steel structures fatigue life enhancement by high frequency peening · 2010. 2. 24. · 11...

34
Steel Structures - Fatigue Life Enhancement by High Frequency Peening Dr.-Ing. Imke Weich, MScE IPU - Ingenieursozietät Peil, Ummenhofer und Partner, Karlsruhe Dillinger Colloquium Constructional Steelwork 3 rd December 2009

Upload: others

Post on 18-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Steel Structures -

    Fatigue Life Enhancement by High Frequency Peening

    Dr.-Ing. Imke Weich, MScE

    IPU - Ingenieursozietät Peil, Ummenhofer und Partner, Karlsruhe

    Dillinger Colloquium Constructional Steelwork

    3rd December 2009

  • 2

    Ingenieursozietät Peil, Ummenhofer und Partner, Dr.-Ing. Imke Weich, MScE

    Motivation

    Increased demands for steel structures

    • Extended service life for new and existing structures

    • Reduction of the construction weight for cost reduction

    • Increasing / new loads

    New challenges for the fatigue strength of steel structures

  • 3

    Ingenieursozietät Peil, Ummenhofer und Partner, Dr.-Ing. Imke Weich, MScE

    Increased service life of new and existing constructions

    example: Deutsche Bahn

    • Total bridge constructions with an overall installed size of 52 Mrd. €

    • 25% are steel and iron bridges (13 Mrd. €)

    • 60% of these are welded steel structures

    • 70% of all steel and iron bridges are at the end of their service life

    ► Enormous investment needs of up to 9 investment needs of up to 9 investment needs of up to 9 investment needs of up to 9 MrdMrdMrdMrd. . . . €€€€

  • 4

    Ingenieursozietät Peil, Ummenhofer und Partner, Dr.-Ing. Imke Weich, MScE

    Increased service lives of new and existing constructions

  • 5

    Ingenieursozietät Peil, Ummenhofer und Partner, Dr.-Ing. Imke Weich, MScE

    Increased service lives of new and existing constructions

    Road way expansion joints

  • 6

    Ingenieursozietät Peil, Ummenhofer und Partner, Dr.-Ing. Imke Weich, MScE

    Optimized structures

    Reduction of the construction weight for cost reduction

  • 7

    Ingenieursozietät Peil, Ummenhofer und Partner, Dr.-Ing. Imke Weich, MScE

    Optimized structures

    Reduction of the construction weight for cost reduction

  • 8

    Ingenieursozietät Peil, Ummenhofer und Partner, Dr.-Ing. Imke Weich, MScE

    Increasing / new loads

    Larger portainer cantilevers

  • 9

    Ingenieursozietät Peil, Ummenhofer und Partner, Dr.-Ing. Imke Weich, MScE

    New loads

    Windloading - onshore wind energy sector

  • 10

    Ingenieursozietät Peil, Ummenhofer und Partner, Dr.-Ing. Imke Weich, MScE

    New loads

    Wind- und waveloading - offshore wind energy sector

  • 11

    Ingenieursozietät Peil, Ummenhofer und Partner, Dr.-Ing. Imke Weich, MScE

    Fatigue design for structural details

    • Structural and material caused notches define the service life

    • Weld toes are notches with high notch stresses

    Increase of the local fatigue strength and reduction of the notch stresses

    may increase the overall service life of the construction

    Application of weld improvement methods

    hot spots:

