status of the high current proton accelerator for the ... · (352 mhz) microwave rf source high...

22
Status of the High Current Proton Accelerator for the TRASCO Program Paolo Pierini INFN Milano - LASA on behalf of the TRASCO_ACC group EPAC 2002 Paris, 3-7 June 2002 TRASCO_ACC D. Barni a , G. Bellomo a , G. Bisoffi b , A. Bosotti a , L. Celona c , A. Chincarini d , G. Ciavola c , M. Comunian b , A. Facco b , S. Gammino c , G. Gemme d , G. Lamanna e , A. Lombardi b , P. Michelato a , M. Napolitano f , C. Pagani a , A. Palmieri b , R. Parodi d , P. Pierini a , A. Pisent b , F. Scarpa b , D. Sertore a , V. Zviagintsev b , a INFN Milano LASA http://wwwlasa.infn.it b INFN-LNL http://www.lnl.infn.it c INFN-LNS http://www.lns.infn.it d INFN Genova http://www.ge.infn.it e INFN Bari http://www.ba.infn.it f University and INFN, Napoli http://www.na.infn.it

Upload: others

Post on 30-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Status of the High Current Proton Accelerator for the TRASCO Program

    Paolo PieriniINFN Milano - LASA

    on behalf of the TRASCO_ACC group

    EPAC 2002 Paris, 3-7 June 2002

    TRASCO_ACCD. Barnia, G. Bellomoa, G. Bisoffib, A. Bosottia, L. Celonac, A. Chincarinid, G. Ciavolac, M. Comunianb, A. Faccob, S. Gamminoc, G. Gemmed, G. Lamannae, A. Lombardib, P. Michelatoa, M. Napolitanof, C. Pagania, A. Palmierib, R. Parodid, P. Pierinia, A. Pisentb, F. Scarpab, D. Sertorea, V. Zviagintsevb,

    aINFN Milano LASA http://wwwlasa.infn.itbINFN-LNL http://www.lnl.infn.itcINFN-LNS http://www.lns.infn.itdINFN Genova http://www.ge.infn.it eINFN Bari http://www.ba.infn.itfUniversity and INFN, Napoli http://www.na.infn.it

  • P. Pierini EPAC 2002, Paris, 3-7 June 2002 2

    The TRASCO Program

    TRASCO: conceptual study and the prototyping of components for an accelerator driven system for nuclear waste transmutation, and involves research agencies and Italian companies

    TRASCO/ACC Accelerator studies: lead by INFN

    TRASCO/SS Subcritical reactor studies: lead by ENEA

    TRASCO/ACC (1998-2004, in three funding stages) is devoted to: Conceptual design of a high current superconducting proton linac

    I=30 mA, E = 1 GeV Construction and R&D activities on key items:

    an 80 kV, 35 mA proton source (INFN - LNS) a 5 MeV, 30 mA, CW RFQ (INFN - LNL) SC cavity prototypes for low β cavities (

  • P. Pierini EPAC 2002, Paris, 3-7 June 2002 3

    Beam Dynamics

    The Reference Linac Design

    3 section linac: 85/100 - 200 MeV, β=0.47 200 - 500 MeV, β=0.65 500 1000/2000 MeV, β=0.85

    Five(six) cell elliptical cavitiesQuadrupole doublet focussing: multi-cavity cryostats between doublets

    704.4 MHz

    5 - 85/100 MeV SC linac

    Baseline design:Reentrant cavities (352 MHz)

    Alternative design:Spoke, λ/2, λ/4, ladder

    8βλ FODO focussing with sc magnets

    High transm

    ission 95%30 m

    A, 5 M

    eV(352 M

    Hz)

    Microwave

    RF SourceH

    igh current (35m

    A)

    80keV

    High Energy SC LinacISCLRFQSource

    Proton Source RFQ Medium energy ISCL linac 3 sections high energy SC linac

    80 keV 5 MeV ~100 MeV 200 MeV 500 MeV >1000 MeV

  • P. Pierini EPAC 2002, Paris, 3-7 June 2002 4

    TRIPS: TRASCO Intense Proton Source

    High intensity (tens mA) proton sources exist Chalk River, Los Alamos, CEA-Saclay

    ADS asks for high reliability and availabilityAdditional efforts are required for:

    Voltage and current stability Control of the low beam emittance

    Design in 1999, source in LNS in May 2000Achievements:

    First beam of 20 mA @ 60 kV in Jan 2001 80 kV, 55 mA operation in Aug 2001

    Off-resonance microwave discharge source (2.45 GHz), based on SILHI (CEA/Saclay)

    80 kV

    To be measured

    55 mA (~90% p.f.)

    Achieved

    80 kVOperating voltage

    0.2 π mm mradBeam emittance

    35 mAProton Beam current

    TRIPS Goals:

    Reported at EPAC2000, PAC2001

  • P. Pierini EPAC 2002, Paris, 3-7 June 2002 5

    2 kW RF generator

    Plasma chamber

    Layout of the Source and LEBT

    Extraction electrodes

    Studies on SILHI extraction system lead to: Pentode

    configuration with new geometry

    Lowered voltage: from 95 kV to 80 kV

  • P. Pierini EPAC 2002, Paris, 3-7 June 2002 6

    2 kW RF generator

    Plasma chamber

    Layout of the Source and LEBT

    Extraction electrodes

    Studies on SILHI extraction system lead to: Pentode

    configuration with new geometry

    Lowered voltage: from 95 kV to 80 kV

    Matching transformer (impedance match)

