leon balents (ucsb) lorenz bartosch (yale/frankfurt) anton burkov (ucsb) matthew fisher (ucsb) subir...

71
Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil (MIT) Ashvin Vishwanath (MIT) Matthias Vojta (Karlsruhe) Quantum criticality beyond the Landau-Ginzburg- Wilson paradigm Phys. Rev. Lett. 90, 216403 (2003). Science 303, 1490 (2004). cond-mat/0408xxx Talk online: Google Sachdev

Post on 18-Dec-2015

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Leon Balents (UCSB)Lorenz Bartosch (Yale/Frankfurt)

Anton Burkov (UCSB)Matthew Fisher (UCSB)

Subir Sachdev (Yale)Krishnendu Sengupta (Yale)

T. Senthil (MIT)Ashvin Vishwanath (MIT)Matthias Vojta (Karlsruhe)

Quantum criticality beyond the Landau-Ginzburg-Wilson paradigm

Phys. Rev. Lett. 90, 216403 (2003).Science 303, 1490 (2004).

cond-mat/0408xxx

Talk online: Google Sachdev

Page 2: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Pressure,carrier concentration,….

cos .

sin .

jj

j

K r

K r

����������������������������

����������������������������1

2

S N

N

Collinear spins: 0

Non-collinear spins: 0

1 2

1 2

N N

N N

0j S

T=0

Quantum critical point

States on both sides of critical point could be either (A) Insulators

(B) Metals (C) Superconductors

SDW

Page 3: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

SDWs in Mott insulators

2 4La CuO

,K

Collinear spins

4 / 3,4 / 3K

Non-collinear spins

“Disorder” the spins by enhancing quantum fluctuations in a variety of ways…..

Page 4: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

OutlineOutlineA. “Dimerized” Mott insulators

Landau-Ginzburg-Wilson (LGW) theory.

B. Kondo lattice models “Large” Fermi surfaces and the LGW SDW paramagnon theory.

C. Fractionalized Fermi liquidsSpin liquids and Fermi volume changing

transitions with a topological order parameter.

D. Multiple order parameters LGW forbidden transitions

Page 5: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

(A) Magnetic quantum phase transitions in “dimerized” Mott insulators

Landau-Ginzburg-Wilson (LGW) theory:

Second-order phase transitions described by fluctuations of an order parameter associated with a broken symmetry

Page 6: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil
Page 7: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Coupled Dimer Antiferromagnet

jiij

ij SSJH

10

JJM. P. Gelfand, R. R. P. Singh, and D. A. Huse, Phys. Rev. B 40, 10801-10809 (1989).N. Katoh and M. Imada, J. Phys. Soc. Jpn. 63, 4529 (1994).J. Tworzydlo, O. Y. Osman, C. N. A. van Duin, J. Zaanen, Phys. Rev. B 59, 115 (1999).M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, Phys. Rev. B 65, 014407 (2002).

Page 8: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Weakly coupled dimersclose to 0

Page 9: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

close to 0 Weakly coupled dimers

Paramagnetic ground state 0, 0iS

2

1

Page 10: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

close to 0 Weakly coupled dimers

Excitation: S=1 triplon

2

1

Page 11: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

close to 0 Weakly coupled dimers

Excitation: S=1 triplon

2

1

Page 12: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

close to 0 Weakly coupled dimers

Excitation: S=1 triplon

2

1

Page 13: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

close to 0 Weakly coupled dimers

Excitation: S=1 triplon

2

1

Page 14: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

close to 0 Weakly coupled dimers

Excitation: S=1 triplon

2

1

Page 15: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

close to 0 Weakly coupled dimers

Excitation: S=1 triplon

2

1

Energy dispersion away from antiferromagnetic wavevector

2 2 2 2

2x x y y

p

c p c p

spin gap

(exciton, spin collective mode)

Page 16: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Coupled Dimer Antiferromagnet

jiij

ij SSJH

10

JJM. P. Gelfand, R. R. P. Singh, and D. A. Huse, Phys. Rev. B 40, 10801-10809 (1989).N. Katoh and M. Imada, J. Phys. Soc. Jpn. 63, 4529 (1994).J. Tworzydlo, O. Y. Osman, C. N. A. van Duin, J. Zaanen, Phys. Rev. B 59, 115 (1999).M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, Phys. Rev. B 65, 014407 (2002).

