyne Scientific and ImagingM. Seo: Sungkyunkwan University

mm-Wave Transistors :J. Rode, P. Choudhary, B. Markman, Y. Fang, J. Wu, A.C. Gossard, B. Thibeault, W. Mitchell: UCSB M. Urteaga, B. Brar: Teledyne Scientific and Imaging

Page 2: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

2

Why mm-wave wireless ?

Page 3: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

3

Overview

Page 4: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

4

mm-Waves: high-capacity mobile communications

Needs→ research:RF front end: phased array ICs, high-power transmitters, low-noise receiversIF/baseband: ICs for multi-beam beamforming, for ISI/multipath suppression, ...

Page 5: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

5

mm-Waves: benefits & challenges

Massive # parallel channels

Need mesh networksNeed phased arrays (overcome high attenuation)

5

Large available spectrum

line-of-sight MIMO

spatial

multiplexing

(note high attenuation in foul weather)

Page 6: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

6

mm-Wave Wireless Needs Phased Arrays

R

dtransmitte

received eRP

P

2

2

isotropic antenna → weak signal →short range

highly directional antenna → strong signal, but must be aimed

no good for mobile

beam steering arrays → strong signal, steerable

32-element array → 30 (45?) dB increased SNR

must be precisely aimed →too expensive for telecom operators

R

rt

dtransmitte

received eR

DDP

P

2

2

R

transmitreceive

transmit

received eR

NNP

P 2

2

Page 7: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

7

Millimeter-wave imaging

235 GHz video-rate synthetic aperture radar

10,000-pixel, 94GHz imaging array→ 10,000 elements

Go

lcuk: Tran

s MT

T, Au

g 20

14

1 transmitter, 1 receiver100,000 pixels20 Hz refresh rate5 cm resolution @ 1km50 Watt transmitter

(tube, solid-state driver)

Demonstrated:SiGe (UCSD/Rebeiz)

~1.3kW: 10,000 elementsLower-power designs:

InP, CMOS, SiGe(UCSB, UCSD, Virginia Poly.)

Page 8: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

8

mm-wave imaging radar: TV-like resolution

What you see in fog What 10GHz radar shows What you want to see

goal: ~0.2o resolution, 103-106 pixels

Large NxN phased array Frequency-scanned 1xN array

mm-waves → high resolution from small apertures

ultimate: ~400 GHz; intermediate: ~140 GHz

Page 9: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

9

mm-wavesystems

Page 10: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

10

Target Systems

10

Page 11: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

11

arrays

Page 12: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

12

Antenna & array basics

heightelement steering vertical

(radians) dthelement wi

steering horizontal

.range ngbeamsteeri maximum setselement Individual

2

areaarray 4ty)(directiviGain

heightarray beamwidth vertical

(radians) harray widt

beamwidth horizontal

gain and beamwidth setsarray Overall

Page 13: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

13

Electronic Beamsteering, a.k.a. phased array

./2 elementsadjacent between shift phase electrical Required

sin differencelength Path

. angle physicalat phase intoback signals bring shifters-Phase

l

Dl v

Page 14: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

14

Reminder: Multipath Propagation

npropagatiopath -multi:paths signalMany

pattern. beam antennain objectsMany

antennas)y directivit-(lowbeamwidth angular largeGiven

reflection ofStrenght

antennas ofy Directivit

strenght signaldifferent haspath Each

shift. phase possible :conditionboundary surface Reflecting

delay.different length,different haspath Each

Page 15: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

15

Fading vs Intersymbol interference

periods symbollonger :ODFM useor

receiverin equalizer adapitive need

another with interfers periodbit One

ceinterferen lIntersymboperiod) Symbol spread(Delay

separation eappropriatat antennas receiving two:fix

signalery weak possibly vceinterferenphase ofout are Carriers

aligned~ periods symbol with arrive signals NLOS and LOS

Fadingperiod) Symbol spread(Delay

Page 16: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

16

Beamforming can suppress ISI

0

0.5

1

1.5

2

0 1 2 3 4 5 6

1Gbaud

10 Gbaud

(dela

y s

pre

ad

)/ (

sym

bo

l p

eri

od

)

scatterer lateral offset, degrees , meters at 100 meters range

fad

ing

ISI

1050

typical beamwidth: 10o or less FWHM

Dc

H

2spreadDelay

2

1 Gbaud with 10o array beamwidth :multipath mostly causes fadingnot much ISI

10 Gbaud with 10o array beamwidth :significant fading and significant ISI

Solution 1: larger arraysnarrower beamwidth

Solution 2: multiple arraysmultiple receivers to handle fading ?can sum these to form narrow nulls! also handles fading and ISI

Page 17: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

17

Optimum array size for low system power

10-2

10-1

100

101

102

103

10 100 1000

To

tal S

yste

m P

ow

er,

Wa

tts

# of transmitter array elements, # of receiver array elements

PA saturated

ouput power/element

PA total DC

power consumption

Phase shifter

+distribution+LNA

DC power consumption

total DC power

0.2W phase shifters, 0.1 W LNA

22

22 1

NP

RN

P

Ptransmit

transmit

receive

?power save arrays large Do

.shifters.. phase LNA, ofpower efficiency

power system Total NPtransmit

At optimum-size array,target PA output poweris typically 10-200 mW

Page 18: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

18

How big should be the array ?

Large arrays:more directive→ less PA power neededmore channels→ cost, DC power

10 100 1000

Po

we

r, W

att

s

# of transmitter array elements, # of receiver array elements

PA saturated

ouput power/element

PA total DC

power consumption

Phase shifter

+distribution+LNA

DC power consumption

total DC power

0.2W phase shifters, 0.1 W LNA

140GHz

4 dB noise figure,

20% PAE

Rodwell,

2013 APMC, Seoul

example only;#s need updating

Large arrays:more directive→less SNR loss with NLOS nullingeases multipath equalization

Page 19: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

19

Data delay equalization in large arrays

lesbetween ti

retimed modulationwith

*ngarray tili*by compensate

:arrays largeVery

sinbandwidth

2/~ below bemust ;sin

skew timing

modulation not thebut carrier theretime arrays Simple

D

c

Tc

Dsymbol

Page 20: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

20

systems

Page 21: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

21

mm-Wave LOS MIMO: multi-channel for high capacity

Torklinson : 2006 Allerton ConferenceSheldon : 2010 IEEE APS-URSI Torklinson : 2011 IEEE Trans Wireless Comm.

Page 22: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

22

Spatial Multiplexing: massive capacity RF networks

multiple independent beamseach carrying different dataeach independently aimed# beams = # array elements

Hardware: multi-beam phased array ICs

Page 23: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

23

100-1000 GHz Wireless Needs Mesh Networks

Object having area~R

will block beam.

Blockage is avoided using beamsteeringand mesh networks.

...high-frequency signals are easily blocked.

...this is easier at high frequencies.

Page 24: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

24

mm-wavepropagation

Page 25: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

25

Fair-Weather Propagation

Wiltse, 1997 IEEE Int. APS Symposium, JulyFair weather

2-5 dB/km

75-110 GHz

200-300 GHz

125-165 GHz

9km elevation

4km elevation

sea level

Page 26: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

26

Foul Weather Propagation

0.1

1

10

100

109

1010

1011

1012

Rain

Atte

nu

atio

n,

dB

/km

Frequency, Hz

100 mm/Hr

50 mm/Hr

30 dB/km5

0 G

Hz

Extreme Fog (1g/m3)

~(25 dB/km)x(frequency/500 GHz)

4

Rain:10-3: 25mm/hr, 11dB/km10-4: 50-85mm/hr, 19dB/km10-5: 100+mm/hr: 30dB/km

Olsen, Rogers, Hodge, IEEE Trans Antennas & Propagation Mar 1978 Liebe, Manabe, Hufford, IEEE Trans Antennas and Propagation, Dec. 1989 Liebe, IEEE Trans Ant and Pro, Vol 31, No. 1, Jan 1983Karasawa, Maekawa, IEEE Proc, Vol 85 , #6 , June 1997

35oC, 95% Humidity loss (dB/km)~(frequency/60GHz)2

11 dB/km@200 GHz, 5.5dB/km@140GHz

Rosker; Wallace, 2007 IEEE IMS

Page 27: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

27

Atmospheric Attenuation: Implications

0.01

0.1

1

10

100

0 50 100 150 200 250 300 350

Rain

Atte

nu

atio

n,

dB

/km

Frequency, GHz

Rain: 25, 50, 100 mm/hr

~10-3

, 10-4

, 10-5

95% humidity, 35C

Fog, 1G/m3

Worst-case attenuation roughly constant over 50-250 GHz.10-5 outage rate: equal losses over 50-300 GHz10-3 outage rate: equal losses over 50-200 GHz

target should be 50-250 GHz links. Exclusive use of VLSI Si processes forces use of 50-180GHz

Page 28: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

28

detailed link analysis

Page 29: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

29

Example Link budgets (60 GHz)

o

FHWM

o

FWHM

radians

FHWM

radians

FWHM

effAD

000,414/4 2

22 )/)(16/(/ RDDPP rttransreceived

SNR where2

)4( QkTFBQP QPSKreceivedNote various margins allocated.Rain losses calculated from rain rate.

array:16 elements (2x8)4.5 x 1.0 inches11.5 x 2.54 cm

Page 30: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

30

Example Link budgets (140 GHz)

o

FHWM

o

FWHM

radians

FHWM

radians

FWHM

effAD

000,414/4 2

22 )/)(16/(/ RDDPP rttransreceived

SNR where2

)4( QkTFBQP QPSKreceivedNote various margins allocated.Rain losses calculated from rain rate.

array:16 elements (2x8)1.9 x 0.43 inches4.9 x 0.11 cm

Page 31: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

31

hardware: rough numbers

Page 32: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

32

140 GHz, 10 Gb/s Adaptive Picocell Backhaul

Page 33: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

33

140 GHz, 10 Gb/s Adaptive Picocell Backhaul

350 meters range in 50mm/hr rain

PAs: 24 dBm Psat (per element)

LNAs: 4 dB noise figure

Realistic packaging loss, operating & design margins

Page 34: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

34

340 GHz, 160 Gb/s MIMO Backhaul Link

→ 1o beamwidth; 8o beamsteering

Page 35: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

35

340 GHz, 160 Gb/s MIMO Backhaul Link

600 meters range in five-9's rain

1o beamwidth; 8o beamsteering

PAs: 21 dBm Psat (per element)LNAs: 7 dB noise figure

Realistic packaging loss, operating & design margins

Page 36: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

36

60 GHz, 1 Tb/s Spatially-Multiplexed Base Station

2x64 array on each of four faces.

Each face supports 128 users, 128 beams: 512 total users.

Each beam: 2Gb/s.

200 meters range in 50 mm/hr rain

PAs: 20 dBm Pout , 26 dBm Psat (per element)LNAs: 3 dB noise figure

Realistic packaging loss, operating & design margins

Page 37: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

37

mm-Wave Wireless Transceiver Architecture

custom PAs, LNAs → power, efficiency, noiseSi CMOS beamformer→ integration scale

...similar to today's cell phones.

Page 38: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

38

400 GHz frequency-scanned imaging radar

What you see with X-band radarWhat your eyes see-- in fog

What you would like to see

38

Page 39: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

39

400 GHz frequency-scanned imaging car radar

39

Page 40: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

40

400 GHz frequency-scanned imaging car radar

Image refresh rate: 60 Hz

Resolution 64×512=32,800 pixels

Angular resolution: 0.10 degrees

Aperture: 12" by 12"

Angular field of view: 9 by 97 degrees

Component requirements: 10 mW peak power/element, 3% pulse duty factor6.5 dB noise figure, 5 dB package losses5 dB manufacturing/aging margin

Range: see a basketball at 300 meters (10 seconds warning) in heavy fog(10 dB SNR, 28 dB/km, 1 foot diameter target, 65 MPH)

40

Page 41: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

41

Transistorsand IC technologies

Page 42: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

42

Production Semiconductor Processes for mm-Wave

Silicon Germanium BiCMOS Processes

foundry process nominal fmax useful range

IBM (GF !) 9HP 320 GHz ~170 GHz

TowerJazz SBC13H3 270 GHz ~140 GHz

TowerJazz SBC18H4 (near release) 350 GHz ~180 GHz

ST Microelectronics S9MW 270 GHz ~140 GHz

ST Microelectronics SB55 (development) 340 GHz ~180 GHz

"Useful (frequency) range" means those frequencies at which acceptable-performance IC blocks can be realized, not the highest frequency of a published research result.