    weld notches define

    the fatigue life

  • 12

    Ingenieursozietät Peil, Ummenhofer und Partner, Dr.-Ing. Imke Weich, MScE

    Deformation of the weld toe

    Mechanicaledge layer improvement

    Improvement methods

    grinding

    MIG-

    improvement

    Hammer peening

    Needle peening

    High frequency

    hammer peening

    Shot peening

    Reduction of notch stresses

    Surface hardening

    Compressive residual stresses

  • 13Ingenieursozietät Peil, Ummenhofer und Partner, Dr.-Ing. Imke Weich, MScE

    High frequency hammer peening

    • Hammer frequency: ≥ 200 Hz

    • Pin diameter: 3 to 5 mm

    • Present investigations prove the fatigue life increasing effects

    • Systematic investigations regarding the beneficial effect are conducted

    HiFIT UIT

  • 14Ingenieursozietät Peil, Ummenhofer und Partner, Dr.-Ing. Imke Weich, MScE

    High frequency hammer peening

  • 15Ingenieursozietät Peil, Ummenhofer und Partner, Dr.-Ing. Imke Weich, MScE

    Plastic deformation of the weld toe

    Uniform deformation of the weld toe

    Removal of cold laps

    Mean weld toe radii of 1.5 – 2 mm

    Depths of the indents 0.05 – 0.4 mm

    HiFIT UIT

  • 16Ingenieursozietät Peil, Ummenhofer und Partner, Dr.-Ing. Imke Weich, MScE

    Surface hardening of a mild steel S355J2

    Vickers hardness HV0.3

    Obvious surface hardening by up to 180HV0.3 to 400HV0.3

    Influence depth of 0.3 – 0.4 mm

    0 1 2 3 4 5 63.5

    4

    4.5

    5

    5.5

    6

    Abstand von Referenzpunkt [mm]

    Absta

    nd v

    on

    Refe

    renzpunkt

    [mm

    ]

    200

    250

    300

    350

    400

    450D

    ista

    nc

    e f

    rom

    the

    refe

    ren

    ce

    po

    int

    [mm

    ]

    Distance from the reference point [mm]

  • 17Ingenieursozietät Peil, Ummenhofer und Partner, Dr.-Ing. Imke Weich, MScE

    Stresses perpendicular to the projection plane, transverse to the treatment direction

    Numeric Simulation of the developement of residual stresses on a plate (Ansys 10.0)

    xxxxyyyy

    zzzz

  • 18Ingenieursozietät Peil, Ummenhofer und Partner, Dr.-Ing. Imke Weich, MScE

    -500

    -400

    -300

    -200

    -100

    0

    100

    200

    300

    400

    0 5 10 15

    distan ce from th e middle of th e w eld [mm]

    [MP

    a]

    as we ld e d

    UIT

    HiF IT

    Production of residual stresses

    behandelte Zone

    transverse

    longitudinal measurement line

    Tra

    nsvers

    ere

    sid

    ua

    l str

    esses

    [Mpa]

    Distance from the middle of the weld [mm]

    indent

    Surface residual stresses

  • 19Ingenieursozietät Peil, Ummenhofer und Partner, Dr.-Ing. Imke Weich, MScE

    Transverse residual stresses

    Effect up to a depth of 1.5 – 2.0 mm

    Compensating tensile residual stresses in deeper material layers

    Smaller maximum values of the tensile stresses, due to a wider area

    Residual stresses after a treatment in depth direction

    1,5-2 mm

    +compression tension-

  • 20Ingenieursozietät Peil, Ummenhofer und Partner, Dr.-Ing. Imke Weich, MScE

    Increase of the fatigue strength compared to the FAT-class of Eurocode

    by 100%

    For mild steel reduced efficiency at high stress levels compared to lower

    dtress levels (flatter SN-curves)

    Load cycles N [-]

    Fatigue class 160

    Fatigue class 90

    Str

    ess r

    an

    ge

    [MP

    a]

    FAT 203

    FAT 187

    FAT 160

    FAT 90

    Increase of the life time of mild and high strength steel

    5-times 10-times

  • 21Ingenieursozietät Peil, Ummenhofer und Partner, Dr.-Ing. Imke Weich, MScE

    Blasting of the surface after HiFIT / UIT

    Additional hardening

    Increased fatigue strength but wider scatter

    Fatigue life extension due to hardening

    S690QLS690QL

    Load cycles N [-]

    Str

    ess r

    an

    ge

    [MP

    a]

    blasted

    FAT 279

    FAT 215

    FAT 90

  • 22Ingenieursozietät Peil, Ummenhofer und Partner, Dr.-Ing. Imke Weich, MScE

    Fatigue pre-damaged and following HiFIT/UIT-treated butt welds

    Same increase of the fatigue life as for a treatment of specimens without

    pre-damage

    Influence of fatigue pre-damage before the treatment

    S690QL

    Load cycles N [-]

    Str

    ess r

    an

    ge

    [MP

    a]

    pre fatigue damaged

    FAT 194

    FAT 90

    FAT 215

  • 23Ingenieursozietät Peil, Ummenhofer und Partner, Dr.-Ing. Imke Weich, MScE

    Existing design codes

    Eurocode

    • No consideration of improvement methods

    Exception: grinding

    IIW-Recommendations: IIW-XIII-2200-07 (Intern. Inst. of Welding)