Page 17: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

close to 1 Weakly dimerized square lattice

Page 18: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

close to 1 Weakly dimerized square lattice

Excitations: 2 spin waves (magnons)

2 2 2 2p x x y yc p c p

Ground state has long-range spin density wave (Néel) order at wavevector K= ()

0

spin density wave order parameter: ; 1 on two sublatticesii i

S

S

Page 19: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

1c

Néel state

T=0

Pressure in TlCuCl3

Quantum paramagnet

c = 0.52337(3) M.

Matsumoto, C. Yasuda, S. Todo, and H. Takayama, Phys. Rev. B 65, 014407 (2002)

The method of bond operators (S. Sachdev and R.N. Bhatt, Phys. Rev. B 41, 9323 (1990)) provides a quantitative description of spin excitations in TlCuCl3 across the quantum phase transition (M. Matsumoto, B. Normand, T.M. Rice, and M. Sigrist,

Phys. Rev. Lett. 89, 077203 (2002))

0

0

Page 20: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

22 22 2 2 21

2 4!x c

ud xd cS

LGW theory for quantum criticalitywrite down an effective action

for the antiferromagnetic order parameter by expanding in powers

of and its spatial and temporal d

Landau-Ginzburg-Wilson theor

erivatives, while preserving

y

:

all s

ymmetries of the microscopic Hamiltonian

~3

2 2

; 2 c

c pp c

For oscillations of about 0 lead to the

following structure in the dynamic structure factor ,c

S p

,S p

Z p

Three triplon continuumTriplon pole

Structure holds to all orders in u

A.V. Chubukov, S. Sachdev, and J.Ye, Phys.

Rev. B 49, 11919 (1994)

S. Chakravarty, B.I. Halperin, and D.R. Nelson, Phys. Rev. B 39, 2344 (1989)

Page 21: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

(B) Kondo lattice models

“Large” Fermi surfaces and the Landau-Ginzburg-Wilson spin-density-wave

paramagnon theory

Page 22: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Kondo lattice

+

Local moments fConduction electrons c

† †'K ij i j K i i fi fi fj

i j i ij

H t c c J c c S J S S

At large JK , magnetic order is destroyed, and we obtain a non-magnetic Fermi liquid (FL) ground state

S. Doniach, Physica B 91, 231 (1977).

Page 23: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Luttinger’s Fermi volume on a d-dimensional lattice for the FL phase

Let v0 be the volume of the unit cell of the ground state, nT be the total number density of electrons per volume v0. (need not be an integer)

02 Volume enclosed by Fermi surface2

mod 2

d

T

v

n

1c cT fn n n n

A “large” Fermi surface

Page 24: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Argument for the Fermi surface volume of the FL phase

Single ion Kondo effect implies at low energiesKJ

Fermi surface volume density of holes mod 2

1 1 mod 2c cn n

Fermi liquid of S=1/2 holes with hard-core repulsion

† † † † 0i i i i

c f c f † 0 , =1/2 holei

f S

Page 25: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Doniach’s T=0 phase diagram for the Kondo lattice

JK

“Heavy” Fermi liquid with moments Kondo screened

by conduction electrons. Fermi surface volume equals the Luttinger value.

FLSDW

Local moments choose some static spin

arrangement

JKc

Page 26: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

2 22 2

1 ,42

dd

K Kcd

d qd uS q q J J d rd

��������������

K

J. Mathon, Proc. R. Soc. London A, 306, 355 (1968); T.V. Ramakrishnan, Phys. Rev. B 10, 4014 (1974); M. T. Beal-Monod and K. Maki, Phys. Rev. Lett. 34, 1461 (1975); J.A. Hertz, Phys. Rev. B 14, 1165 (1976).T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism, Springer-Verlag, Berlin (1985); G. G. Lonzarich and L. Taillefer, J. Phys. C 18, 4339 (1985); A.J. Millis, Phys. Rev. B 48, 7183 (1993).

LGW theory for quantum critical point

Write down effective action for SDW order parameter

fluctuations are damped

by mixing with fermionic

quasiparticles near the Fermi surface

Fluctuations of about 0 the triplon is now a paramagno n

Page 27: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Doniach’s T=0 phase diagram for the Kondo lattice

JK

“Heavy” Fermi liquid with moments Kondo screened

by conduction electrons. Fermi surface volume equals the Luttinger value.