Page 43: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

43

Production Semiconductor Processes for mm-Wave

VLSI CMOS Processes

foundry process nominal fmax useful range

various (IBM, GF, TSMC) 65nm bulk CMOS ~~250GHz ~130GHz

IBM (GF !) 45nm PD-SOI (high leakage power) ~~300 GHz ~150 GHz

IBM (GF !) 32 nm UTB-SOI ~~300 GHz ~150 GHz

ST Microelectronics 28 nm UTB-SOI similar to above

various 22nm, ~14nm UTB-SOI poorer than above

Intel, IBM/GF 22nm, ~14nm finFET likely poorer than above,

Generations beyond 28/32nm: progressively poorer performance in 100+ GHz ICsprogressively lower transmitter power at all frequencies

Page 44: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

44

Semiconductor Processes for mm-Wave

Production III-V foundries

foundry process nominal fmax useful range

Northrop-Grumman(low-volume)

600nm InP HBT: 4V: higher-power transmitters

>300GHz ~150 GHz

Northrop-Grumman(low-volume)

100nm InP HEMT (FET)for very low noise receivers

>350GHz ~200 GHz

Qorvo (Tri-Quint) TQP13 HEMTpower amps, low-noise -amps

~~150GHz 100 GHz

These processes are best for single-stage add-on power amps, low-noise amps;both to increase system range.

Page 45: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

45

Research Semiconductor Processes

Research institutions with some "foundry-like" access

foundry process nominal fmax useful range

Teledyne 250nm InP HBT 700GHz ~250 GHz

Teledyne 130nm InP HBT 1100 GHz ~450 GHz

IHP 130nm SiGe BiCMOS 500GHz ~250 GHz

microwave GaN HEMT is a production technologymm-wave GaN HEMT may become a production technologymm-wave InP HBT may become a production technology

Page 46: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

46

mm-wave CMOS (examples)

260 GHz amplifier: 65nm bulk CMOS, Over-neutralized to reach Gmax, 9.2 dB, 4 stagesMomeni ISSCC, March 2013

150 GHz amplifier: 65 nm bulk CMOS, 8.2 dB, 3 stages (250GHz fmax)Seo et al. (UCSB), JSSC, December 2009

300 GHz fmax

Page 47: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

47

mm-Wave CMOS won't scale much further

Gate dielectric can't be thinned → on-current, gm can't increase

Tungsten via resistances reduce the gainInac et al, CSICS 2011

0

0.1

0.2

0.3

0.01 0.1 1

no

rma

lize

d

tra

nsco

nd

ucta

nce

(electron effective mass)/mo

one band minimum

EOT + body thickness term = 1nm

0.6 nm

0.4 nm

0.3 nm

Shorter gates give no less capacitance dominated by ends; ~1fF/mm total

Maximum gm, minimum C→ upper limit on ft.about 350-400 GHz.

Present finFETs have yet larger end capacitances

Page 48: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

48

III-V high-power transmitters, low-noise receivers

Cell phones & WiFi:GaAs PAs, LNAs

mm-wave links needhigh transmit power, low receiver noise

0.47 W @86GHz

0.18 W @220GHz

1.9mW @585GHzM Seo, TSC, IMS 2013

T Reed, UCSB, CSICS 2013

H Park, UCSB, IMS 2014

Page 49: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

49

InP Bipolar Transistors

Page 50: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

50

Why InP Bipolar Transistors ?

InP better electron transport than Si collectorshigher electron velocity 3.5 vs 1.0 × 107 cm/s plus wider bandgap→ higher breakdown field

InGaAs base, base-emitter heterojunction: very low base sheet resistances

Implications: ~3:1 higher (ft, fmax) at a given scaling nodehigher breakdown* at a given (ft, fmax) but...InP HBT not a production technology

*Breakdown is too complicated to summarize with BVCEO.BVCBO vs. BVCEO vs. safe operating area ?Bottom line: look at Vce used in published IC data for a given IC technology.

Page 51: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

51

Transistor scaling laws: ( V,I,R,C,t ) vs. geometry

AR contact /

Bulk and Contact Resistances

Depletion Layers

T

AC

v

T

2t

2

max)(4

T

Vv

A

I applsat

Thermal Resistance

Fringing Capacitances

~/ LC finging~/ LC finging

dominate rmscontact te

escapacitanc fringing FET )1

escapacitancct interconne IC )2

W

L

LK

PT

th

ln~transistor

LK

PT

th

ICIC

Available quantum states to carry current

→ capacitance, transconductancecontact resistance

L

Page 52: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

52

Bipolar Transistor: Structure & Models

nkTqIg Em /

)( cbmjebe gCC tt

mbe gR /

""

2

2/

/2/

satcc

thermalbnbb

vT

vTDT

t

t

collex

E

bc

E

jecollectorbase RRqI

nkTC

qI

nkTC

ftt

t2

1

Page 53: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

53

Base-Collector Distributed RC Parasitics

emitteremittercontactex AR /,

Eesspread LWR 12/ ELlength emitter

Egapsgap LWR 4/

Ebcscontactspread LWR 6/,

contactsbasebasecontactcontact AR _, /

cemitterecb TAC /,

cgapgapcb TAC /,

ccontactsbasecontactcb TAC /_,

Page 54: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

54

RbbCcb Time Constant, Fmax , Simple Hybrid- model

where8max cbibbCRff t

)(

)2/(

,,

,,

,

spreadgapcontactspreadcontactecb

gapcontactspreadcontactgapcb

contactcontactcbcbibbcb

RRRRC

RRRC

RCCR

t

above from fit set to ratio :

total true

resistance base totaltrue

maxfCC

CCC

R

cbxcbi

cbcbxcbi

bb

Vaidyanathan & PulfreyIEEE Trans. Elect. Dev.Feb. 1999

Page 55: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

55

BJT Space-Charge-Limited Current (Kirk effect)

. increased with increases holdKirk thres

.high at increased, ), ( Decreased max

ce

cb

V

JCfft

0

2

4

6

8

10

12

14

16

0 0.5 1 1.5 2 2.50

5

10

15

20

25

30

35

40

Je (

mA

/mm

2)

Vce

(V)

Ajbe

= 0.6 x 4.3 mm2

Ib step

= 180 uA

Vcb

= 0 V

Ic (mA

)Peak f

t, f

max

2

min,max /)2(2 ccbcbEeff TVVAvI

2

3

4

5

6

7

8

0 2.5 5 7.5 10 12.5

Ccb/A

e (

fF/m

m2)

Je (mA/mm

2)

-0.2 V

0.0 V

0.2 V

Vcb

= 0.6 V

100

200

300

400

500

0 2 4 6 8 10 12

f t (G

Hz)

Je (mA/um

2)

ft, -0.3 V

cb

0.0 Vcb

-0.2 Vcb

0.2 Vcb

0.6 Vcb

/)/(// 22 vJqNx D

Page 56: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

56

InP: Electron velocity modulation

More collector voltage→ less distance before scattering→ more transit time

more collector voltageless collector voltage

light G valley

heavy L valleyheavy X valley

(ft, fmax) decrease with increased Vce. Ccb is modulated by Ic.

2

3

4

5

6

7

8

0 2.5 5 7.5 10 12.5

Ccb/A

e (

fF/m

m2)

Je (mA/mm

2)

-0.2 V

0.0 V

0.2 V

Vcb

= 0.6 V

Page 57: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

57

10-3

10-2

10-1

100

101

102

-0.3 -0.2 -0.1 0 0.1 0.2

J(m

A/m

m2)

Vbe

-

Fermi-Dirac

Highly degenerate

(Vbe

->>kT/q

Boltzmann

(-Vbe

)>>kT/q

Reduced gm at extreme current densities

Boltzmann

2

32

3

)(8

*

beV

mq

)/exp( kTqVbe

Fermi-Dirac

Highly Degenerate

Problem in InP, not silicon: silicon has larger electron effective mass, more valleys

High currents→ transconductance less than qI/kT → bandwidth decreases

130nm InP HBT

Page 58: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

58

Bipolar Transistor Design eW

bcWcTbT

nbb DT 22t

satcc vT 2t

ELlength emitter

eex AR /contact

2

through-punchce,operatingce,max cesatc TVVAvI /)(,

contacts

contactsheet

612 AL

W

L

WR

e

bc

e

ebb

e

e

E W

L

L

PT ln1

cccb /TAC

58

Page 59: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

59

Bipolar Transistor Design: Scaling eW

bcWcTbT

nbb DT 22t

satcc vT 2t

ELlength emitter cccb /TAC

eex AR /contact

2

through-punchce,operatingce,max cesatc TVVAvI /)(,

contacts

contactsheet

612 AL

W

L

WR

e

bc

e

ebb

e

e

E W

L

L

PT ln1

59

Page 60: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

60

Energy-limited vs. field-limited breakdown

band-band tunneling: base bandgapimpact ionization: collector bandgap

60

Page 61: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

61

Making faster bipolar transistors

to double the bandwidth: change

emitter & collector junction widths decrease 4:1

current density (mA/mm2) increase 4:1

current density (mA/mm) constant

collector depletion thickness decrease 2:1

base thickness decrease 1.4:1

emitter & base contact resistivities decrease 4:1

Narrow junctions.

Thin layers

High current density

Ultra low resistivity contacts

Teledyne: M. Urteaga et al: 2011 DRC

Page 62: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

62

Refractory Contacts to In(Ga)As

Refractory: robust under high-current operation / Low penetration depth: ~ 1 nm / Performance sufficient for 32 nm /2.8 THz node.

10-10

10-9

10-8

10-7

10-6

10-5

1018

1019

1020

1021

N-InGaAs

B=0.6 eV

0.4 eV0.2 eV

0 eV

Electron Concentration, cm-3

Co

nta

ct

Re

sis

tiv

ity

,

cm

2

step-barrierLandauer

1018

1019

1020

1021

N-InAs

Electron Concentration, cm-3

0.2 eV

B=0.3 eV

step-barrier

B=0 eV

0.1 eV

Landauer

1018

1019

1020

1021

P-InGaAs

Hole Concentration, cm-3

B=0.8 eV

0.6 eV0.4 eV0.2 eV

step-barrierLandauer

32 nm (2.8THz) node requirements

Baraskar et al, Journal of Applied Physics, 2013

Why no ~2THz HBTs today ?Problem: reproducing these base contacts in full HBT process flow

62

Page 63: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

63

THz HBTs: The key challenges

Obtaining good base contactsin HBT vs. in contact test structure(emitter contacts are fine)

1018

1019

1020

1021

P-InGaAs

10-10

10-9

10-8

10-7

10-6

10-5

Hole Concentration, cm-3

B=0.8 eV

0.6 eV0.4 eV0.2 eV

step-barrierLandauer

Co

nta

ct

Re

sis

tivit

y,

cm

2

3THz target

Baraskar et al, Journal of Applied Physics, 2013

RC parasitics along finger lengthmetal resistance, excess junction areas

Page 64: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

64

THz HBTs: double base metal process

Blanket surface clean (UV O3 / HCl)strips organics, process residues, surface oxides

Blanket base metalno photoresist; no organic residuesRu refractory diffusion barrier2 nm Pt : penetrates residual oxides

Thick Ti/Au base pad metal liftoffthick metal→ low resistivity

Ro

de

et

al.,

IEEE

TED

, Au

g. 2

01

5

Page 65: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

65

Reducing Emitter Length Effects

small base post undercut

large base post

bef

ore

afte

r

large base post undercut

small base post

65

Ro

de

et

al.,

IEEE

TED

, Au

g. 2

01

5large emitterend undercut

small emitterend undercut

Page 66: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

66

Reducing Emitter Length Effects

before after

thicker Aubase metal

narrowercollectorjunction

66Rode et al., IEEE TED, Aug. 2015

Page 67: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

67

InP HBTs: 1.07 THz @200nm, ?? @ 130nm

?

