thermal analysis for 3d integration · h heater s thermal sensor h0 h1 h2 h3 s0 s1 s2 s3 hp0 s hp1...

20
© DOCEA Power - Confidential 1 Thermal Analysis for 3D Integration GSA Oct 16 2013 Gene Matter, VP Application Engineering, DOCEA POWER

Upload: others

Post on 21-Mar-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Thermal Analysis for 3D Integration · H Heater S Thermal Sensor H0 H1 H2 H3 S0 S1 S2 S3 HP0 S HP1 HP2 HP3 SP Thermal Heaters & Sensors • WIOMING instrumented with –8 Heaters

© DOCEA Power - Confidential 1

Thermal Analysis for 3D Integration

GSA Oct 16 2013

Gene Matter, VP Application Engineering, DOCEA POWER

Page 2: Thermal Analysis for 3D Integration · H Heater S Thermal Sensor H0 H1 H2 H3 S0 S1 S2 S3 HP0 S HP1 HP2 HP3 SP Thermal Heaters & Sensors • WIOMING instrumented with –8 Heaters

• Increasing thermal issues

– Technology scaling => higher power density

– 3D stacking with TSV => greater thermal issues

• Temperature impacts

– Power consumption

– Peak performance

– Ageing

– Package costs

• MPSoC architectures

– Dynamic applications, variable execution time

– Power management solutions (DVFS), can even worsen thermal properties!

Thermal mitigation schemes must be proposed at design time

Thermal issues for 3D IC and

heterogeneous assemblies

Page 3: Thermal Analysis for 3D Integration · H Heater S Thermal Sensor H0 H1 H2 H3 S0 S1 S2 S3 HP0 S HP1 HP2 HP3 SP Thermal Heaters & Sensors • WIOMING instrumented with –8 Heaters

Thermal Modeling at the System Level

© DOCEA Power - company confidential 3

Physical Description Electrical Equivalent

Environment

Power Consumers

Materials

Compact Thermal Model

AceThermalModeler

Geometry

Physical Description

400 nodes 60sec extraction

• Heat transfer modeled via full 3D heat diffusion with no restriction to heat flow paths

• Support isotropic and anisotropic thermal conductivity

• Material homogenization and model reduction enabling dramatic reduction of the node count (Typically 4 orders of magnitude)

• Thermal model fully automated with Python scripts

Page 4: Thermal Analysis for 3D Integration · H Heater S Thermal Sensor H0 H1 H2 H3 S0 S1 S2 S3 HP0 S HP1 HP2 HP3 SP Thermal Heaters & Sensors • WIOMING instrumented with –8 Heaters

Proposed Flow for Modeling Dynamic

Thermal Management

© DOCEA Power - company confidential 4

Simulation Output Reports

Aceplorer

Thermal Model Power Model

Use Case

Spatial effects Temporal effects

Rapid variations Long trends

Page 5: Thermal Analysis for 3D Integration · H Heater S Thermal Sensor H0 H1 H2 H3 S0 S1 S2 S3 HP0 S HP1 HP2 HP3 SP Thermal Heaters & Sensors • WIOMING instrumented with –8 Heaters

• Analyze temperature dependent IP leakage

• Explore power/thermal management strategies

• Qualify environment capacitive effect

• Qualify design minimum cooling properties

– Given a power budget

– Given an environment: material, geometry

• Explore floor plan and proximity

dependencies

• Locate/Mitigate spatial and temporal hotspots

and gradients

• Identify optimal thermal sensor location

• Manage costs! Product: Die/Package,

Subsystem: PCB, chassis/enclosure, or

Complete Systems

Modeling Thermal at the System Level: Summary

Temporal effects

Spatial effects

Rapid variations

Long trends

5

Page 6: Thermal Analysis for 3D Integration · H Heater S Thermal Sensor H0 H1 H2 H3 S0 S1 S2 S3 HP0 S HP1 HP2 HP3 SP Thermal Heaters & Sensors • WIOMING instrumented with –8 Heaters