    • Improvement methods are covered

    common hammer peening

    improvement factors for FAT-classes with remaning slope

    30% of Re350 MPa

    • Maximum nominal compressive stresses < 25% of the yield strength

    • Stress ratio R < 0 : design based on stress ranges

    • Stress ratio of R ≥ 0 design based on maximum stress

    Application of high frequent hammer peening in civil engineering

    • “Zustimmung im Einzelfall” –acceptance for particular cases

  • 24Ingenieursozietät Peil, Ummenhofer und Partner, Dr.-Ing. Imke Weich, MScE

    Developed design concept

    Increase of the fatigue strength

    ∆σc,HP = KHP · ∆σcwith KHP = k0 · kRe · kR

    k0 - improvement factor

    kRe - material factor respecting the yield strength RekR - loading factor respecting the stress ratio R

    k0 = 1.6

    kRe = 1 + 0.6 · (1 - 355 / Re)

    Slope of the SN-curve

    m = 5

    R

    R

    k 1,075-0,75*R 0,1 R 0,5

    k 1,0 R 0,1

    = ≤ ≤= ≤ ≤= ≤ ≤= ≤ ≤

    =

  • 25Ingenieursozietät Peil, Ummenhofer und Partner, Dr.-Ing. Imke Weich, MScE

    Calculated fatigue strength- butt weld

    Lastwechsel

    Sch

    win

    gbre

    ite [

    N/m

    m²]

    200

    300

    400

  • 26Ingenieursozietät Peil, Ummenhofer und Partner, Dr.-Ing. Imke Weich, MScE

    Quality control

    Aim

    • Constant quality of the improvement

    • Optimized deformation of the weld toe

    • High compressive residual stresses in the treated zone

    Treatment shows little scatter in case of applying optimized treatment parameters:

    • Pin shape:

    • diameter: d = 3 mm

    • pin tip: radius R= 1.5 - 2 mm

    • Depth of the indent

    • Less than 0.25 mm

    • Application angle αααα

    • 60°to 80°

    Visual inspection in situ

    R

    D

    αααα

  • 27Ingenieursozietät Peil, Ummenhofer und Partner, Dr.-Ing. Imke Weich, MScE

    Application to transition pieces of wind energy plants

  • 28Ingenieursozietät Peil, Ummenhofer und Partner, Dr.-Ing. Imke Weich, MScE

    Application to transition pieces of wind energy plants

  • 29Ingenieursozietät Peil, Ummenhofer und Partner, Dr.-Ing. Imke Weich, MScE

    Application to a road bridge : Schenkendorfstr. München

  • 30Ingenieursozietät Peil, Ummenhofer und Partner, Dr.-Ing. Imke Weich, MScE

    Application to a road bridge : Schenkendorfstr. München

  • 31Ingenieursozietät Peil, Ummenhofer und Partner, Dr.-Ing. Imke Weich, MScE

    example: factory / storage crane

    Crane capacity: 90 t

    span: 26 m

    Carrying class: H3B6

    Decisive notch details:

    stiffeners of flanges and webs:

    Existing status- grinded: notch class K2 (DIN 15018)

    after HiFIT/UIT : notch class K0 to K1 (DIN 15018)

    reduction of the steel weight by 18%

    (= 10 to)

    Economic structures

  • 32Ingenieursozietät Peil, Ummenhofer und Partner, Dr.-Ing. Imke Weich, MScE

    Conclusions

    High frequency hammer peening (HiFIT and UIT) are very efficient means to increase the fatigue life of welds

    Compared to as welded details

    Up to 100 % higher fatigue strength

    5- to 15-times of the fatigue life

    Same efficiency for pre-damaged notch details

    (precondition: crack depths less than 0.5 mm)

    Effective application of high strength steel

    Further increased fatigue strength

    Fatigue strength no more limiting value

    Higher compressive residual stresses compared to mild steel

    Extended life time especially for high stresses

  • 33Ingenieursozietät Peil, Ummenhofer und Partner, Dr.-Ing. Imke Weich, MScE

    Conclusion

    Practical application

    Design

    Life time estimation for details respecting improvement factors

    for notch classes

    Quality control

    Application of defined treatment parameters

    Control of treatment parameters

    Visual inspection

  • Promotionsvortrag von Dipl.-Ing. Imke Weich, MScE34

    Thank you for your kind attention !