Rode et al., IEEE TED, Aug. 2015

Page 68: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

68

130nm /1.1 THz InP HBT: ICs to 670 GHz614 GHz fundamentalVCO

340 GHz dynamic frequency divider

Vout

VEE VBB

Vtune

Vout

VEE VBB

Vtune

620 GHz, 20 dB gain amplifierM Seo, TSCIMS 2013

also: 670GHz amplifierJ. Hacker , TSCIMS 2013 (not shown)

M. Seo, TSC / UCSB

M. Seo, UCSB/TSCIMS 2010

204 GHz static frequency divider(ECL master-slave latch)

Z. Griffith, TSCCSIC 2010

300 GHz fundamentalPLLM. Seo, TSCIMS 2011

220 GHz 180 mWpower amplifier T. Reed, UCSBCSICS 2013

600 GHz IntegratedTransmitterPLL + MixerM. Seo TSC

Integrated 300/350GHz Receivers:LNA/Mixer/VCO

M. Seo TSC

81 GHz 470 mWpower amplifier H-C Park UCSBIMS 2014

Page 69: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

69

Towards a 3 THz InP Bipolar Transistor

Extreme base doping→ low-resistivity contacts→ high fmax

Extreme base doping→ fast Auger (NP2) recombination→ low .

Solution: very strong base compositional grading→ high

1018

1019

1020

1021

P-InGaAs

10-10

10-9

10-8

10-7

10-6

10-5

Hole Concentration, cm-3

B=0.8 eV

0.6 eV0.4 eV0.2 eV

step-barrierLandauer

Co

nta

ct

Re

sis

tiv

ity

,

cm

2

Page 70: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

70

1/2-THz SiGe HBTs

500 GHz fmax SiGe HBTs Heinemann et al. (IHP), 2010 IEDM

16-element multiplier array @ 500GHz (1 mW total output)U. Pfeiffer et. al. (Wuppertal / IHP) , 2014 ISSCC

Page 71: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

71

Towards a 2 THz SiGe Bipolar Transistor

InP SiGe

emitter

junction width 64 18 nm

access resistivity 2 0.6 mm2

base

contact width 64 18 nm

contact resistivity 2.5 0.7 mm2

collector

thickness 53 15 nm

current density 36 125 mA/mm2

breakdown 2.75 1.3? V

ft 1000 1000 GHz

fmax 2000 2000 GHz

Similar scalingInP: 3:1 higher collector velocitySiGe: good contacts, buried oxides

Key distinction: Breakdown InP has:

thicker collector at same ft, wider collector bandgap

Key requirements:low resistivity Ohmic contacts note the high current densities

Assumes collector junction 3:1 wider than emitter.Assumes SiGe contacts no wider than junctions

Page 72: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

72

InP Field-Effect Transistors

Page 73: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

73

State of the art in InP HEMTs

Xiaobing Mei, et al, IEEE EDL, April 2015 (Northrop-Grumman)

First Demonstration of Amplification at 1 THz Using 25-nm InP High Electron Mobility Transistor Process

Page 74: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

74

HEMTs: Key Device for Low Noise Figure

1

)(2

)(21

2

min

G

G

G

t

t

f

fRRRg

f

fRRRgF

igsm

igsm

Hand-derived modified Fukui Expression, fits CAD simulation extremely well.

0

2

4

6

8

10

1010

1011

1012

ft=300GHzft=600GHz

ft=1200GHzft=2400GHz

Nois

e f

igu

re,

dB

frequency, Hz

2:1 to 4:1 increase in ft → greatly improved noise @ 200-670 GHz.

Better range in sub-mm-wave systems; or use smaller power amps.

or enable yet higher-frequency systems

Page 75: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

75

FET Design

g

DSWL

RRS/D

contact

gW width gate

gfgsgd WCC ,

)/( gchgm LvCg

)/( vWLR ggDS

)density state /well(2// 2

wellwell qTT

WLC

oxox

gg

chg

masstransport

1

capacitors threeabove the

between ratiodivision voltage2/1

v

Page 76: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

76

FET Design: Scaling

g

DSWL

RRS/D

contact

gW width gate

gfgsgd WCC ,

)/( gchgm LvCg

)/( vWLR ggDS

)density state /well(2// 2

wellwell qTT

WLC

oxox

gg

chg

masstransport

1

capacitors threeabove the

between ratiodivision voltage2/1

v

Page 77: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

77

FET Design: Scaling

g

DSWL

RRS/D

contact

gW width gate

gfgsgd WCC ,

)/( gchgm LvCg

)/( vWLR ggDS

)density state /well(2// 2

wellwell qTT

WLC

oxox

gg

chg

masstransport

1

capacitors threeabove the

between ratiodivision voltage2/1

v

2:1 2:1

constant 2:12:1

2:1 2:1

2:1 2:1 2:1

2:1

constant

constant

2:1 2:1

constant

2:1 2:1

4:1

constant

constant

Page 78: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

78

FET Scaling Laws (these now broken)

fringing capacitance does not scale → linewidths scale as (1 / bandwidth )

78

FET parameter change

gate length decrease 2:1

current density (mA/mm) increase 2:1

transport mass constant

2DEG electron density increase 2:1

gate-channel capacitance density increase 2:1

dielectric equivalent thickness decrease 2:1

channel thickness decrease 2:1

channel state density increase 2:1

contact resistivities decrease 4:1

Page 79: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

79

FET Scaling Laws (these now broken)

Gate dielectric can't be much further scaled.Not in CMOS VLSI, not in mm-wave HEMTs

gm/Wg (mS/mm) hard to increase→ Cend / gm prevents ft scaling.

Shorter gate lengths degrade electrostatics→ reduced gm /Gds → reduced fmax/ ft

FET parameter change

gate length decrease 2:1

current density (mA/mm) increase 2:1

transport mass constant

2DEG electron density increase 2:1

gate-channel capacitance density increase 2:1

dielectric equivalent thickness decrease 2:1

channel thickness decrease 2:1

channel state density increase 2:1

contact resistivities decrease 4:1

Page 80: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

80

Why THz HEMTs no longer scale

HEMTs: gate barrier also lies under S/D contacts → high S/D access resistance

As gate length is scaled, gate barrier must be thinned for high gm, low Gds

HEMTs: High gate leakage when gate barrier is thinned→ cannot thin barrier

Page 81: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

81

FET scaling laws; 2:1 higher bandwidth change

gate length decrease 2:1

current density (mA/mm), gm (mS/mm) increase 2:1

transport mass constant

gate-channel capacitance density increase 2:1

contact resistivities decrease 4:1

Towards at 2.5 THz HEMT

Xiaobing Mei, et al, IEEE EDL, April 2015 (Northrop-Grumman)

First Demonstration of Amplification at 1 THz Using 25-nm InP High Electron Mobility Transistor Process

Need thinner dielectrics, better contacts

Page 82: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

82

Record III-V MOS

S. Lee et al., VLSI 2014

10 100

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

S. Lee, VLSI 2014

J. Lin, IEDM 2013

T. Kim, IEDM 2013

Intel, IEDM 2009

J. Gu, IEDM 2012

D. Kim, IEDM 2012

I on (

mA

/mm

)

Gate Length (nm)

VDS

= 0.5 V

Ioff

=100 nA/mm

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.510

-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

gm (

mS

/mm

)

Cu

rren

t D

en

sit

y (

mA

/mm

)

Gate Bias (V)

0.0

0.5

1.0

1.5

2.0

2.5

3.0L

g = 25 nm

SS~ 72 mV/dec.

SS~ 77 mV/dec.

Ion= 500 mA/mm at Ioff

=100 nA/mm

and VD=0.5V

Vertical Spacer

N+ S/D

Lg~25 nm

recordfor III-V

= best UTB SOI silicon

Page 83: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

83

Excellent III-V gate dielectrics

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.710

-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

|Gate

Leakag

e|

(A/c

m2)

Cu

rren

t D

en

sit

y (

mA

/mm

)

Gate Bias (V)

10-5

10-4

10-3

10-2

10-1

100

101

SSmin

~ 61 mV/dec.

(at VDS

= 0.1 V)

SSmin

~ 63 mV/dec.

(at VDS

= 0.5 V)

Dot : Reverse Sweep

Solid: Forward Sweep

Lg = 1 mm

61 mV/dec Subthreshold swing at VDS=0.1 V

Negligible hysteresis

2.5nm ZrO2

1nm Al2O3

2.5nm InAs

V. Chobpattanna, S. StemmerFET data: S Lee, 2014 VLSI Symp.

Page 84: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

84

III-V MOS @ Lg = ???

Image courtesy of S. Kraemer (UCSB)

Huang et al., 2015 DRC

Page 85: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

85

Towards at 2.5 THz HEMT

-0.2 0.0 0.2 0.4 0.6 0.810

-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

SS ~ 107.5 mV

at VDS

=0.5 V

SS ~ 98.6 mV

at VDS

=0.1 V

VDS

= 0.1 to 0.7 V

0.2 V increment

I D,

|IG| (m

A/m

m)

VGS

(V)

C. Y. Huang et al., DRC 2015VLSI III-V MOS

THz III-V MOS

Page 86: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

86

mm-wave measurements

Page 87: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

87

• Agilent, Rhode/Schwarz network

analyzer,

• Oleson Microwave Lab or

Virginia Diodes

frequency extenders

• micro-coax wafer probes with

waveguide connections

GGB Industries,

Cascade Microtech

University of Virgina.

• Internal bias Tee’s in probes

• Mostly on-wafer calibration standards.

On-Wafer Network Analysis: 750+ GHz

Page 88: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

88

On-Wafer Through-Reflect-Line (TRL) Calibration

Through

Reflect

Line

DeviceUnder Test

225um

reference plane

ΔL ΔL= 90 deg @center frequency./8<ΔL<3/8

DUT

open shortEither open or short needed.Standards need not be accurate."Open" must have G closer to that of open than that of short. Ports 1 & 2 must be symmetric.

Through line should be long for large probe separation.Minimizes probe-probe coupling.Measurements normalized to the line characteristic impedance.

225um

225um 225um

225um

225umPlease see also:http://www.ece.ucsb.edu/Faculty/rodwell/publications_and_presentations/publications/204vg.ppt

Page 89: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

89

On-Wafer Line Reflect Linie Calibration

Extended Reference planes

transistors placed at center of long on-wafer line

LRL standards placed on wafer

large probe separation → probe coupling reduced

still should use the best-shielded probes available

Problem: substrate mode coupling

method will FAIL if lines couple to substrate modes

→ method works very poorly with CPW lines

need on wafer thin-film microstrip lines

CPW

Page 90: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

90

Difficulties with >100 GHz On-Wafer Calibration

Data on two layouts of 65 nm MOSFET

2E

11

3E

11

4E

11

5E

11

6E

11

7E

11

8E

11

9E

11

1E

11

1E

12

1

2

3

4

5

6

7

8

9

0

10

freq, Hz

MS

GM

AG

_d

B_

ibm

MS

GM

AG

_d

B_

pfg

MA

G/M

SG

, d

B

2E

11

3E

11

4E

11

5E

11

6E

11

7E

11

8E

11

9E

11

1E

11

1E

12

2

4

6

8

10

12

14

16

18

0

20

freq, Hz

Um

_ib

m_

dB

Um

_p

fg_

dB

150 160 170 180 190140 200

-15

-10

-5

0

5

10

15

-20

20

freq, GHz

Um

_ib

mU

m_

pfg

U < 0 (!)