Memory-on-Logic 3D stack

ARM1176

WideIO TSVs + Controllers 4 memory channels

3D NOC TSVs

3D NOC TSVs

3D NOC TSVs

3D NOC TSVs 4 * Heaters

| 6

Circuit Technology

-65nm CMOS TSV middle process

-Face2Back, Die2Die, Flip-Chip 3Dassembly

Main features

- WideIO memory controllers

- 3D Asynchronous NOC

- 3GPP LTE multi core CPU backbone

- Host CPU ARM1176

Circuit numbers

-125 Million Transistors

- 400 Macros

- 270 pads

- 1980 TSV for 3D NoC

- 1016 TSV for WideIO memory

- 933 Bumps for flip chip

Circuit performances

- WideIO 200MHz / 512 bits

- Units in the [350 - 400] MHz range

- Asynchronous NoC ~ 550 MHz

Page 7: Thermal Analysis for 3D Integration · H Heater S Thermal Sensor H0 H1 H2 H3 S0 S1 S2 S3 HP0 S HP1 HP2 HP3 SP Thermal Heaters & Sensors • WIOMING instrumented with –8 Heaters

WIOMING stack

| 7

Back side alignment cross

Back side alignment cross

~1 mm

~3000µm

8562 µm

85

52

µm

~1 mm

~ 3 mm

Central Matrix copper post

Front side identification bump block

4950 µm

520 µm

•1386 µbumps matrix size•1016 µbumps per die

•252 Power•696 I/O Signal• 68 Not connected

•370 No µbumps

1016 backside micro-bumps / TSVs:

50µm x 40 µm pitch

For signal, test and power

No backside redistribution layer

Mechanical bumps added

933 frontside flip-chip bumps:

150 µm min. pitch

For signal, test and power

Assembly technology

Assembly Die-to-Die Stacking Face-to-Back

TSV process Via Middle TSV density 10µm diameter TSV xy pitch 50µm x 40 µm

Copper Pillars 20µm diameter

Central array of µbumps

Metal stack

Wide IO DRAM: face down

SoC: face down

Package

Substrate

sig

nal

SDRAM

supply IOs SoC signal and supply IOs,

SDRAM muxed test IOs

su

pp

ly

Peripheral bumps Central matrix µ-buffer

supply IOs

VD

DQ

su

pp

ly

Metal stack

Package Balls

Package

molding

TSVs

Flip-chip bumps

459 balls

Backside µ-bumps

SoC signal and supply IOs,

SDRAM muxed test IOs

Package: BGA 12x12, 581 balls

•TFBGA 12x12x1.2•481 outer rings balls•100 inner matrix balls•0.4mm ball pitch

1.2 mm

A1 ball corner identif ication

Package:

12 x 12 x 1.2 BGA

0.4 mm ball pitch

459 balls for signal, test and power

Page 8: Thermal Analysis for 3D Integration · H Heater S Thermal Sensor H0 H1 H2 H3 S0 S1 S2 S3 HP0 S HP1 HP2 HP3 SP Thermal Heaters & Sensors • WIOMING instrumented with –8 Heaters

WIOMING 3D-Stack cross-view

[D. Dutoit & All, VLSI Symposium, 2013]

Page 9: Thermal Analysis for 3D Integration · H Heater S Thermal Sensor H0 H1 H2 H3 S0 S1 S2 S3 HP0 S HP1 HP2 HP3 SP Thermal Heaters & Sensors • WIOMING instrumented with –8 Heaters

H Heater S Thermal

Sensor

H0 H1

H2 H3

S0 S1

S2 S3

HP

0

HP

1

HP

2

HP

3

SP

Thermal Heaters & Sensors

• WIOMING instrumented with

– 8 Heaters (Resistance) • Can generate each 1Watt

– Thermal sensors • Accuracy ~1°C after calibration

• Full Software Control on the

board

to perform accurate 3D

Thermal Characterization

H H

H H

H H

H H

S S

S

S S

S S

Page 10: Thermal Analysis for 3D Integration · H Heater S Thermal Sensor H0 H1 H2 H3 S0 S1 S2 S3 HP0 S HP1 HP2 HP3 SP Thermal Heaters & Sensors • WIOMING instrumented with –8 Heaters

