submicron inp bipolar transistors: scaling laws, technology roadmaps, advanced fabrication processes...

23
Submicron InP Bipolar Transistors: Scaling Laws, Technology Roadmaps, Advanced Fabrication Processes Mark Rodwell University of California, Santa Barbara [email protected] 805-893-3244, 805-893-3262 fax 2002 SSDM Conference, September, Nagoya

Post on 21-Dec-2015

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Submicron InP Bipolar Transistors: Scaling Laws, Technology Roadmaps, Advanced Fabrication Processes Mark Rodwell University of California, Santa Barbara

Submicron InP Bipolar Transistors:Scaling Laws, Technology Roadmaps, Advanced Fabrication Processes

Mark Rodwell

University of California, Santa Barbara

[email protected] 805-893-3244, 805-893-3262 fax

2002 SSDM Conference, September, Nagoya

Page 2: Submicron InP Bipolar Transistors: Scaling Laws, Technology Roadmaps, Advanced Fabrication Processes Mark Rodwell University of California, Santa Barbara

Applications of InP HBTs

Optical Fiber Transceivers

40 Gb:InP and SiGe HBT both feasible ICs now available; market has vanished

80 & 160 Gb may come in timewithin feasibility for scaled InP HBTworld may not need capacity for some timeWDM might be better use of fiber bandwidth

mmWave Transmission

60-80 GHz, 120-160 GHz, 220-300 GHzLow atmospheric attenuation (weather permitting).High antenna gains (short wavelengths).10 Gb/s transmission over 500 meters with 20 cm antennas needs 4 mW transmitter power

Mixed-Signal ICs for Military Radar/Comms

direct digital frequency synthesis, ADCs, DACshigh resolution at very high bandwidths sought

Page 3: Submicron InP Bipolar Transistors: Scaling Laws, Technology Roadmaps, Advanced Fabrication Processes Mark Rodwell University of California, Santa Barbara

How Do We Improve the Bandwidth of Bipolar Transistors ?

collex

Ebc

Ejecollectorbase RR

qI

kTC

qI

kTC

f

2

1

Thinner base, thinner collector higher f , but higher RbbCcb , RexCcb …

what parameters are really important in HBTs ?how do we improve HBT performance ?

Page 4: Submicron InP Bipolar Transistors: Scaling Laws, Technology Roadmaps, Advanced Fabrication Processes Mark Rodwell University of California, Santa Barbara

How do we improve gate delay ?

clock clock clock clock

inin

out

out

cexLOGIC

LOGIC

Ccb

becb

becbC

LOGIC

IRq

kTV

V

IR

CCR

CCI

V

6

leastat bemust swing logic The

resistance base the through

charge stored

collector base Supplying

resistance base the through

charging ecapacitancDepletion

swing logic the through

charging ecapacitancDepletion

:by DeterminedDelay Gate

bb

depletion,bb

depletion,

max

logic

emitter

collector

min,

depl,

& not speed,clock for design toneed

:SiGen faster thabarely logic InP

high at lowfor low very bemust

22

objective.design HBTkey a is /High

total.of 80%-60% is

. with correlated not wellDelay

ff

JVR

v

T

A

A

V

V

I

VC

CI

CCIV

f

eex

effective

C

CE

LOGIC

C

LOGICcb

cbC

becbCLOGIC

Page 5: Submicron InP Bipolar Transistors: Scaling Laws, Technology Roadmaps, Advanced Fabrication Processes Mark Rodwell University of California, Santa Barbara

Scaling Laws for fast HBTs

22 as scale alsomust )cm-( y resistivitcontact base the

HBTs, mesa-undercutor substrate-ferrednot transbut HBTs, mesaFor v

circuitarbitrary an in bandwidth in increase 1: a

obtain order toin parameters HBTin change alproportion Required

Page 6: Submicron InP Bipolar Transistors: Scaling Laws, Technology Roadmaps, Advanced Fabrication Processes Mark Rodwell University of California, Santa Barbara

Challenges with Scaling:

Collector-base scaling Mesa HBT: collector under base Ohmics. Base Ohmics must be one transfer length → sets minimum size for collector Solution: reduce base contact resistivity → narrower base contacts allowedSolution: decouple base & collector dimensions

transferred-substrate, undercut-mesa, or buried SiO2 in junction (SiGe)