10*log10|U| (?)

"Un

ilate

ral g

ain

", d

B

"Un

ilate

ral g

ain

", lin

ea

r

Measured Y-parameters correlatereasonably with expected device model.

Small errors in measured 2-port parameters result in large changes in Unilateral gain and Rollet's stability factor; neither measurement is credible.

Y12 appears to be the key problem.

IC Sij measurements are fine.Transistor fmax measurements are hard.

12212211

2

1221

4 GGGG

YYU

( K<1 )

Page 91: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

91

Packaging and

antennas

Page 92: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

92

The Antenna Feed Loss Problem

array elements are many longoverall array can be very big→ high feed line losses

One solution:waveguide-fed arrays of slots

Use distributionamplifiers ?

Use to feed array tile:overall array needs steering

Page 93: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

93

Using lenses to reduce feed loss

Lenses on individual array elements.

...or on the overall array.

Here the challenge is maintaining constant beamwidthover wide steering angles.

Page 94: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

94

mm-wave interfaces: packaging

Wire-bonds:With care, >60GHz can be coupled over wire-bonds.Coupling of multiple lines remains problematic .

Flip-chip bondsStandard C4 bonds very capacitive; tuning OK @ 60GHz. Possibly higher.Option: more highly scaled bonds. Must contact vendors.Heat removal problematic in flip-chip ICs

Flexible polyimide interconnect substrateUsed in Cascade micotech multi-signal probes, in some 60GHz products.Ground integrity, low inductance mm-wave connections.Must identify vendor.

https://www.cmicro.com/products/probe-cards/the-technology/thin-film-technology/cascade-microtech-s-thin-film-technology

Page 95: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

95

mm-wave interfaces: packaging

Through-silicon vias for RF grounding (TowerJazz, also IBM/GF)very low ground inductancelow losses, low crosstalk in mm-wave IC-package connections

Page 96: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

96

mm-waveIC Design

Page 97: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

97

Reactively-Tuned IC Design: Concepts

Page 98: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

98

What's the most gain we can get ? Do we care ?

12212211

2

1221

12

4

match then ,0 untilfeedback lossless :gain Unilateral

GGGG

YYU

S

1

Match. feedback. No r. transistostablenally unconditio :gain available Maximum

2

12

21 KKS

SGma

factor).stability (Rollet 2

1 where

2112

2

21122211

2

22

2

11

SS

SSSSSSK

12

21

Match. Stabilize. feedback. No r. transistounstabley potentiall :gain stable Maximum

S

SGms

0

5

10

15

20

25

30

35

10 100 1000

Gain

s, d

B

Frequency, GHz

Gma

Common emitter

U

Gma

common base

Gma

common collector

Gmax,S

stability nalunconditiogiven gain feasibleHighest

)1(2)12(

match feedback, reactive lossless eappropriat

:gain snta'Singhakowi

2/12/1

max, UUUG S

A. Singhakowinta & A. R. Boothroyd, International Journal of Electronics, Volume 21, Issue 6, 1966, pages 549-560, DOI:10.1080/00207216608937931O. Momeni and E. Afshari, 2011 IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, 2011, pp. 1-4, doi: 10.1109/CICC.2011.6055322

Page 99: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

99

What's the most gain we can get ? Do we care ?

Low-noise amplifiers designed for low noise figure, fairly high IP3

Power amplifiersdesigned for high Psat, PAE, sufficiently low IM3

IF amplifiersdesigned for low noise figure, high IP3.

Practical amplifiers are rarely designed for highest gain.

Real-world relevance of Gma, Gms, Gmax,S is not clear.

Practical designs would benefit from new theoryQuantities similar to Gma, Gms, Gmax,S aboveBut under constraints of high-power or low-noise tuning.I know of no such published work.

Page 100: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

100

RF-IC Design: Simple & Well-Known Procedures

1: (over)stabilize at the design frequency

guided by stability circles

3: Tune remaining port for maximum gain

2: Tune input for Fmin (LNAs) or output for Psat (PAs)

4: Add out-of-band stabilization.

There are many ways to tune port impedances: microstrip lines, MIM capacitors, transformers

Choice guided by tuning losses. No particular preferences.

0

5

10

15

20

25

30

10 100 1000

MS

G/M

AG

, dB

Frequency, GHz

Common base

Common Collector

Common emitter

UFor BJT's, MAG/MSG usually highest for common-base.

Common-base gain is however reduced by:

base (layout) inductance

emitter-collector layout capacitance.

100

Page 101: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

101

Low-Noise Amplifier Design

Inductive emitter/source degenerationsimultaneous S11 and noise matchreduces gain, improves IP3

Additional in-band stabilization (output port) as neededInput tuning for FminOutput matchOut-of-band stabilization

Input

Output

3/0.133/0.13

1 mA 1 mA

Vb

VCC

Page 102: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

102

parasitic C's and R's represented

by external elements...

Power Amplifier Design (Cripps method)

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

Curr

en

t, m

A

Vce

or Vds

(V)

breakdown

100 mW

200 mW

maxminmaxmax 81 IVVP For maximum saturated output power,

& maximum efficiency

device intrinsic output must see

optimum loadline set by:

breakdown, maximum current, maximum power density.

ammeter monitors intrinsic

junction current

without including

capacitive currents

...(Vcollector-Vemitter )

measures voltage

internal to series parasitic

resistances...

Page 103: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

103

PAs with corporate combining

W-band InP HBT power amplifier - UCSB

34 GH InP HBT power amplifier - J. Hacker Teledyne

34 GH InP HBT power amplifier - J. Hacker Teledyne

Page 104: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

104

Power amplifier design: combiners

Even-mode equivalent circuit

adjustedusly simultaneo , variablessharedby defined linessimilar all

:approach CAD

input.match toand reach toadjusted are parameters Line

added. be alsocan )capacitors ,(inductors elementsShunt

er. transformline-ansmissionsection tr-multi a :circuit equivalent The

,optlZ

Page 105: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

105

mm-wave IC Interconnects

Page 106: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

106

Transmission Lines

A pair of wires with regular spacing, dielectric loading along the length.

These have inductance per unit length and capacitance per unit length.

Forward and reverse waves propagate.

Reflections will occur if lines are not terminated in Zo

Page 107: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

107

Transmission Lines for On-Wafer Wiring

H

W microstrip line

coplanar waveguide

0V 0V

0V

+V

0V

+V

geometry voltages currents

I

I

H

W

W+2S

I

0

I/2I/2

Page 108: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

108

Skin loss

H

W

~W +2H

GHz 10 @ nm 640

100GHz, @ nm 200 :Gold

:/2depth Skin

m

HWWLRseries

2

1111/

:lengthunit per resistance Series

fZ

LRseries 2

/

distanceunit per n Attenuatio

0

)/2exp()exp()(

decay signal lExponentia

go zjzVzV

Page 109: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

109

Lateral Modes (1)

2222

2222222

0

/

,...2 ,1 ,0for / and 0

:line-ssionon transmi *laterally* propagatecan Waves

2

form of waves:dielectricIn

Wnck

nWnkk

ckkkk

eeeeE

rz

xy

drzyx

zjkyjkxjktj zyx

Page 110: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

110

Lateral Modes (2)

222

222

2222

/

: /2 if n propagatio Evanescent 2)

/

/2. ifn propagatio mode-Multi )1

/

cWn

We

Wnc

W

Wnck

rz

d

z

rz

d

rz

z

Page 111: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

111

Lateral Modes (3)→ Junction Parasitics

parasiticsjunction modelmust

.wavelength-half ahan narrower tmuch bemust lines

:Lessons

.simulation neticelectromagor models,junction library ADS

parasiticsjunction modes evanescentin power Reactive

: /2 if n propagatio Evanescent

d

zWe z

Page 112: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

112

Substrate Modes

.sfrequencielow at confined weakly ; 4 as confinedstrongly

mode;- tranversemetal topno withSubstrate

...23 , ,2 withmodes

surfaces metal bottom top, withSubstrate

T

E

h

d

ddd

Page 113: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

113

Substrate Mode Coupling: Microstrip

4 when coupling mode strongVery

s.frequencie allat loss )radiation"(" coupling mode Nonzero

.in and in propagecan modes slab dielectric These

dh

zx

Page 114: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

114

Substrate Mode Coupling: CPW

kz

loss" radiation"

frequencydimensions e transversline dB/mmloss, coupling mode

: substrate, thick Given

henstrongly w couple Modes

22

mode substrate,CPW,

d

yy

H

kk

Page 115: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

115

Transmission lines: the problem

problems.major be will

radiation substrate and modes lateral then

substrates thick and lines wideuse weIf

large. be willlosseseffect -skin then

substrates thin and lines narrow use weIf

Page 116: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

116

kz

III-V MIMIC Interconnects -- Classic Substrate Microstrip

Strong coupling when substrate approaches ~d / 4 thickness

H

W

Thick Substrate

→ low skin loss

Hr

skin 2/1

1

Zero ground

inductance

in package

a

Brass carrier andassembly ground

interconnectsubstrate

IC with backsideground plane & vias

near-zeroground-groundinductance

IC viaseliminateon-wafergroundloops

High via

inductance

12 pH for 100 mm substrate -- 7.5 @ 100 GHz

TM substrate

mode coupling

Line spacings must be

~3*(substrate thickness)

lines must be

widely spaced

ground vias must be

widely spaced

all factors require very thin substrates for >100 GHz ICs

→ lapping to ~50 mm substrate thickness typical for 100+ GHz

No ground plane

breaks in IC

Page 117: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

117

kz

Parasitic slot mode

-V 0V +V

0V

Coplanar WaveguideNo ground vias

No need (???) to

thin substrate

Parasitic microstrip mode

+V +V +V

0V

Hard to ground IC

to package

substrate mode coupling

or substrate losses

ground plane breaks → loss of ground integrity

Repairing ground plane with ground straps is effective only in simple ICs

In more complex CPW ICs, ground plane rapidly vanishes

→ common-lead inductance → strong circuit-circuit coupling

40 Gb/s differential TWA modulator driver

note CPW lines, fragmented ground plane

35 GHz master-slave latch in CPW

note fragmented ground plane

175 GHz tuned amplifier in CPW

note fragmented ground plane

poor ground integrity

loss of impedance control

ground bounce

coupling, EMI, oscillation

III-V:

semi-insulating

substrate→ substrate

mode coupling

Silicon

conducting substrate

→ substrate

conductivity losses

Page 118: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

118

If It Has Breaks, It Is Not A Ground Plane !

signal line

signal line

ground plane

line 1

“ground”

line 2

“ground”

common-lead inductance

coupling / EMI due to poor ground system integrity is common in high-frequency systems

whether on PC boards

...or on ICs.

Page 119: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

119

No clean ground return ? → interconnects hard to model

35 GHz static divider

interconnects have no clear local ground return

interconnect inductance is non-local

interconnect inductance has no compact model

InP 8 GHz clock rate delta-sigma ADC

8 GHz clock-rate delta-sigma ADC

thin-film microstrip wiring

every interconnect can be modeled as microstrip

some interconnects are terminated in their Zo

some interconnects are not terminated

...but ALL are precisely modeled

Page 120: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

120

fewer breaks in ground plane than CPW

III-V MIMIC Interconnects -- Thin-Film Microstrip

narrow line spacing → IC density

... but ground breaks at device placements

still have problem with package grounding

thin dielectrics → narrow lines

→ high line losses

→ low current capability

→ no high-Zo lines

H

W

HW

HZ

r

oo 2/1

~

...need to flip-chip bond

no substrate radiation, no substrate losses

InP 34 GHz PA

(Jon Hacker , Teledyne)

Page 121: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

121

No breaks in ground plane

III-V MIMIC Interconnects -- Inverted Thin-Film Microstrip

narrow line spacing → IC density

... no ground breaks at device placements

still have problem with package grounding

thin dielectrics → narrow lines

→ high line losses

→ low current capability

→ no high-Zo lines

...need to flip-chip bond

Some substrate radiation / substrate losses

InP 150 GHz master-slave latch

InP 8 GHz clock rate delta-sigma ADC

Page 122: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

122

VLSI mm-wave interconnects with ground integrity

negligible breaks in ground plane

narrow line spacing → IC density

negligible ground breaks @ device placements

still have problem with package grounding

thin dielectrics → narrow lines

→ high line losses

→ low current capability

→ no high-Zo lines

...need to flip-chip bond

no substrate radiation, no substrate losses

Also:

Ground plane at *intermediate level* permits

critical signal paths to cross supply lines, or other

interconnects without coupling.