WIOMING system

Full-system thermal modeling including: WIOMING circuit

65nm SoC

WideIO DRAM memory

Daughter board

BGA socket

Mother board

Page 11: Thermal Analysis for 3D Integration · H Heater S Thermal Sensor H0 H1 H2 H3 S0 S1 S2 S3 HP0 S HP1 HP2 HP3 SP Thermal Heaters & Sensors • WIOMING instrumented with –8 Heaters

AceThermalModeler - Thermal Model

Page 12: Thermal Analysis for 3D Integration · H Heater S Thermal Sensor H0 H1 H2 H3 S0 S1 S2 S3 HP0 S HP1 HP2 HP3 SP Thermal Heaters & Sensors • WIOMING instrumented with –8 Heaters

ATM model: full system

Top assembly

Screw

Plate

WIOMING chip Daughter board

Daughter board balls

Spring probes

Base socket

Base socket balls Mother board

Full ATM model +5.2K system parts

16 power sources inside the chip: 8 heaters, 7 sensors and WideIO memory

6 power sources on mother board: FPGA and 5 peripheral ICs

10 defined materials

Page 13: Thermal Analysis for 3D Integration · H Heater S Thermal Sensor H0 H1 H2 H3 S0 S1 S2 S3 HP0 S HP1 HP2 HP3 SP Thermal Heaters & Sensors • WIOMING instrumented with –8 Heaters

ATM model: WIOMING chip details

Top-die µ-bumps

Bottom-die

bumps

BGA substrate

Solder balls

Molding (epoxy)

TSVs

Page 14: Thermal Analysis for 3D Integration · H Heater S Thermal Sensor H0 H1 H2 H3 S0 S1 S2 S3 HP0 S HP1 HP2 HP3 SP Thermal Heaters & Sensors • WIOMING instrumented with –8 Heaters

Homogenization procedures

Combine multiple system parts into an equivalent one.

• Before homogenization

– System parts: 5244

– Materials: 10

– Nodes: 16milliion

After homogenization System parts: 68

Materials: 27

Nodes: 175 000

Thanks to homogenization, can simulate ATM model

Static simulation time : ~msec

Dynamic simulation time : ~sec

Page 15: Thermal Analysis for 3D Integration · H Heater S Thermal Sensor H0 H1 H2 H3 S0 S1 S2 S3 HP0 S HP1 HP2 HP3 SP Thermal Heaters & Sensors • WIOMING instrumented with –8 Heaters

Simulation results: Center (memory controller) Heating

All 4 SME heaters ON:

Max error in temp. increase: 16.3%

Max error in total temp.: 9.91%

all SME heaters ON: 4W

0

10

20

30

40

50

60

70

SME_11 SME_12 SME_21 SME_22 MEP_0 MEP_1 MEP_2

Sensor

Tem

pera

ture

in

cre

ase (

C)

simulated

measured

all SME heaters ON: 4W

0

20

40

60

80

100

SME_11 SME_12 SME_21 SME_22 MEP_0 MEP_1 MEP_2

Sensor

Tem

pera

ture

(C

)

simulated

measured

H0 H1

H2 H3

S0 S1

S2 S3

HP

0

HP

1

HP

2

HP

3

SP

H H

H H

H H

H H

S S

S

S S

S S

H0 H1

H2 H3

S0 S1

S2 S3

HP

0

HP

1

HP

2

HP

3

SP

H0 H1

H2 H3

S0 S1

S2 S3

HP

0

HP

1

HP

2

HP

3

SP

H H

H H

H H

H H

H H

H H

H H

H H

S S

S

S S

S S

S S

S

S S

S S

ON

Page 16: Thermal Analysis for 3D Integration · H Heater S Thermal Sensor H0 H1 H2 H3 S0 S1 S2 S3 HP0 S HP1 HP2 HP3 SP Thermal Heaters & Sensors • WIOMING instrumented with –8 Heaters