Emitter Ohmic Resistivity: must improve in proportion to square of speed improvements

Current Density: self-heating, current-induced dopant migration, dark-line defect formation

Loss of breakdownavalanche Vbr never less than collector bandgap (1.12 V for Si, 1.4 V for InP) ….sufficient for logic, insufficient for power

Yield !submicron HBT processes have progressively decreasing yield

Page 7: Submicron InP Bipolar Transistors: Scaling Laws, Technology Roadmaps, Advanced Fabrication Processes Mark Rodwell University of California, Santa Barbara

Technology Roadmaps for 40 / 80 / 160 Gb/s

Page 8: Submicron InP Bipolar Transistors: Scaling Laws, Technology Roadmaps, Advanced Fabrication Processes Mark Rodwell University of California, Santa Barbara

Low Ccb InP HBT structures

emitterbase contact

collectorcontact

SI substrate

InGaAs subcollector

InP collector

InGaAscollector

InP subcollector

InGaAs base

undercutcollector junction

undercut-collector

transferred-substrate Allows deep submicron collector scaling

Problems with heating at high J

Low yield at deep submicron scaling

Popular approach

Uncertain yield at submicron geometries

Conservative approach

Still not viable for > 3000 transistors per IC

Need improved device structures for high yield at 0.1 m scaling

Narrow-mesa with ~1E20 carbon-doped base

Page 9: Submicron InP Bipolar Transistors: Scaling Laws, Technology Roadmaps, Advanced Fabrication Processes Mark Rodwell University of California, Santa Barbara

0

10

20

30

40

10 100 1000

Tra

nsi

sto

r G

ain

s, d

B

Frequency, GHz

U

U

MSG/MAG

H21

unbounded U

Ic = 5 mA, Vce = 1.1 V

Unbounded Power Gain in Submicron InAlAs/InGaAs HBTs

Unbounded 45-170 GHz Unilateral power gain

Power gain is high, but fmax can’t be determined

Miguel Urteaga

Int. Symp. Compound Semiconductors, Tokyo, Oct. 2001 Int. Journal High Speed Electronics and Systems, to be published

0.3 x 18 m2

Emitter

0.7 x 18.6 m2

Collector

-1 10-3

0 100

1 10-3

2 10-3

3 10-3

4 10-3

5 10-3

0 50 100 150 200

Ic = 1 mAIc = 2 mAIc = 3 mAIc = 4 mAIc = 5 mA

Gc

(S)

Frequency (GHz)

Vce

=1.2 V

60 S=1/17k negative conductance at 110 GHz

termsG negative 2212 bbcbiRCG

reduced

0 100

2 10-15

4 10-15

6 10-15

8 10-15

1 10-14

0 50 100 150 200

Ic = 1 mAIc = 2 mAIc = 3 mAIc = 4 mAIc = 5 mA

Cc

(Fa

rads

)

Frequency (GHz)

Vce

=1.1 V

termsoncancellati /12 cbCB

Capacitance modulation & negative resistance observed: Gunn-like or IMPATT effects ?

Page 10: Submicron InP Bipolar Transistors: Scaling Laws, Technology Roadmaps, Advanced Fabrication Processes Mark Rodwell University of California, Santa Barbara