(critical signal line is placed above ground,

other lines and supplies are placed below ground)

Page 123: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

123

Modeling Interconnects, Passives in Tuned IC's

Interconnects are tuning elements

Narrow bandwidths→ precision is critical

Initial IC simulation uses CAD-systems' library of passive element models.

Second design cycle: 2.5-Dimensional electromagnetic simulation of:lines, junctions, stubs, capacitors, resistors, pads.

Third design cycle: 2.5-D simulation of entire IC wiring (if possible); otherwise, of large blocks (gain stages)

150-200 GHz HBT amplifier, Urteaga et al, IEEE JSSCC , Sept. 2003

185GHz HBT amplifier, Urteaga et al, IEEE IMS, May. 2001

1-180GHz HBT amplifier, Agarwal et al, IEEE Trans MTT , Dec.. 1998

Page 124: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

124

ICs in Thin-Film (Not Inverted) Microstrip

Note breaks in ground plane at transistors, resistors, capacitors

Page 125: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

125

ICs in Thin-Film (Not Inverted) Microstrip

Note breaks in ground plane at transistors, resistors, capacitors

Page 126: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

126

ICs in Thin-Film Inverted Microstrip

100 GHz differential TASTIS Amp. 512nm InP HBT

Page 127: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

127

Power supply problems

local resonances between bypass cap and supply interconnectsglobal LC standing-wave resonances on supply bus

Detuning of individual stagesCoupling, feedback via supply→ oscillation, loss of path isolation

Page 128: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

128

Power supply problems

The supply impedance willdetune individual stages.

Page 129: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

129

Power supply problems

Here, the supply is terminated by 50 Ohms through a bias T.This avoids resonances.

More generally, we must simulate systemfor wide range of external supply impedance.

Model the supply in all simulations."If it is on the IC, PCB, probe station, put it in the simulation."

Page 130: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

130

Transmission-lines in 500+ GHz ICs

Inverted microstrip: the problem is ground via inductance

Page 131: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

131

Transmission-lines in 500+ GHz ICs

Grounded CPW: lower ground inductance, metal 3 ground plane suppresses ground bounce

J. Hacker , Teledyne IMS 2013

Page 132: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

132

Differential mm-wave stages

Common-emitterM. Seo, Teledyne

Common-baseM. Seo, 2013 IMS

Virtual ground→ avoids ground via inductance Avoids power-supply coupling Potential problems with common mode

Page 133: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

133

mm-wave common-mode instability

In all amplifiers, stability must be ensured from DC-fmax.Differential & common-mode stability must be ensured from DC-fmax

Simple LNA inductive tuning is, for example, problematic

Page 134: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

134

Pseudo-Differential Stages

No common-mode instability problem.Power-supply is virtual ground.No supply detuning of output networkImproved power-supply isolation (oscillation, unwanted signal coupling)

Page 135: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

135

20+ GHz digital &

mixed-signal design

Page 136: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

136

Modeling Interconnects: Digital & Mixed-Signal IC's

longer interconnects: lines terminated in Zo → no reflections.

Shorter interconnects: lines NOT terminated in Zo .But they are *still* transmission-lines.Ignore their effect at your peril !

vl

ZC

ZL

/

,/

,

0

0

t

t

t

If length << wavelength, or line delay<<risetime, short interconnects behave as lumped L and C.

Modeling: 2.5D, library Tline, or L-C

Page 137: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

137

Design Flow: Digital & Mixed-Signal IC's

All interconnects: thin-film microstrip environment.Continuous ground on one plane.

2.5-D simulations run on representative lines.various widths, various planessame reference (ground) plane.

Simulation data manually fit to CAD line modeleffective substrate r , effective line-ground spacing.

Width, length, substrate of each line entered on CAD schematic.

rapid data entry, rapid simulation.

Resistors and capacitors:2.5-D simulation→ RLC fitRLC model used in simulation.

Page 138: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

138

High Speed ECL Design

Followers associated with inputs, not outputsEmitters never drive long wires.(instability with capacitive load)

Double termination for least ringing, send or receive termination for moderate-length lines, high-Z loading saves power but kills speed.

Current mirror biasing is more compact.Mirror capacitance→ ringing, instability.Resistors provide follower damping.

Page 139: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

139

High Speed ECL Design

Layout: short signal paths at gate centers, bias sources surround core.Inverted thin film microstrip wiring.

Example: 8:1 205 GHz static dividerin 256 nm InP HBT.

Key: transistors in on-stateoperate at Kirk limited-current.→ minimizes Ccb/Ic delay.

205 GHz divider, Griffith et al, IEEE CSIC, Oct. 2010

Key: transistors designed for minimumECL gate delay*, not peak (ft , fmax).*hand expression, charge-control analysis

Page 140: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

140

Differential stages: schematic vs. floorplan

Page 141: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

141

Example: 40 GS/s S/H clock buffer

Itail=6 mA

Itail=12 mA

Page 142: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

142

Example: 40 GS/s S/H clock buffer

Page 143: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

143

Example: 40 GS/s S/H clock buffer

Page 144: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

144

20GHz Op-Amps for Linear 2 GHz Amplification

0

10

20

30

40

50

108

109

1010

1011

Fe

ed

ba

ck F

acto

r, d

B

Frequency, Hz

bandwidth loop

increasing

Even for 2 GHz operation,

loop bandwidths must 20-40 GHz.

need very fast transistors

physically small feedback loop;

bias components surround active core.

Griffith et al, IEEE IMS, June. 2011

input power, dBm

ou

tpu

t p

ow

er, d

Bm

linear response

2-tone intermodulation

increasing feedback

Reduce distortion withstrong negative feedback

R. Eden

Page 145: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

145

86 GHz Power Amplifier

Page 146: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

146

combiner-power

collectordrain/

Gain

11PAE

mm-Wave Power Amplifier: Challenges

needed: High power / High efficiency / Small die area ( low cost)

Extensive power combining Compact power-combining

Efficient power-combining Class E/D/F are poor @ mm-waveinsufficient fmax , high losses in harmonic terminations

Goal: efficient, compact mm-wave power-combiners

Page 147: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

147

Parallel Power-Combining

Output power: POUT = N x V x I Parallel connection increases POUT

Load Impedance: ZOPT = V / (N x I) Parallel connection decreases Zopt

High POUT→ Low Zopt

Needs impedance transformation:lumped lines, Wilkinson, ...

High insertion loss Small bandwidthLarge die area

Page 148: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

148

Series Power-Combining & Stacks

Parallel connections: Iout=N x I Series connections: Vout=N x V

Local voltage feedback:drives gates, sets voltage distribution

Design challenge:need uniform RF voltage distributionneed ~unity RF current gain per element

...needed for simultaneous compression of all FETs.

Output power: Pout=N2 x V x ILoad impedance: Zopt=V/ISmall or zero power-combining lossesSmall die areaHow do we drive the gates ?

Shifrin et al., 1992 IEEE-IMS; Rodwell et al., U.S. Patent 5,945,879, 1999; Pornpromlikit et al., 2011 CSICS

Page 149: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

149

Ideal Tri-axial Line

Two separate transmission lines (m3-m2, m2-m1)

E, H fields between m3 and m1 perfectly shielded

Page 150: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

150

Sub-λ/4 Baluns for Series Combining

Sub-/4 balun : stub→ inductivetunes transistor Cout !short lines→ low lossesshort lines → small die

Standard /4 balun : long lines→ high losses → large die

Balun combiner:2:1 series connectioneach source sees 25 → 4:1 increased Pout

Park et al., 2013 CSICS, 2014 IEEE-IMS

Page 151: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

151

M1

HBTs

86 μm

186 μm

M1 thickness: 1 μm

Baluns in Real ICs

1) M1 as a GND 2) Slot-type transmission lines (M1-M2), AC short (2 pF MIM)

3) Microstrip line (M2-M3), E-field shielding NOT negligible

4) Sidewalls between M3-M1 (Faraday cages), /16 length

M1-M2 Capacitors M1-M2 Line

M2 91 μm42 μm

52 μm

124 μm

M1-M2 gap: 1 μm

M2 thickness: 1 μm

M2-M3 Line

12 μm

M2-M3 gap: 5 μm

M3 thickness: 3 μm

M2-M3 Sidewalls

10 μm

1) 2)

3) 4)

Page 152: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

152

Two-Stage PA IC Test Results (86GHz)

Gain: 17.5 dBPSAT: >200 mW @ 3.0 VPAE: >30 %

14 16 18 20 22 240

5

10

15

20

25

30

35

PA

E, G

ain

(%

, d

B)

Pout (dBm)

PAE, Measured

Gain, Measured

Gain, Simulated

PAE, Simulated

Power density (power/die area)= 307 mW/mm2 (including RF pads)= 927 mW/mm2 (core area)

Large signal measurements

IC size: 825 x 820 um2

[H. Park et al, CSICS 2013]30% PAE W-Band InP Power Amplifiers Using Sub-Quarter-Wavelength Baluns for Series-Connected Power-Combining

Page 153: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

153

4:1 series-connected 81GHz power amplifier

17 dB Gain470 mW Psat23% PAETeledyne 250 nm InP HBT2 stages, 1.0 mm2(incl pads)

Park et al., 2014 IEEE-IMS

Page 154: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

154

IC example: 220 GHz

power amplifier

Page 155: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

155

Millimeter-wave imaging

235 GHz video-rate synthetic aperture radar

10,000-pixel, 94GHz imaging array→ 10,000 elements

Go

lcuk: Tran

s MT

T, Au

g 20

14

1 transmitter, 1 receiver100,000 pixels20 Hz refresh rate5 cm resolution @ 1km50 Watt transmitter

(tube, solid-state driver)

Demonstrated:SiGe (UCSD/Rebeiz)

~1.3kW: 10,000 elementsLower-power designs:

InP, CMOS, SiGe(UCSB, UCSD, Virginia Poly.)

Page 156: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

156

90 mW, 220 GHz Power Amplifier

Reed (UCSB) and Griffith (Teledyne): CSIC 2012Teledyne 250 nm InP HBT

-20

-10

0

10

20

210 220 230 240 250 260

Am

plif

ier

ga

ins (

dB

)

frequency (GHz)

3dB bandwidth = 240GHz

S21,mid-band

= 15.4dB

S11

S22

8-cell, 2-stage PA

PDC

= 4.46W

0

20

40

60

80

100

0 2 4 6 8 10 12 14

Po

ut , m

W

Pin

, mW8-cell, 2-stage PA PDC

= 4.46W

88mW Pout

84mW

80mW

72mW

62mW

42mW

90mW

220GHz operation

active area, 1.02 x 0.85 mmdie: 2.42 x 1.22 mm

156

Page 157: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

157

214 GHz InP HBT Power Amplifier UCSB/Teledyne

Gain: 25dB S21 Gain at 220GHz

Saturated output power: 164mW at 214GHz

Output Power Density:0.43 W/mm

PAE: 2.4%

Technology: 250 nm InP HBT

(no die photo) 2.5mm x 2.1 mm

Reed et al, 2014 CSICS http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6659187&tag=1

Page 158: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

158

214 GHz 180mW Power Amplifier (330 mW design)

2.3 mm x 2.5 mm

Reed, Griffith CSICS2013Teledyne 250 nm InP HBT

158Reed et al, 2014 CSICS http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6659187&tag=1

Page 159: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

159

220 GHz power amplifiers; 256nm InP HBT

Page 160: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

160

ICs in Thin-Film (Not Inverted) Microstrip

Note breaks in ground plane at transistors, resistors, capacitors

Page 161: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

161

220 GHz measurement

Page 162: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

162

Power combined modules

Slide from Z. Griffith IMS 2016 Presentation

Page 163: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

163

mm-Wave power

Page 164: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

164

Teledyne: 1.9 mW, 585 GHz Power Amplifier

Output Power

•12-Stage Common-base

•2.8 dBm Psat

•>20 dB gain up to 620 GHz

What limits output power in sub-mm-wave amplifiers ?