Simulation results: Bottom (CPU cores) Heating

Bottom MEP heaters ON:

Max error in temp. increase: -15.97%

Max error in total temp.: -9.26%

H0 H1

H2 H3

S0 S1

S2 S3

HP

0

HP

1

HP

2

HP

3

SP

H H

H H

H H

H H

S S

S

S S

S S

H0 H1

H2 H3

S0 S1

S2 S3

HP

0

HP

1

HP

2

HP

3

SP

H0 H1

H2 H3

S0 S1

S2 S3

HP

0

HP

1

HP

2

HP

3

SP

H H

H H

H H

H H

H H

H H

H H

H H

S S

S

S S

S S

S S

S

S S

S S

25

35

45

55

65

75

85

95

105

0 0.5 1 1.5 2

Power dissipation (W)

Ab

so

lute

Tem

pera

ture

(ºC

)

SME_12 - simu

SME_12 - meas

SME_21 - simu

SME_21 - meas

MEP_2 - simu

MEP_2 - meas

MEP_0 - simu

MEP_0 - meas

ON

Page 17: Thermal Analysis for 3D Integration · H Heater S Thermal Sensor H0 H1 H2 H3 S0 S1 S2 S3 HP0 S HP1 HP2 HP3 SP Thermal Heaters & Sensors • WIOMING instrumented with –8 Heaters

Simulation results: All Scenarios

• Average error of 4.22% and a worst case error lower than 12%.

Page 18: Thermal Analysis for 3D Integration · H Heater S Thermal Sensor H0 H1 H2 H3 S0 S1 S2 S3 HP0 S HP1 HP2 HP3 SP Thermal Heaters & Sensors • WIOMING instrumented with –8 Heaters

Simulation results: Transient

• The transient temperature responses of the sensor BL2 for two power scenarios with different average distance from the active heaters

Average distance of 3.8mm from active heaters power scenario 2 (all center heaters on)

Average distance of 1.0mm from active heaters power scenario 4 (all bottom left heaters on)

Page 19: Thermal Analysis for 3D Integration · H Heater S Thermal Sensor H0 H1 H2 H3 S0 S1 S2 S3 HP0 S HP1 HP2 HP3 SP Thermal Heaters & Sensors • WIOMING instrumented with –8 Heaters

Conclusion

ESL Thermal Modelling using Ace Thermal Modeler©

Ready for early exploration of 3D stack with TSVs

Homogenization procedures to reduce model complexity

Full model generation automation using python scripts

Simulation complexity in ~seconds

Model correlation with Silicon

Performed on a real Memory-on-Logic 3D stack

WideIO DRAM + SOC 65nm, F2B, TSV middle, FlipChip

Error estimates in the 10-15% range

Requires a complete modeling of the full system

Page 20: Thermal Analysis for 3D Integration · H Heater S Thermal Sensor H0 H1 H2 H3 S0 S1 S2 S3 HP0 S HP1 HP2 HP3 SP Thermal Heaters & Sensors • WIOMING instrumented with –8 Heaters

Thank You!

Docea Headquarters

166, Rue du Rocher de Lorzier 38430 Moirans France www.doceapower.com [email protected] [email protected] [email protected]

Docea Power, Inc

10 S. 3rd St., 3rd Floor, Suite 306

San Jose, California 95113

USA [email protected] [email protected] [email protected]

Sales & Support Korea Saline Inc. B 1405, Galleria Palace, Jamsil-Dong, Songpa-Gu, Seoul, Korea [email protected]

Sales & Support Japan HDLAB Inc. 3-1-4 Shin-Yokohama Kohoku-ku, Yokohama, 222-0033, Japan [email protected]