FLSDW

Local moments choose some static spin arrangement.

Near the quantum critical point, the Fermi surface is modified

from the “large Fermi surface” only by the appearance of “gaps”

near the hot spots.

JKc

Page 28: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

(C) Fractionalized Fermi liquids (FL*)

Spin liquids and Fermi volume changing transitions with a topological order parameter

Beyond LGW: quantum phases and phase transitions with emergent gauge excitations

and fractionalization

Page 29: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Work in the regime with small JK, and consider destruction of magnetic order by frustrating

(RKKY) exchange interactions between f moments

Ground state has Neel order with 0

Page 30: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Work in the regime with small JK, and consider destruction of magnetic order by frustrating

(RKKY) exchange interactions between f moments

Destroy SDW order by perturbations which preserve full square lattice symmetry e.g. second-neighbor or ring exchange.

Page 31: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Destroy SDW order by perturbations which preserve full square lattice symmetry e.g. second-neighbor or ring exchange.

Work in the regime with small JK, and consider destruction of magnetic order by frustrating

(RKKY) exchange interactions between f moments

Page 32: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Work in the regime with small JK, and consider destruction of magnetic order by frustrating

(RKKY) exchange interactions between f moments

2

A ground state with 0 and no broken lattice symmetries.

Such a state has emergent excitations described by a or U(1) gauge theory

spin liquid

Z

P. Fazekas and P.W. Anderson, Phil Mag 30, 23 (1974). N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991); X. G. Wen, Phys. Rev. B 44, 2664 (1991).

Page 33: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

+

Local moments f

Conduction electrons c

† †' ,ij i j K i i fi H fi fj

i j i i j

H t c c J c c S J i j S S

Influence of conduction electrons

Determine the ground state of the quantum antiferromagnet defined by JH, and then couple to conduction electrons by JK

Choose JH so that ground state of antiferromagnet is a Z2 or U(1) spin liquid

Page 34: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

+

Local moments f

Conduction electrons c

Influence of conduction electrons

Perturbation theory in JK is regular, and so this state will be stable for finite JK.

So volume of Fermi surface is determined by(nT -1)= nc(mod 2), and does not equal the Luttinger value.

At JK= 0 the conduction electrons form a Fermi surface on their own with volume determined by nc.

The (U(1) or Z2) FL* state

Page 35: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

02 Volume enclosed by Fermi surface2

1 mod 2

d

T

v

n

A new phase: FL*

This phase preserves spin rotation invariance, and has a Fermi surface of sharp electron-like quasiparticles.

The state has “topological order” and associated neutral excitations. The topological order can be detected by the violation of Luttinger’s

Fermi surface volume. It can only appear in dimensions d > 1

Precursors: N. Andrei and P. Coleman, Phys. Rev. Lett. 62, 595 (1989). Yu. Kagan, K. A. Kikoin, and N. V. Prokof'ev, Physica B 182, 201 (1992). Q. Si, S. Rabello, K. Ingersent, and L. Smith, Nature 413, 804 (2001).

S. Burdin, D. R. Grempel, and A. Georges, Phys. Rev. B 66, 045111 (2002). L. Balents and M. P. A. Fisher and C. Nayak, Phys. Rev. B 60, 1654, (1999);

T. Senthil and M.P.A. Fisher, Phys. Rev. B 62, 7850 (2000). F. H. L. Essler and A. M. Tsvelik, Phys. Rev. B 65, 115117 (2002).

Page 36: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

JK

FLU(1) FL*

JKc

Phase diagram

Page 37: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

JK

FLU(1) FL*

JKc

Fractionalized Fermi liquid with moments paired in a spin liquid. Fermi surface volume does not include

moments and is unequal to the Luttinger value.

Phase diagram

Page 38: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

JK

FLU(1) FL*

JKc

Fractionalized Fermi liquid with moments paired in a spin liquid. Fermi surface volume does not include

moments and is unequal to the Luttinger value.

“Heavy” Fermi liquid with moments Kondo screened

by conduction electrons. Fermi surface volume equals the Luttinger value.

Phase diagram

Page 39: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

JK

FLU(1) FL*

JKc

Fractionalized Fermi liquid with moments paired in a spin liquid. Fermi surface volume does not include

moments and is unequal to the Luttinger value.