E

B C

R ex

R bb

C cbx

C cb i

C be,depl

re=1/gm

Y cb

gm

b

Collector velocity modulation: Ccb cancellation and negative resistance

c

cjx

ceI )sin(xI

ps 5.0)cm/s 1032/(μm 3.02/ 5 electroncollc vT

c

cjDCC

cbcb

ceIdV

dY

)sin(

,

Miguel Urteaga

-3 10-3

-2 10-3

-1 10-3

0 100

1 10-3

2 10-3

3 10-3

0 100 200 300 400 500 600 700

Real Part: Collector-Base Conductance

colle

cto

r-b

ase

co

nd

uct

an

ce,

Sie

me

ns

-Ic

*d(t

au_

c)/d

Vcb

= -

Ccb

,ca

nce

llatio

n=

-1 f

F

Frequency, GHz

negative Ycb: 0-700 GHz(340 S=1/3000 at 120 GHz) -1 10-15

-5 10-16

0

5 10-16

1 10-15

0 100 200 300 400 500 600 700

Equivalent Negative Capacitance, Bcb

/

eq

uiv

ale

nt

cap

aci

tan

ce,

Bcb

/ o

meg

a,

Fa

rad

s

-Ic

*d(t

au_

c)/d

Vcb

= -

Ccb

,ca

nce

llatio

n=-1

fF

Frequency, GHz

equivalent negative Ccb: starts decreasing at ~150 GHzreaches zero at 370 GHz

c

c

ccb

cDCCeq d

d

dV

dIC

)(sin1 2

,

c

cc

ccb

cDCCcb d

d

dV

dIG

)sin()cos(

,

If Ccb cancellation is observed, there must also be an associated negative resistance

Page 11: Submicron InP Bipolar Transistors: Scaling Laws, Technology Roadmaps, Advanced Fabrication Processes Mark Rodwell University of California, Santa Barbara

2nd Hypothesis: weak IMPATT effects in the collector

H

Hj

c

cjx

Hc MeeI

)sin(

1)sin(

xI

H

Hj

cbDCCcb

hedV

dMIY

)sin(

,

ps 3)cm/s 1052/(μm 3.02/ 4 holecollH vT

Miguel Urteaga

E

B C

R ex

R bb

C cbx

C cb i

C be,depl

re=1/gm

Y cb

gm

b

-1 10-4

0 100

1 10-4

2 10-4

3 10-4

4 10-4

0 50 100 150 200 250

Real Part: Collector-Base Conductance

IMP

AT

T

con

duc

tan

ce,

Sie

me

ns

-Ic*

d(t

au

_c)

/dV

cb=

-C

cb,c

an

cella

tion

=-1

fF

Frequency, GHz

negative conductance: 83-166 GHz(70 S=1/14,000 at 120 GHz)

-1 10-15

-8 10-16

-6 10-16

-4 10-16

-2 10-16

0

2 10-16

4 10-16

0 50 100 150 200 250

Equivalent Negative Capacitance, B12

/

MP

AT

T c

ap

aci

tanc

e,

Bcb

/ o

meg

a,

Fa

rad

s

-Ic*

d(t

au

_c)

/dV

cb=

-C

cb,c

an

cella

tion

=-1

fF

Frequency, GHz

equivalent negative Ccb: starts decreasing at ~50 GHzreaches zero at 166 GHz

IMPATT effect also produces both capacitance cancellation and negative resistance

sfrequencie lowat :Again cbtotalcccb VITAC

Page 12: Submicron InP Bipolar Transistors: Scaling Laws, Technology Roadmaps, Advanced Fabrication Processes Mark Rodwell University of California, Santa Barbara

Deep Submicron Bipolar Transistors for 140-220 GHz Amplification Miguel Urteaga

0

10

20

30

40

10 100 1000

Tra

nsi

sto

r G

ain

s, d

B

Frequency, GHz

U

U

MSG/MAG

H21

unbounded U

-4

-2

0

2

4

6

8

140 150 160 170 180 190 200 210 220

S2

1,

dB

Frequency, GHz

1-transistor amplifier: 6.3dB @ 175 GHz

-30

-20

-10

0

10

140 150 160 170 180 190 200 210 220

gain

, dB

Frequency (GHz)

3-transistor amplifier: 8 dB @ 195 GHz

raw 0.3 m transistor: 6-11 dB power gain @ 200 GHz

UCSB

Page 13: Submicron InP Bipolar Transistors: Scaling Laws, Technology Roadmaps, Advanced Fabrication Processes Mark Rodwell University of California, Santa Barbara

Wideband Mesa InP/InGaAs/InP DHBTs

Mattias Dahlstrom (UCSB) Amy Liu (IQE)

2000 Å InP collector300 Å InGaAs base8E19 to 5E19 graded C base dopingInAlAs/InGaAs base-collector grade.

