student handout 15 2014

12
Momentum differential equation: Navier-Stokes equation CHEE 3363 Spring 2014 Handout 15 Reading: Fox 5.2–5.4 1

Upload: kietni

Post on 25-Nov-2015

4 views

Category:

Documents


1 download

TRANSCRIPT

  • Momentum differential equation: Navier-Stokes equation

    CHEE 3363Spring 2014Handout 15

    Reading: Fox 5.25.4

    1

  • Learning objectives for lecture

    1. State the most general form of the Navier-Stokes equations.2. State the version of the N-S equations valid for incompressible A3;7;-8,'3278%28:-7'37-8=

    3. !8%8)8,)90)6)59%8-32%2(8,)'32(-8-32792()6;,-',-8-7valid.

    2

  • Conservation of linear momentum 1);832?72(

    Write:

    dx

    dy

    dz

    x

    y

    z

    u

    v

    w

    ))(83@2()

  • Conservation of linear momentum 2

    dx

    dy

    dz

    x

    y

    z

    u

    v

    w

    7979%0)

  • Conservation of linear momentum 320=&3(=*36')-7+6%:-8=73)
  • Conservation of linear momentum 4

    6

    Write differential momentum equation (equate to acceleration):

    gx +xx

    x+

    yx

    y+

    zx

    z=

    (u

    t+ u

    u

    x+ v

    u

    y+ w

    u

    z

    )

    gy +xy

    x+

    yy

    y+

    zy

    z=

    (v

    t+ u

    v

    x+ v

    v

    y+ w

    v

    z

    )

    gz +xz

    x+

    yz

    y+

    zz

    z=

    (w

    t+ u

    w

    x+ v

    w

    y+ w

    w

    z

    )

  • T = pnn+

    Navier-Stokes equation 1We need a three-dimensional version of LMB:

    #7-2+8,) )=230(7"6%274368",)36)1%2(

    7

    dP

    dt

    sys

    = F =

    CS

    n TdA+

    CV

    gdVF =dP

    dt

    sys

    stresses +6%:-8=

    t

    CV

    vdV +

    CS

    vv dA =

    CS

    pdA+

    CS

    dA+

    CV

    gdV

    (Recall: is a tensor)

  • Navier-Stokes equation 2

    8

    #7-2+%977?78,)36)1CS

    vv dA =

    CV

    (vv)dV

    CS

    pdA =

    CV

    pdV

    CS

    dA =

    CV

    dV

    CV

    [

    t(v) + (vv) +p g

    ]dV = 0

  • Navier-Stokes equation 3

    -2%00=97)'327)6:%8-323*1%77837-140-*=

    ",-7-78,)Navier-Stokes equation:> $-8,'328-29-8=%&3:)*361*396'3940)(2320-2)%67*36v, >

  • xy = yx =

    (v

    x+

    u

    y

    )

    yz = zy =

    (w

    y+

    v

    z

    )

    zx = xz =

    (u

    z+

    w

    x

    )

    xx = p2

    3

    v + 2u

    x

    yy = p2

    3

    v + 2v

    y

    zz = p2

    3

    v + 2w

    z

    Stresses for N-S equations (rectilinear)

    10

    Shear stresses:

    Normal stresses:

  • !7-140-@'%8-32For ;-8,constant viscosity:

    )6-:%8-32&)=32(7'34)3*'3967)

    11

    (v

    t+ v v

    )= p+

    2v + g

    9278)%(=acceleration

    convective acceleration

    inertia

    &3(=*36')78=4-'%00=+6%:-8=:-7'37-8=pressure

    divergence of stress

  • 90)6?7)59%8-32779148-327*6-'8-320)77A3; = 0 ):

    Used for:

    12