“Heavy” Fermi liquid with moments Kondo screened

by conduction electrons. Fermi surface volume equals the Luttinger value.

Sharp transition at T=0 in compact U(1) gauge theory; compactness “irrelevant” at critical point

Phase diagram

Page 40: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

JK

FLU(1) FL*

JKc

Sharp transition at T=0 in compact U(1) gauge theory; compactness “irrelevant” at critical point

T

Quantum Critical

No transition for T>0 in compact U(1) gauge theory; compactness essential for this feature

Phase diagram

Page 41: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

JK

FLU(1) FL*

JKc

T

Quantum Critical

• Specific heat ~ T ln T• Violation of Wiedemann-Franz

Phase diagram

Page 42: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

JK

FLU(1) FL*

JKc

T

Quantum Critical

Resistivity ~ 1/ ln 1/ T

Phase diagram

Page 43: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Phase diagram (after allowing for conventional magnetic order)

Topological and SDW order parameters suggest two Topological and SDW order parameters suggest two separate quantum critical pointsseparate quantum critical points

Page 44: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

(D) Multiple order parameters

Berry phases and the breakdown of the LGW paradigm

Page 45: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Work in the regime with small JK, and consider destruction of magnetic order by frustrating

(RKKY) exchange interactions between f moments

Ground state has Neel order with 0

Page 46: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Work in the regime with small JK, and consider destruction of magnetic order by frustrating

(RKKY) exchange interactions between f moments

Destroy SDW order by perturbations which preserve full square lattice symmetry e.g. second-neighbor or ring exchange.

Page 47: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Destroy SDW order by perturbations which preserve full square lattice symmetry e.g. second-neighbor or ring exchange.

Work in the regime with small JK, and consider destruction of magnetic order by frustrating

(RKKY) exchange interactions between f moments

Page 48: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Possible paramagnetic ground state with 0

Work in the regime with small JK, and consider destruction of magnetic order by frustrating

(RKKY) exchange interactions between f moments

Page 49: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

VBS

VBS

Such a state breaks lattice symmetry and has 0,

where is the

valence bond solid (VBS) order parameter

VBS

Work in the regime with small JK, and consider destruction of magnetic order by frustrating

(RKKY) exchange interactions between f moments

Possible paramagnetic ground state with 0

Page 50: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Work in the regime with small JK, and consider destruction of magnetic order by frustrating

(RKKY) exchange interactions between f moments

Possible paramagnetic ground state with 0

VBS

VBS

Such a state breaks lattice symmetry and has 0,

where is the

valence bond solid (VBS) order parameter

VBS

Page 51: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Work in the regime with small JK, and consider destruction of magnetic order by frustrating

(RKKY) exchange interactions between f moments

Possible paramagnetic ground state with 0

VBS

VBS

Such a state breaks lattice symmetry and has 0,

where is the

valence bond solid (VBS) order parameter

VBS

Page 52: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Work in the regime with small JK, and consider destruction of magnetic order by frustrating

(RKKY) exchange interactions between f moments

Possible paramagnetic ground state with 0

VBS

VBS

Such a state breaks lattice symmetry and has 0,

where is the

valence bond solid (VBS) order parameter

VBS

Page 53: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Work in the regime with small JK, and consider destruction of magnetic order by frustrating

(RKKY) exchange interactions between f moments

Possible paramagnetic ground state with 0

VBS order (and confinement) appear for collinear spins in d=2

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).

VBS

VBS

Such a state breaks lattice symmetry and has 0,

where is the

valence bond solid (VBS) order parameter

VBS

Page 54: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Naïve approach: add VBS order parameter to LGW theory “by hand”

g

First order

transitionVBS

Neel order

0, 0

VBS

VBS order

0, 0

gVBS

Coexistence

0,

0

VBS

Neel order

0, 0

VBS

VBS order

0, 0

gVBS

( topologically ordered)

" "

0, 0

Disordered

VBS

Neel order

0, 0

VBS

VBS order

0, 0

Page 55: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Naïve approach: add VBS order parameter to LGW theory “by hand”

g

First order

transitionVBS

Neel order

0, 0

VBS

VBS order

0, 0

gVBS

Coexistence

0,

0

VBS

Neel order

0, 0

VBS

VBS order

0, 0

gVBS

( topologically ordered)

" "