S-parameters

M. Seo et al., Teledyne Scientific: IMS2013

Page 165: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

165

Sub-mm-wave PAs: need more current !

common-base HBT

base

emitter

collector

groundplane

HBTs with microstrip combiner

0

1

2

3

0 1 2 3 4 5

Je (

mA

/mm

)

Vce

(V)

3 mm max emitter length (> 1 THz fmax)2 mA/mm max current densityImax= 6 mA

Maximum 3 Volt p-p output

Load: 3V/6mA= 500

Combiner cannot provide 500 loading

Page 166: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

166

Multi-finger HBTs: more current, lower fmax

More current→ lower cell load resistance

one-finger common-base HBT

two-finger power cell

four-finger power cell: parasitics

base

emitter

collector

groundplane

base

emitter

collector

base

emitter

collector

unequal emitter inductances

emitter-collector capacitance

Reduced fmax, reduced RF gain:common-lead inductance→ Z12

feedback capacitance→ Y12

phase imbalance between fingers.

Worse at higher frequencies:less tolerant of cell parasiticsless current per cellhigher required load resistanceCan optimum load be reached ?

Page 167: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

167

Sub-mm-wave transistors: need more current

0

1

2

3

0 1 2 3 4 5

Je (

mA

/mm

)

Vce

(V)

InP HBTs:thinner collector→ more currenthotter→ improve heat-sinkingor: longer emitters→ thicker base metal

GaN HEMTs: much higher voltage100+ GHz: large multi-finger FETs not feasibleNeed high current to exploit high voltage.

Need more mA/mm or longer fingers

Example: 2mA/mm, 100 mm max gate width, 50 Volts200mA maximum current50 Volts/200mA= 250 load→ unrealizable.

Page 168: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

168

50-500GHz Wireless

Page 169: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

169

IC example: 150 GHz

CMOS amplifier

Page 170: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

170

3-stage 150-GHz Amplifier; IBM 65 nm CMOS

-20

-15

-10

-5

0

5

10

140 150 160 170 180 190 200

Frequency (GHz)

S21(meas)

S21(sim)

S21 (measured using power sensor)

S11 (meas)

S11 (sim)

S22 (meas)

S22 (sim)

Frequency (GHz)

S21

S22

S11 (meas)

S11 (sim)

-20

-15

-10

-5

0

5

10

140 150 160 170 180 190 200

Frequency (GHz)

S21(meas)

S21(sim)

S21 (measured using power sensor)

S11 (meas)

S11 (sim)

S22 (meas)

S22 (sim)

140 160 180Frequency (GHz)

K-factor

0

1

2

3

140 160 180Frequency (GHz)

Stability

factor (K)

140 160 180Frequency (GHz)

K-factor

0

1

2

3

140 160 180Frequency (GHz)

Stability

factor (K)

S-p

ara

mete

r (d

B)

-15

-10

-5

0

5

10

-20 -15 -10 -5 0 5

Input power (dBm)

Ou

tpu

t p

ow

er

(dB

m)

0

5

10

15

20

25

Po

wer

Ad

ded

Eff

icie

ncy (

%)

153 GHz

153 GHz

158.4 GHz

158.4 GHz

153 GHz

158.4 GHz

Outp

ut po

we

r (d

Bm

), G

ain

(d

B)

Input power (dBm)

Po

we

r A

dde

d E

ffic

iency (

%)

PAE

Pout

Gain

-15

-10

-5

0

5

10

-20 -15 -10 -5 0 5

Input power (dBm)

Ou

tpu

t p

ow

er (

dB

m)

0

5

10

15

20

25P

ow

er A

dd

ed E

ffic

ien

cy (

%)

153 GHz

153 GHz

158.4 GHz

158.4 GHz

153 GHz

158.4 GHz

153.0GHz

158.4GHz

-15

-10

-5

0

5

10

-20 -15 -10 -5 0 5

Input power (dBm)

Ou

tpu

t p

ow

er (

dB

m)

0

5

10

15

20

25P

ow

er A

dd

ed E

ffic

ien

cy (

%)

153 GHz

153 GHz

158.4 GHz

158.4 GHz

153 GHz

158.4 GHz

153.0GHz

158.4GHz

Acknowledgement:IBM

M. Seo, B. Jagannathan, J. Pekarik, M. Rodwell, IEEE JSSCC, Dec. 2009

Dummy-prefilled microstrip lines

Page 171: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

171

IC example: 140 GHz

spatial multiplexing

Page 172: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

172

Massive Spatial Multiplexing

Two applications:

Spatially multiplexed networksmultiple independent beamscarrying independent data→ spectral re-use for massive capacity

mm-wave line-of-sight MIMOspatial multiplexingfor increased capacity

These use similar signal processing hardware

Page 173: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

173

Arrays for single-beam links

Single-beam arrays: steerable, high gain, for mm-wave links.

Simple hardware: one RF port for IC, one phase-shifter for each element

Page 174: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

174

Multi-beam links: hardware design

multiple independent beamseach carrying different dataeach independently aimed# beams = # array elements

Hardware: multi-beam phased array ICs

Page 175: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

175

Multi-Beam Links: Analog Beamformer Matrix

I/Q matrix at baseband

varying coefficients→ track/aim beams

Designs: March tapeout GF (ex IBM) 45nm SOI16 beams: 32 x 32 matrix1024 matrix elementsarea: 2.25 mm2

power: 2.25W bandwidth: ~5 GHz ?aggregate ~160 Gb/s.

Also for tapeout140 GHz front-ends for these

Page 176: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

176

Multi-Beam Links: Analog Beamformer Matrix

Page 177: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

177

Multi-Beam Links: Analog Beamformer Matrix

I/Q matrix at baseband

varying coefficients→ track/aim beams

Designs: March tapeout GF (ex IBM) 45nm SOI16 beams: 32 x 32 matrix1024 matrix elementsarea: 2.25 mm2

power: 2.25 W bandwidth: ~5 GHz ?aggregate ~160 Gb/s.

Also for tapeout140 GHz front-ends for theselater: RF for 38GHz, 60 GHz

array

cell

switched gm block

Page 178: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

178

0

90°

0

90°

0

90°

0

90°

RF Ch.1

RF Ch.2

RF Ch.3

RF Ch.4

LO

140 GHz MIMO receiver front-end

LO

RF

RF

RF

RF

Ch.1

Ch.2

Ch.3

Ch.4

Size: 1075 x 1760 um2

RF

IF_Q IF_Q

IF_I IF_I

90° hybrid

Power div.

Single-channel layout

Page 179: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

179

Single-ended vs differential

Single-ended Differential

Gain - -

Power consumption Low High

Design complexity LowHigh

(Balun is required)

Isolation (S12) & Stability LowHigh

(Cgd cancellation)

Power supply (VDD & VSS)

immunityPoor Good

Power supply immunity is critical differential structure

Page 180: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

180

Low noise amplifier

LNA design:

3-stage differential CS amplifier

Cgd cancellation

Transformers for matching networks and sing.-to-diff.

24 x 1um

Page 181: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

181

SGF vs PGF

0.0 0.1 0.2 0.3 0.4 0.50

1

2

3

4

5

6

7

8

PGF

SGF

Current Density (uA/um)

MA

G (

dB

)

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

No

ise

Fig

ure

(d

B)

Total width = 1um x 20 fingers

0.0 0.1 0.2 0.3 0.4 0.50

1

2

3

4

5

6

7

8

PGF

SGF

Current Density (uA/um)

MA

G (

dB

)

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Total width = 1um x 30 fingers

No

ise F

igu

re (

dB

)

Simulation results includes BSIM model and PEX results

(PEX capacitance and resistance due to PC, CA and M1)

*PC: poly, CA: connection between poly and metal 1, M1: metal 1

Page 182: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

182

FET footprint

Series gate feeding Parallel gate feeding

Gate

Gate

(M1)

Gate

(M2)

Drain

(M2)

Source

(M1)

Drain

(M2)

Source

(M2)

Page 183: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

183

FET footprint - PGF

PGF

- PGF and SGF have similar performances (MSG, NF)

- SGF is hard to extract the inductance of the gate

feeding line

- Source can directly connect to ground

(M1 is the ground plane)

SGF

Gate

Gate

Page 184: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

184

FET modeling

Parallel Gate Feeding

Gate

(M2)

Drain

(M2)

Source

(M1)

PEX

CA, PC, M1 parasitic

(capacitance, resistance)

EM Simulation

M2 – LB interconnection parasitic

(capacitance, resistance, inductance)

BSIM

Transistor core

LB

M1

BEOL: M1-M2-M3-C1-C2-B1-B2-B3-UA-UB-LB

Transistor modeling:

BSIM + PEX + EM simulation

(BSIM & PEX from the foundry)

Page 185: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

185

FET differential pair layout

Cgd cancellation

: MOM Cap

M1 ground plane

Cgd cancellation – better isolation & gain

Gate+(LB)

Gate-(LB)

Drain+(LB)

Drain-(LB)

BEOL: M1-M2-M3-C1-C2-B1-B2-B3-UA-UB-LB

Page 186: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

186

Matching networks

VDD: M2-M3-C1-C2

Gate bias: M2

UB-LB

M1 ground plane

For matching:

Optimize transistor size & transformer diameter

Center-tapped transformer for DC biasing (VDD, VGS)

BEOL: M1-M2-M3-C1-C2-B1-B2-B3-UA-UB-LB

Page 187: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

187

LNA layout

Size: 315 x 170 um2

Page 188: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

188

Gain & NF

100 120 140 160 180-20

-10

0

10

20

30

Frequency (GHz)

Gain

& N

ois

e F

igu

re (

dB

)

-20

-10

0

10

20

30

Input

Output

GainNF

5.2 dB @ 140 GHz

In/o

utp

ut

Retu

rn L

oss (

dB

)

19.2 dB @ 140 GHz

Gain 19.2 dB (peak gain 20 dB @ 145 GHz)

NF: 5.2 dB

Page 189: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

189

Linearity

IIP3: -5.84 dBm, Input P1dB: -13.87 dBm

-40 -30 -20 -10 0-20

-10

0

10

20

30

Gain

Output Power

Gain = 19.07 dB

Ou

tpu

t P

ow

er

(dB

m),

Ga

in (

dB

)

Input Power (dBm)

Input P1dB = -13.87 dBm

-40 -30 -20 -10 0-80

-60

-40

-20

0

20

Ou

tpu

t P

ow

er

(dB

m)

Input Power (dBm)

IIP3 = -5.84 dBm

140 GHz with 10 MHz spacing

Page 190: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

190

Summary - LNA

Gain 19.2 dB (Peak 20 dB @ 145 GHz)

NF 5.2 dB

IIP3 -5.8 dBm

Input P1dB -13.87 dBm

Power consumption 41 mA @ 1 V

Size 315 x 170 um2

Page 191: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

191

RF

RF

LO_I

LO_Q

IF_I

IF_Q

Down-conversion mixer

Mixer design:

Single-balanced active I/Q mixerCS buffer for testing (buffer gain ≈ 1)

Size: 140 x 230 um2

LO_I

LO_Q

I/Q mixer

Page 192: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

192

Mixer core layout

RF input

(LB)

LO +(LB)

LO –

(LB)

IF output (C1)

M1 ground plane

FET

BEOL: M1-M2-M3-C1-C2-B1-B2-B3-UA-UB-LB

Page 193: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

193

0

90°

0

90°

0

90°

0

90°

RF Ch.1

RF Ch.2

RF Ch.3

RF Ch.4

LO

LO distribution network:

Wilkinson power divider

Quadrature hybrid (I/Q generation)

Four-channel receiver

(12 dBm)

Page 194: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

194

Layout

LO

RF

RF

RF

RF

Ch.1

Ch.2

Ch.3

Ch.4

Size: 1075 x 1760 um2

RF

IF_Q IF_Q

IF_I IF_I

90° hybrid

Power div.