500 Ohm/square base sheet resistancePd/Ti/Pd/Au base Ohmic contacts< 10-7 Ohm-cm2 base contact resistance

7.5 V Breakdown282 GHz f, > 450 GHz fmax , operation to 500 kA/cm2 at 1.7 voltsRbb is low, Ccb needs further reduction

0

5

10

15

20

25

30

1010 1011 1012

Ga

in (

dB

) H

21,

U

Frequency (Hz)

UCSB / IQE

1 m base contacts, 0.5 m emitter junction 0.7 m emitter contact

Vce=1.7 V J=3.7E5 A/cm2

282 GHz f>450 GHz fmax,

480 GHz

Page 14: Submicron InP Bipolar Transistors: Scaling Laws, Technology Roadmaps, Advanced Fabrication Processes Mark Rodwell University of California, Santa Barbara

87 GHz HBT master-slave latch

InAlAs /InGaAs/InP MESA DHBT

400 Å base, 2000 Å collector,

9 V BVCEO

200 GHz ft, 180 GHz fmax

2.5 x 105 A/cm2 operation

PK Sundararajan, Zach Griffith

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

22 22.02 22.04 22.06 22.08 22.1 22.12 22.14

87 GHz input, 43.5 GHz output

Vo

ut (

Vol

ts)

time (nsec)

UCSB

Page 15: Submicron InP Bipolar Transistors: Scaling Laws, Technology Roadmaps, Advanced Fabrication Processes Mark Rodwell University of California, Santa Barbara

8 GHz ADCTechnology0.7 um InP MESA DHBT 400 Å base, 2000 Å collector, 9 V BVCEO, 200 GHz ft, 180 GHz fmax2.5 x 105 A/cm2 operation

PK Sundararajan

975 kHz FFT bin size8 GHz clock rate65.5 MHz signal64:1 oversampling ratio

Designsimple 2nd-order gm-C topologycomparator is 87 GHz MSS latchintegration by capacitive loads 3-stage comparator, RTZ gated DAC

Results133 dB (1 Hz) SNR at 74 MHzequivalent to ~8.8 bits at 200 MS/s

Page 16: Submicron InP Bipolar Transistors: Scaling Laws, Technology Roadmaps, Advanced Fabrication Processes Mark Rodwell University of California, Santa Barbara

High current density 10 mA/m2

T-shaped polysilicon emitter 0.25 m junction wide contact low resistance, high yield

Thin intrinsic base: low b

Thick extrinsic base: low Rbb

Low Ccb collector junction collector pedestal CVD/CMP SiO2 planarization regrown poly extrinsic base

High-yield, planar processing high levels of integration LSI and VLSI capabilities

SiGe clock rates up to 65 GHzMuch more complex ICs than feasible in InP HBTInP HBT must reach higher integration scales or will cease to compete

Very strong features of SiGe-bipolar transistors

Page 17: Submicron InP Bipolar Transistors: Scaling Laws, Technology Roadmaps, Advanced Fabrication Processes Mark Rodwell University of California, Santa Barbara

InP vs Si/SiGe HBTs: materials vs scaling advantages

Advantages of InP~20:1 lower base sheet resistance, ~5:1 higher base electron diffusivity~3:1 higher collector electron velocity, ~4:1 higher breakdown-at same f.

Disadvantage of InP: archaic mesa fabrication processPresently only scaled to ~ 1 um (production)large emitters, poor emitter contact:low current density: 2 mA/um2

high collector capacitance nonplanar device - low yieldlow integration scales

Page 18: Submicron InP Bipolar Transistors: Scaling Laws, Technology Roadmaps, Advanced Fabrication Processes Mark Rodwell University of California, Santa Barbara

InP HBT limits to yield: non-planar processEmitter contact

Etch to base

Liftoff base metal

Failure modes

Yield degrades as emitters arescaled to submicron dimensions

base contact

emittercontact

base contact

S.I. substrate

base

sub collector

S.I. substrate

base

sub collector

S.I. substrate

base

sub collector

emitter

S.I. substrate

base

sub collector

Emitter planarization, interconnects

base contact

liftoff failure:emitter-baseshort-circuit

S.I. substrate

base

sub collector

base contact

excessiveemitter undercut

S.I. substrate

base

sub collector

S.I. substrate

base

sub collector

planarization failure: interconnect breaks

Page 19: Submicron InP Bipolar Transistors: Scaling Laws, Technology Roadmaps, Advanced Fabrication Processes Mark Rodwell University of California, Santa Barbara