0, 0

Disordered

VBS

Neel order

0, 0

VBS

VBS order

0, 0

Page 56: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

A. W. Sandvik, S. Daul, R. R. P. Singh, and D. J. Scalapino, Phys. Rev. Lett. 89, 247201 (2002)

Superfluid-insulator transition of hard core bosons at f=1/2 (Neel-valence bond solid transition of S=1/2 AFM)

i j i j i j k l i j k lij ijkl

H J S S S S K S S S S S S S S

g=

Large scale (> 8000 sites) numerical study of the destruction of superfluid (i.e. magnetic Neel) order at half filling with full square lattice symmetry

VBS insulator

Superfluid(Neel) order

Page 57: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Quantum mechanics of two-

dimensional bosons: world

lines of bosons in spacetime

xy

Boson-vortex duality

C. Dasgupta and B.I. Halperin, Phys. Rev. Lett. 47, 1556 (1981); D.R. Nelson, Phys. Rev. Lett. 60, 1973 (1988); M.P.A. Fisher and D.-H. Lee, Phys. Rev. B 39, 2756 (1989);

Express theory of S=1/2 AFM as a theory of Sz= -1 “spin down” bosons at filling f=1/2

Page 58: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Classical statistical mechanics of a

“dual” three-dimensional

superconductor:vortices in a

“magnetic” field

xy

z

Boson-vortex duality

C. Dasgupta and B.I. Halperin, Phys. Rev. Lett. 47, 1556 (1981); D.R. Nelson, Phys. Rev. Lett. 60, 1973 (1988); M.P.A. Fisher and D.-H. Lee, Phys. Rev. B 39, 2756 (1989);

Express theory of S=1/2 AFM as a theory of Sz= -1 “spin down” bosons at filling f=1/2

Page 59: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Classical statistical mechanics of a

“dual” three-dimensional

superconductor:vortices in a

“magnetic” field

xy

z

Boson-vortex duality

Strength of “magnetic” field = density of bosons = f flux quanta per plaquette

C. Dasgupta and B.I. Halperin, Phys. Rev. Lett. 47, 1556 (1981); D.R. Nelson, Phys. Rev. Lett. 60, 1973 (1988); M.P.A. Fisher and D.-H. Lee, Phys. Rev. B 39, 2756 (1989);

Page 60: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Statistical mechanics of dual superconductor is invariant under the square lattice space group:

Boson-vortex duality

, : Translations by a lattice spacing in the , directions

: Rotation by 90 degrees.

x yT T x y

R

2

1 1 1 4

Magnetic space group:

;

; ; 1

ifx y y x

y x x y

T T e T T

R T R T R T R T R

2

1 1 1 4

Magnetic space group:

;

; ; 1

ifx y y x

y x x y

T T e T T

R T R T R T R T R

Strength of “magnetic” field = density of bosons = f flux quanta per plaquette

Page 61: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Boson-vortex duality

At density = / ( , relatively

prime integers) there are species

of vortices, (with =1 ),

associated with gauge-equivalent

regions of the Brillouin zone

f p q p q

q

q

q

At density = / ( , relatively

prime integers) there are species

of vortices, (with =1 ),

associated with gauge-equivalent

regions of the Brillouin zone

f p q p q

q

q

q

Hofstäder spectrum of dual “superconducting” order

2

1 1 1 4

Magnetic space group:

;

; ; 1

ifx y y x

y x x y

T T e T T

R T R T R T R T R

2

1 1 1 4

Magnetic space group:

;

; ; 1

ifx y y x

y x x y

T T e T T

R T R T R T R T R

Page 62: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Boson-vortex duality

21

2

1

The vortices form a representation of the space group

: ; :

1 :

i fx y

qi mf

mm

q projective

T T e

R eq

21

2

1

The vortices form a representation of the space group

: ; :

1 :

i fx y

qi mf

mm

q projective

T T e

R eq

Hofstäder spectrum of dual “superconducting” order

See also X.-G. Wen, Phys. Rev. B 65, 165113 (2002)

At density = / ( , relatively

prime integers) there are species

of vortices, (with =1 ),

associated with gauge-equivalent

regions of the Brillouin zone

f p q p q

q

q

q

At density = / ( , relatively

prime integers) there are species

of vortices, (with =1 ),

associated with gauge-equivalent

regions of the Brillouin zone

f p q p q

q

q

q

Page 63: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Boson-vortex duality