Single-channel layout

Wilkinson power divider

Page 195: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

195

Conversion gain & NF (single-channel)

100000 1000000 1E7 1E8 1E94

6

8

10

12

14

16

18

20

22

24

NF

dsb

(d

B)

Frequency (GHz)

NF dsb = 5.8 dB

1 2 3 4 5 6 7 8 9 1010

11

12

13

14

15

16

17

18

Co

nv

ers

ion

Ga

in (

dB

)

IF Frequency (GHz)

LO @ 139 GHz

Gain 17 dB (single-channel IF_I output)

NF : 5.8 dB (dsb)

Page 196: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

196

Linearity (single-channel)

-40 -30 -20 -10 0-30

-20

-10

0

10

20

30

Ou

tpu

t P

ow

er

(dB

m),

Ga

in (

dB

)

Input Power (dBm)

Gain = 17.05 dB

Gain

Output Power

Input P1dB = -18.74 dBm

-50 -40 -30 -20 -10 0-120

-100

-80

-60

-40

-20

0

20RF @ 140 GHz with 10 MHz spacing

LO @ 139 GHz

Ou

tpu

t P

ow

er

(dB

m)

Input Power (dBm)

IIP3= -10.7 dBm

IIP3: -10.7 dBm, Input P1dB: -18.74 dBm

Page 197: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

197

Summary - receiver

Gain 17 dB (Single-channel IF_I output)

NF 5.8 dB

IIP3 -10. 7 dBm

Input P1dB -18.7 dBm

Power consumption

41 mA (LNA) + 2 mA (I/Q mixer)

+ 14 mA (IF-I/Q buffers)

@ 1 V (Single-channel)

Size 1075 x 1760 um2

Page 198: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

198

IC example: 94 GHz

low-power-array

Page 199: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

199

Millimeter-wave imaging

10,000-pixel, 94GHz imaging array→ 10,000 elements

Go

lcuk: Tran

s MT

T, Au

g 20

14

Demonstrated:SiGe (UCSD/Rebeiz)

~1.3kW: 10,000 elementsLower-power designs:

InP, CMOS, SiGe(UCSB, UCSD, Virginia Poly.)

System concept: Bruce Wallace DARPA. 1st ICs (SiGe) Rebeiz, UCSD.

Page 200: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

200

Millimeter-wave imaging

10,000-pixel, 94GHz imaging array→ 10,000 elements

Go

lcuk: Tran

s MT

T, Au

g 20

14

Demonstrated:SiGe (UCSD/Rebeiz)

~1.3kW: 10,000 elementsLower-power designs:

InP, CMOS, SiGe(UCSB, UCSD, Virginia Poly.)

100 pixel × 100 pixel image→ 10,000 array elements.~130 mW DC power per element → 1.3 kW system power requirement.Problem: required size and weight of heat sink.

Page 201: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

201

94 GHz low-power IC design: transistors

At 1mW dissipation, ~17 dB gain is feasible→ low power ICs.

Teledyne: 130nm InP HBT: high-fmax bias

Teledyne: M. Urteaga et al: 2011 DRC

0

5

10

15

20

25

30

1010

1011

1012

Gain

s (

dB

)

Frequency (Hz)

MAG/MSG; common emitter MAG/MSG;

common base

Mason's unilateral gain Ic=1 mA

Vce

=1.0 V

94 GHz

10.4dB

16.8 dB

Teledyne: 130nm InP HBT: low-power bias

130nm × 3 mm emitter

Page 202: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

202

94 GHz low-power IC design: transistors

Ccbi

Ccbx

Rbe

RbbB C

E

Rex

Rc

Vbe

CjeCbe,diff =gmt f

gmVbee-jtc

CgdRg

Ri

Cgs Vg’s’

gmVg’s’ Gds

Rs

G

D

S

Csb

Cdb

BJTs FETs

ions)considerat IP3 , (ignores

BJTs use should ICs wave-mmpower -low

mV. 300/~ :FETs

.mV 26/ :BJTs

/1)/1)(/()/()( :BJTs& FETs

possible matching-impedance make tosized bemust or transist:RF

1

//

sat

Sm

Em

mmmbegsBBgin

P

Ig

Ig

ggjffgCjRZ

t

Page 203: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

203

Phased array

IC can transmit on vertical (V) or horizontal (H) polarizations (one at a time)IC can receive on vertical (V) and horizontal (H) polarizations (simultaneously)Each mode has phase-shifter, VGA. Signal distribution on backplane.InP IC: requires low-speed CMOS digital control IC

1770 um x 1550 um

Phase Shifter

VGA

PA_V

PA_H

LNA Phase Shifter

VGA

V_Antenna

H_Antenna

Rx_V Output/ Tx Inpout

Rx_H Output

V/H Switch

InputT/Rx Switch

OutputT/Rx Switch

(Virtual)

Page 204: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

204

Low-power, low-voltage mm-wave design

Extensive use of current mirrors, translinear techniques

RFin

Block3

Block2

RFin1

RFout1, in2

RFout2

RFout

Block1

on/off

on/off

Input

Output

RFin

RFout1 RFout2

on/off Off/on

Gain & switching Low-power T/R switching

VGA / switch Multiplier→ mixer, modulator,phase-shifter

Page 205: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

205

Low-power, low-voltage mm-wave design

Antenna switch LNA

backplane T/R switch PA & V/H switch

RxTx

Antenna

Cbypass

CDC

VCC

~ λ/4 Lload

Rx on/off

Rleak1Rleak2

Tx on/off

Input

Output

3/0.13

3/0.131 mA 1 mA

VCCRx on/off

~ 1 mA

SPDT SW bias

Rx VGA 1st bias

3/0.13

Rx bias circuit

Rx output/Tx input

Rx

Tx

50

Ω @

Rx o

ff

VGA 2nd stage

Tx VGA

OutputT/Rx Switch

Rx VGA

Tx on/off

ICtrlICtrlb

50 Ω @ Tx off

Input

VGA 1st stage

6/0.13

VOnHOnHOutput

Input

12/0.13

VOutput

3/0.133/0.13

VCC

Page 206: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

206

Phase-shifter and control circuits

balun

λ/4

de

lay

Input Output

Ib

I

I

Qb

Q Q

2WW 4W

Q

ExternalCurrent DAC

I

6/0.13

2/0.13IC

trl

QC

trl

VCC

Sub-quarter wavelength balun

λ/4

de

lay

Input Output

IbCtrlICtrl ICtrl

QbCtrlQCtrl QCtrl

Mat

chin

g

Ibias+Qbias

= 3.2 mA

760 um x 640 um

Page 207: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

207

Phase-shifter measurement results (1 V)

Power consumption: 4.2 mA @ 1 V

-300

-200

-100

0

100

200

90 92 94 96 98 100

Ph

as

e (

De

gre

e)

Frequency (GHz)

1 V

-20

-15

-10

-5

0

-40

-30

-20

-10

0

10

20

75 80 85 90 95 100 105 110

S(2,1), 1.5 VS(2,1), 1 VS(1,1), 1.5 V

S(2,2), 1.5 VS(1,1), 1 V

S(2,2), 1 V

S(2

,1)

(dB

)

S(1

,1), S

(2,2

) (dB

)

Frequency (GHz)

-10

-9

-8

-7

-6

-5

-4

-3

-2

90 92 94 96 98 100

Gain

(d

B)

Frequency (GHz)

1 V

-20

-15

-10

-5

0

-40

-30

-20

-10

0

10

20

75 80 85 90 95 100 105 110

S(2,1), MeasS(2,1), SimS(1,1), Meas

S(2,2), MeasS(1,1), Sim

S(2,2), Sim

S(2

,1)

(dB

)

S(1

,1), S

(2,2

) (dB

)

Frequency (GHz)

1 V

ICtrl

= 0 mA, QCtrl

= 0 mA

Page 208: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

208

Low-noise amplifier

- Noise matching for input- Conjugate matching for inter-stage- Gain matching for output- Power consumption: 2 mA @ 1.5 V

660 um x 510 um

Input

Output

3/0.133/0.13

1 mA 1 mA

Vb

VCC

Page 209: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

209

LNA Measurement results (1 V)

Power consumption: 2.0 mA @ 1 VGain: 16.3 dB @ 94 GHz (peak gain)

8

10

12

14

16

18

-25

-20

-15

-10

-5

0

-40 -35 -30 -25 -20 -15 -10

Gain, MeasGain, SimPout, MeasPout, Sim

Gain

(d

B)

Ou

tpu

t Po

we

r (dB

m)

Input Power (dBm)

1 V

-20

-15

-10

-5

0

5

10

15

20

-30

-20

-10

0

10

20

75 80 85 90 95 100 105 110

S(2,1), MeasS(2,1), SimS(1,1), Meas

S(2,2), MeasS(1,1), Sim

S(2,2), Sim

S(2

,1)

(dB

)

S(1

,1), S

(2,2

) (dB

)

Frequency (GHz)

1 V

-20

-15

-10

-5

0

5

10

15

20

-40

-30

-20

-10

0

10

20

75 80 85 90 95 100 105 110

S(2,1), 1.5 VS(2,1), 1 VS(1,1), 1.5 V

S(2,2), 1.5 VS(1,1), 1 V

S(2,2), 1 V

S(2

,1)

(dB

)

S(1

,1), S

(2,2

) (dB

)

Frequency (GHz)

2

3

4

5

6

7

8

9

10

8

10

12

14

16

18

90 91 92 93 94 95 96 97 98

NF, MeasNF, Sim

S(2,1), PNAS(2,1), NFAN

ois

e F

igu

re (

dB

)

S(2

,1), (d

B)

Frequency (GHz)

1 V

Page 210: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

210

Noise measurement setup

Calibration

Measurement

-1 dB

-1 dB

Loss before the DUT: compensated using the NFA’s internal functiontherefore, measured gain should be subtracted by -1 dB

Noise source

Mixer(LO @ 94 GHz)

W-bandAmp.