MBE growth of Polycrystalline n+ InAs

Polycrystalline InAs grown on SiN:

• Doping = 1.3 1019 cm-3, Mobility = 620 cm2/V•s

• doping-mobility product 81021 (V •s •cm)-1

InGaAs lattice matched to InP:

• Doping = 1.0 1019 cm-3, Mobility = 2200 cm2/V•s

• doping-mobility product 221021 (V •s •cm)-1

Polycrystalline InAs has potential as an extrinsic emitter contact

Dennis Scott

6 1018

8 1018

1 1019

1.2 1019

1.4 1019

1.6 1019

1.8 1019

2 1019

2.2 1019

945 950 955 960 965 970 975 980 985

Poly InAs:Si Doping vs. Temp

Dop

ing

Temp

SiGe HBT process: extensive use of non-selective-area poly-Si regrowth

Can a similar technology be developed for InP ?

Page 20: Submicron InP Bipolar Transistors: Scaling Laws, Technology Roadmaps, Advanced Fabrication Processes Mark Rodwell University of California, Santa Barbara

Process Flow:Single-poly-regrowthInP HBT

collectorcontact

top view

subcollectorisolationimplantmask

emitterjunction

extrinsicemitterandcontact

basecontact

N- collector

N+ subcollector

S.I. substrate

1) Epitaxial Growth,Fe implant isolation

2) Deposit Pd/W base Ohmics.Encapsulate with Si3N4Etch base-collector junction

base

N- collector

N+ subcollector

S.I. substrate

base

basecontactSi

3N

4

3) Passivate with Si3N4Etch emitter window through baseForm emitter SiN sidewalls

N- collector

N+ subcollector

S.I. substrate

basecontact

Si3

N4

4) Regrow polycrystalline emitter.Deposit emitter metal.Etch through emitter

N- collector

N+ subcollector

S.I. substrate

base contact

Si3

N4

regrownInAlAs/InAsemitter*

*monocrystalline wheregrown on semiconductor,polycrystalline wheregrown on silicon nitride

emitter contact

5) Recess etch and depositcollector contacts

N- collector

N+ subcollector

S.I. substrate

base contact

Si3N

4

regrownInAlAs/InAs emitter*

emitter contact

collector contact

Dennis Scott

Page 21: Submicron InP Bipolar Transistors: Scaling Laws, Technology Roadmaps, Advanced Fabrication Processes Mark Rodwell University of California, Santa Barbara

Regrown-Poly-InAs-Emitter HBT

0.0 100

2.0 100

4.0 100

6.0 100

8.0 100

1.0 101

0 1 2 3 4

AE = 0.8 x 15 um 2 I

b = 100uA/step

I c (m

A)

Vce

(V)

Dennis Scott

Page 22: Submicron InP Bipolar Transistors: Scaling Laws, Technology Roadmaps, Advanced Fabrication Processes Mark Rodwell University of California, Santa Barbara

Emitter Regrowth with Buried Base Contact MetalDennis Scott

Buried W/Au base metal under emitter→ further reduced Rbb

Similar to buried WSi base contact process (SiGe, Washio)

Page 23: Submicron InP Bipolar Transistors: Scaling Laws, Technology Roadmaps, Advanced Fabrication Processes Mark Rodwell University of California, Santa Barbara

Submicron Scaling of InP HBTs

InP HBTs are a mixed-signal, not a MIMIC technology for MIMICs, sub-0.1-m InP HEMTs are hard to beat mixed-signal is fiber ICs, ADCs, DACs, digital frequency synthesis these are 1000 -- 40,000 transistor ICs

InP HBTs are struggling to compete with SiGe HBT application demands transistor counts near/beyond yield limits large emitter junctions→ high current → power near acceptable limits no decisive speed advantage in relevant circuits: digital logic materials advantages being squandered by inadequate scaling

Critically needed for InP HBTs highly scaled process: 0.2 m emitters, 0.4 m collectors highly planar and high-yield fabrication processes small emitter junctions (0.2 m x 0.5 m) for acceptable power