The fields characterize Neel (superfluid) and VBS orderboth

Neel (superfluid) order: 0

ˆ

* 2

1

VBS (charge) order:

Status of space group symmetry determined by

2density operators at wavevectors ,

: ;

:

qi mnf i mf

mn

i xx

n

y

mn

pm n

e

T

e

q

e T

Q

QQ Q

Q

ˆ

:

i ye

R R

QQ Q

Q Q

Page 64: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Naïve approach: add VBS order parameter to LGW theory “by hand”

g

First order

transitionVBS

Neel order

0, 0

VBS

VBS order

0, 0

gVBS

Coexistence

0,

0

VBS

Neel order

0, 0

VBS

VBS order

0, 0

gVBS

( topologically ordered)

" "

0, 0

Disordered

VBS

Neel order

0, 0

VBS

VBS order

0, 0

Page 65: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Predictions of extended “LGW” theory with projective symmetry

g

First order

transitionVBS

Neel order

0, 0

VBS

VBS order

0, 0

gVBS

Coexistence

0,

0

VBS

Neel order

0, 0

VBS

VBS order

0, 0

gVBS

Neel order

0, 0

VBS

VBS order

0, 0

Second order

transition

Page 66: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

g

Phase diagram of S=1/2 square lattice antiferromagnet

*

Neel order

~ 0z z

VBSVBS order 0,

1/ 2 spinons confined,

1 triplon excitations

S z

S

or

Page 67: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Main lesson:

Novel second-order quantum critical point between phases with conventional order parameters.

A direct second-order transition between such phases is forbidden by symmetry in LGW theory.

Page 68: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Key question for metallic systems:

Is a direct second-order quantum critical point possible between metallic states distinguished by

two conventional order parameters: (A) SDW order(B) Shape of Fermi surface ?

Such a transition is obtained if the FL* phase is unstable to confinement to a SDW state at low

energies.

Page 69: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Phase diagram for the Kondo lattice ?

JK

“Heavy” Fermi liquid with moments Kondo screened

by conduction electrons. Fermi surface volume equals the Luttinger value.

FLSDW

Local moments choose some static spin arrangement.

The shape of the Fermi surface differs strongly from that of the

heavy Fermi liquid

JKc

See also Q. Si, S. Rabello, K. Ingersent, and J. L. Smith, Nature 413, 804 (2001); S. Paschen, T. Luehmann, C. Langhammer, O. Trovarelli, S. Wirth, C. Geibel, F. Steglich,

Acta Physica Polonica B 34, 359 (2003).

Page 70: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Conclusions

Two possible routes to “exotic” quantum criticality

I. New FL* phase with a Fermi surface of electron-like quasiparticles (whose volume violates the Luttinger theorem), topological order, emergent gauge excitations, and neutral fractionalized quasiparticles.

Novel Fermi-volume-changing quantum criticality in the transition between the FL and FL* phases (and associated SDW and SDW* phases).

Conclusions

Two possible routes to “exotic” quantum criticality

I. New FL* phase with a Fermi surface of electron-like quasiparticles (whose volume violates the Luttinger theorem), topological order, emergent gauge excitations, and neutral fractionalized quasiparticles.

Novel Fermi-volume-changing quantum criticality in the transition between the FL and FL* phases (and associated SDW and SDW* phases).

Page 71: Leon Balents (UCSB) Lorenz Bartosch (Yale/Frankfurt) Anton Burkov (UCSB) Matthew Fisher (UCSB) Subir Sachdev (Yale) Krishnendu Sengupta (Yale) T. Senthil

Conclusions

Two possible routes to “exotic” quantum criticality

II. Conventional FL and SDW phases (but with very different shapes of Fermi surfaces) undergo a direct quantum phase transition.

Analogous quantum critical point found in a direct transition between Neel and VBS states in S=1/2 Mott insulators in two dimensions. Mapping to this scenario to metals we obtain the above scenario if the FL* phase is unstable to confinement to a SDW phase.

Conclusions

Two possible routes to “exotic” quantum criticality

II. Conventional FL and SDW phases (but with very different shapes of Fermi surfaces) undergo a direct quantum phase transition.

Analogous quantum critical point found in a direct transition between Neel and VBS states in S=1/2 Mott insulators in two dimensions. Mapping to this scenario to metals we obtain the above scenario if the FL* phase is unstable to confinement to a SDW phase.