Noise Source(NSI-9095W)

Mixer(LO @ 94 GHz)

NFA(N8972A)

W-bandAmplifier

Noise Source(NSI-9095W)

Mixer(LO @ 94 GHz)

NFA(N8972A)DUT

W-bandAmplifier

Page 211: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

211

Transceiver measurement results

-30

-20

-10

0

10

20

30

-30

-20

-10

0

10

20

30

75 80 85 90 95 100 105 110

S(2,1), VS(2,1), HS(1,1), V

S(2,2), VS(1,1), H

S(2,2), H

S(2

,1)

(dB

)

S(1

,1), S

(2,2

) (dB

)

Frequency (GHz)

Rx, 1 V

10

15

20

25

-15

-10

-5

0

-40 -35 -30 -25 -20 -15

Gain, VGain, H

Pout, VPout, H

Ga

in (

dB

)

Ou

tpu

t Po

wer (d

Bm

)

Input Power (dBm)

Rx, 1 V

-30

-20

-10

0

10

20

30

-30

-20

-10

0

10

20

30

75 80 85 90 95 100 105 110

S(2,1), VS(2,1), HS(1,1), V

S(2,2), VS(1,1), H

S(2,2), H

S(2

,1)

(dB

)

S(1

,1), S

(2,2

) (dB

)

Frequency (GHz)

Tx, 1.5 V

14

16

18

20

22

24

-15

-10

-5

0

5

-40 -35 -30 -25 -20 -15 -10

Gain, VGain, HPout, VPout, H

Gain

(d

B)

Ou

tpu

t Po

wer (d

Bm

)

Input Power (dBm)

Tx, 1.5 V

Page 212: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

212

Receiver noise

6

7

8

9

10

11

12

16

17

18

19

20

21

22

23

24

93 93.5 94 94.5 95 95.5 96

NF, MeasNF, Sim

S(2,1), PNAS(2,1), NFAN

ois

e F

igu

re (

dB

)S

(2,1

), (dB

)

Frequency (GHz)

1 V

Page 213: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

213

94 GHz transceiver: performance summary

@Vcc=1.5V @Vcc=1.0V

Power Amplifier

+V/H SW

Output Power P3dB dBm 6.9 3.5

Power Gain @P3dB dB 14 14

PAE % 17 12.7

Pdiss @ P3dB mW 27.2 16.9

Pdiss (small-signal) mW 22.5 16.4

Pdiss (core exclude bias ckt) mW 17.55 11.45

Size (exclude Pads) µm 475*475 475*475

VGA

Power Gain (Rx/Tx) dB 12.5/10.9 13.4/11.5

NF (max gain) dB 4.8/7.8 4.6/7.7

NF (max gain - 6dB) dB 7.1/9.4 6.6/9.3

Input P1dB dBm -12.4/-9.6 -15.9/-15

OIP3 dBm 6.7/7.6 -1.8/-3

Pdiss mW 9 6.4

Pdiss (core exclude bias ckt) mW 6.9 4.6

Size (exclude Pads) µm 530*900 530*900

LNA

Power Gain dB 15.1 16.3

NF dBm 5 5

Input P1dB dBm -21.9 -24.5

OIP3 dBm -1.7 -3

Pdiss mW 4.95 3.95

Pdiss (core exclude bias ckt) mW 3.5 2

Size (exclude Pads) µm 480*280 480*280

Phase Shifter

Power Gain (Rx/Tx) dB -5±1.5 -5±1.5

NF dB 14.9 14.6

Input P1dB dBm 9 6

OIP3 dB 10.9 2

Pdiss mW 6.5 4.2

Pdiss (core exclude bias ckt) mW 6.5 4.2

Size (exclude Pads) µm 660*340 660*340

SPDTAntennaT/Rx SW

Loss dB 2 1.8

Isolation dB 19.5 18.5

P1dB dBm 14 14

Pdiss mW 6.8 4.8

Pdiss (core exclude bias ckt) mW 4.8 2.8

Size (exclude Pads) µm 200*680 200*680

Rx Channel

Power Gain dB 21 22.7

NF dB 8.5 8

Fractional BW % 7.6 7.5

Input P1dB dBm -22.9 -27.9

IIP3 dBm -16.3 -24.3

Pdiss mW 19.2 12.9

Pdiss (core exclude bias ckt) mW 17.25 11

Tx Channel

Power Gain dB 22.2 22.4

Pout (P3dB) dBm 3.8 0.1

Fractional BW % 6.7 6.7

Output P1dB dBm 0.8 -3.4

OIP3 dBm 10 3.8

Pdiss mW 39.7 28.7

Pdiss (core exclude bias ckt) mW 31.5 20.5Simulation

Phase Shifter

VGA

PA_V

PA_H

LNA Phase Shifter

VGA

V_Antenna

H_Antenna

Rx_V Output/ Tx Inpout

Rx_H Output

V/H Switch

InputT/Rx Switch

OutputT/Rx Switch

(Virtual)

Page 214: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

214

IC example: 1-25 GHz

dual-conversionreceiver

Page 215: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

215

Dual Conversion: Wide Tuning

Low (2GHz) IF→ image & LO responses close to RF carrier

High (100GHz) IF→ image & LO responses far from RF carrier

Dual conversion: a standard approach in RF receivers.

Modern THz IC processes→ 100 GHz IF easily feasible → Image-response-free 1-50 GHz receiver

Page 216: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

216

W-band Waveguide Filters

1 GHz filter bandwidth is easy; 100 MHz should be just feasible.

our effort: design the ICs, purchase the filter.

Page 217: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

217

Choice of Frequency Plan

Distribution Statement

LO below IF:triplers have residual output @ 2fin

→ maximum 1.5:1 tuning ratio→ maximum 67-100 GHz LO tuning~1-33 GHz RF tuningNeed 67-100GHz LO driver PApresent designs (lower-risk)

217

LO above IF:maximum 100-150 GHz LO tuning~1-50 GHz RF tuningNeed 100-150GHz LO driver PAAt ~200-300mW output powerhigher-risk.

Page 218: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

218

Full receiver configuration: 2 chips to ease testing

Page 219: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

219

Receiver: down-conversion block

LO Driver(> 20 dBm)

Ground Plane: MET3

VEE: -3.3 V

Ground Plane: MET1

VDD: 2.0 V

100 GHz

11.1 GHz

Microstrip line filter

x3

x3Multiplier(ECL_Gate)

LC filter

Down-mixer

Buffer

Multiplier(ECL_Gate)

IFA

Matching& Balun

Mu

ltiplie

r Ch

ain

Gro

un

d P

lan

eM

ET3

M

ET1

5240 um x 1160 um

Page 220: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

220

Receiver: up-conversion block

LNA

LO Driver(> 20 dBm)

Gro

un

d P

lan

eM

ET3

M

ET1

Ground Plane: MET3

VEE: -3.3 V

Ground Plane: MET1

VDD: 2.0 VM

ult

iplie

r C

ha

in

70-100 GHz

7.88-11.1 GHz

0.1 GHz-20 GHz

Microstrip line filter

x3

x3Multiplier(ECL_Gate)

LC filter

Up-mixer

Buffer

Multiplier(ECL_Gate)

Matching& Balun

4300 um x 1160 um

1 GHz

-25 GHz

Page 221: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

221

Mixer

IF

RF

LO

D1

D2

D3

D4

CA

B D

MET3 MET2 MET1

B1

B2 B3

B4

Diode mixer:High dynamic range.base-collector diodes: no saturationseries-connected→ high IP3requires high LO drive power

Baluns:tri-plane designsome are sub-quarter-wavelength

Page 222: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

222

9:1 LO Multiplier

ECL_gate1

x3 x3

ECL_gate3Filter1

Ground Plane: MET3VEE: -3.3 V

Ground Plane: MET1VDD: 2.0 V

Filter2ECL_gate2 Amp.

2500 um x 1160 um

simulation

measured6

7

8

9

10

11

12

75 80 85 90 95 100 105 110

Ou

tpu

t P

ow

er

(GH

z)

Multiplier Output Frequency (GHz)

Page 223: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

223

Differential LO Driver Amplifier: 67-100GHz

Ultra-broadband LO driverlimited by 67GHz substrate mode ?data shows otherwise.

High Powerrequired by high-IP3 mixer>100mW over full bandwidth> 250mW at most frequencies.

Topology4:1 series connected by balunscompact, efficient, ultra-broadband2 cascaded stages

Page 224: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

224

Differential LO Driver Amplifier: 67-100GHz

5

10

15

20

25

20 40 60 80 100 120

S2

1,

dB

Frequency, GHz

Measured

Simulated

10

12

14

16

18

20

22

24

5

10

15

20

25

30

40 50 60 70 80 90 100 110

P3

dB,

dB

m

Pe

ak P

AE

, %

Frequency, GHz

-30

-25

-20

-15

-10

-5

0

20 40 60 80 100 120

ma

gn

itu

de

, d

B

Frequency, GHz

S11

, S22

Page 225: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

225

High dynamic range IF amplifier

low noise figurehigh third-order interceptlow/moderate gain

Common-emitterPseudo-differential Strong inductive degeneration

high IP3. partly converges noise & S11 tuning

Page 226: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

226

First IF Amplifier

Distribution Statement 226

5.5-6 dB gain6.5 dB noise figure95-105GHz

WITH

OU

T PA

DS: 5

51

um

X 5

75

um

,1

00

mW

DC

po

wer

20.7dBm IIP3(26.7dBm OIP3)

baluns for probe testing only

Simulations

Page 227: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

227

IF Amplifier measurement results

75 80 85 90 95 100 105 1100

1

2

3

4

5

Frequency (GHz)

S2

1 (

dB

)

-20

-15

-10

-5

0

5

S1

1,

S2

2, S

12

(d

B)

S11

S21

S22

S12

Power consumption: 94 mA @ 2 VPeak gain: 4.3 dB @ 95 GHz, 4.0 dB @ 100 GHz

Low-gain (high-IIP3) design

Power consumption: 97 mA @ 2 VPeak gain: 5.9 dB @ 95 GHz, 5.7 dB @ 100 GHz

Low-gain (high-IIP3) design

75 80 85 90 95 100 105 1100

1

2

3

4

5

6

7

Frequency (GHz)

S21 (

dB

)

-20

-15

-10

-5

0

5

10

S12

S22

S11

S11, S

22, S

12 (

dB

)

S21

Page 228: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

228

IF Amplifier measurement results

5

6

7

8

9

10

11

12

93 93.5 94 94.5 95 95.5 96

Simulated Noise FigureMeasured Noise FigureDe-embedded Noise Figure

No

ise

Fig

ure

(d

B)

Frequency (GHz)

20

25

30

35

92 94 96 98 100 102

Breakout OIP3, Vcc = 2VBreakout OIP3, Vcc = 1.5VSimulated OIP3, Vcc = 2VSimulated OIP3, Vcc = 1.5VDe-embedded OIP3, Vcc = 2VDe-embedded OIP3, Vcc = 1.5V

OIP

3 (

dB

m)

Frequency (GHz)

Page 229: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

229

Performance: upconversion block

-5

0

5

10

15

20

25

30

-25

-20

-15

-10

-5

0

5

10

75 80 85 90 95 100 105 110

IIP3, w/o Mul (dBm)IIP3, Sim (dBm)IIP3 w/ Mul. (dBm)Conversion Gain, w/o Mul. (dB)Conversion Gain, Sim (dB)Conversion Gain, w/ Mul. (dB)Conversion Gain, Power meter (dB)

IIP

3 (

dB

m)

Co

nv

ers

ion

Ga

in (d

B)

IF Frequency (GHz)

Fixed RF input @ 200 MHz

-5

0

5

10

15

20

25

30

-25

-20

-15

-10

-5

0

5

10

0 2 4 6 8 10 12 14 16 18 20 22

IIP3 w/o Mul. (dBm)IIP3, Sim (dBm)IIP3 w/ Mul. (dBm)Conversion Gain w/o Mul. (dB)Conversion Gain, Sim (dB)Conversion Gain w/ Mul. (dB)Conversion Gain, Power meter (dB)

IIP

3 (

dB

m)

Co

nv

ers

ion

Ga

in (d

B)

RF Frequency (GHz)

Fixed IF frequency @100GHz

Page 230: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

230

Upconversion measurement: Gain, IM3

Coupler Power sensor

1

Harmonic mixer

Spectrumanalyzer

Power meter

Signal generator (Multiplier, LO)

Signal generator (RF)

Frequency measurement: Harmonic mixerPower measurement: power meter

Harmonic mixerLO = (RF+IF)/n

In our test:n=10 and IF = 1 GHz

*Harmonic mixer LO frequency was adjusted to measure LO feedthrough(Harmonic mixer IF =1 GHz)

Page 231: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

231

Downconversion measurement: IP3

Page 232: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

232

mm-Wave Wireless

Page 233: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

233

mm-Wave Wireless Electronics

Mobile communication @ 2Gb/s per user, 1 Tb/s per base station

Requires: large arrays, complex signal processing, high Pout , low Fmin

VLSI beamformersVLSI equalizersIII-V LNAs & PAs (?)

Page 234: web.ece.ucsb.edu...1 Transistor and IC design for 50GHz and above Mark Rodwell, UCSB Short Course, July 26, 2017, Qualcomm San Diego mm-wave systenms: Prof. U. Madhow & group: UCSB

234

(backup slides follow)