    Moving coils to adjust ECR region

    4-step binomial transformer for waveguide to plasma impedance matching

  • P. Pierini EPAC 2002, Paris, 3-7 June 2002 7

    Performances and recent development

    A rms emittance below 0.2 π mm mrad has been calculated with beam dynamics simulations, crosschecking different codes

    Emittance unit from CEA is being shipped to Catania for measurementsLEBT for beam analysis and characterization:

    Solenoid (focussing) Beam alignment monitor 2 current transformers for beam current measurements 10 kW beam stop

    Reliability tests have been performed: at 65 kV/15 mA: 24 h with no beam

    interruptions Tests at 80 kV are underway (improving)

    A new control system for automatic restart procedures after discharge is being implemented

    10 kW beam stop

    LEBT line

  • P. Pierini EPAC 2002, Paris, 3-7 June 2002 8

    Low Energy Linac

    The low energy linac is split in two components: A normal conducting CW Radio Frequency Quadrupole (RFQ): from 80 keV

    to 5 MeV RFQ design: 3 resonantly coupled segments. Modulation:

    Radial match in the structure Shaper Gentle buncher (from dc to 352.2 MHz bunches) Accelerator (boosts up to 5 MeV, longest portion)

    A superconducting linac (ISCL): from 5 MeV to 100 MeV Reentrant cavities for highest availability (allowing beam on with 1 cavity off) λ/4, λ/2 cavities Spoke cavities

    Papers contributed to this Conference (TU and TH)Papers contributed to this Conference (TU and TH)

    coupling cells

    wave guide RF loop

    7.13 mtechn. model

    tuners wave guide vacuum ports RF loop

  • P. Pierini EPAC 2002, Paris, 3-7 June 2002 9

    RFQ Design

    Different optimization procedure for TRASCO RFQ w.r.t. LEDA Limit to 1 RF source (1.3 MW CERN-LEP klystron) Lower design current of 30 mA (transmission of 96%) Peak surface electric field is 33 MV/m, 1.8 Kilpatrick limit Simplified engineering/manufacturing choices

    Substantial heat dissipation in the structure ~ 600 kW totalThree resonantly coupled segments

    1.8 KilpatrickPeak Field

    600 kW (structure)

    150 kW (beam)RF Power

    7.13 m (3 sections)Length

    0.2 π mm mrad TBeam emittance

    5 MeVFinal Energy

    0.18 π deg MeV L

    30 mA (96 % transmission)Beam current

    TRASCO RFQ:

    Poster THPLE083: Field tuning of the TRASCO RFQ

    Poster THPLE083: Field tuning of the TRASCO RFQ

  • P. Pierini EPAC 2002, Paris, 3-7 June 2002 10

    RFQ Design

    Different optimization procedure for TRASCO RFQ w.r.t. LEDA Limit to 1 RF source (1.3 MW CERN-LEP klystron) Lower design current of 30 mA (transmission of 96%) Peak surface electric field is 33 MV/m, 1.8 Kilpatrick limit Simplified engineering/manufacturing choices

    Substantial heat dissipation in the structure ~ 600 kW totalThree resonantly coupled segments

    1.8 KilpatrickPeak Field

    600 kW (structure)

    150 kW (beam)RF Power

    7.13 m (3 sections)Length

    0.2 π mm mrad TBeam emittance

    5 MeVFinal Energy

    0.18 π deg MeV L

    30 mA (96 % transmission)Beam current

    TRASCO RFQ:

    Poster THPLE083: Field tuning of the TRASCO RFQ

    Poster THPLE083: Field tuning of the TRASCO RFQ

    Copper dominated Not space charge limited Not beam loading limited 150 kW to beam 600 kW to copper

  • P. Pierini EPAC 2002, Paris, 3-7 June 2002 11

    RFQ: fabrication tests

    A 3 m Al model of the structure has been built and measured at LNL, and achieved the necessary field stabilizationA 220 mm part of the structure has been built to test the full fabrication procedures

    Brazing Water channels by long (1 m) drilling

    Full structure is under fabrication

  • P. Pierini EPAC 2002, Paris, 3-7 June 2002 12

    Superconducting low energy linac

    Single or two-gap structure linac Moderate energy gain/cavity Solid state RF amplifiers 8 βλ focussing lattice

    Various options, are being considered Reentrant cavities Spoke cavities λ/4 cavities ladderQuarter Wave resonator (QWR) 2 gap structure of the ALPI linac in INFN-LNL

    Reentrant cavity single gap structure. He Vessel integrated in the cavity2 gap spoke cavity

    Poster THPDO022: RF testing of the TRASCO SC Reentrant Cavity for High Intensity Proton Beams

    Poster THPDO022: RF testing of the TRASCO SC Reentrant Cavity for High Intensity Proton Beams

    Poster TUPLE121: A 2.5 kW, Low Cost 352 MHz Solid State RF Amplifier for CW and Pulsed Operation

    Poster TUPLE121: A 2.5 kW, Low Cost 352 MHz Solid State RF Amplifier for CW and Pulsed Operation

    4βλ

    tuning

    F D

    4βλ

  • P. Pierini EPAC 2002, Paris, 3-7 June 2002 13

    The high energy linac

    Designed with high current beam dynamics criteria to avoid emittance growth (smooth, tune resonances, ...)

    655# cells/cavity

    1 GeV480 MeV190 MeV

    12.3 MV/m10.2 MV/m8.5 MV/mMax. Eacc (MV/m)

    484824# cavities in section

    12

    8.5 m

    480 MeV

    102 m

    0.85

    16

    5.8 m

    190 MeV

    93 m

    0.65

    12# periods

    4.2 mDoublet period

    100 MeVInitial/Final Energy

    0.47Section β

    50 mLength

    Conceptual design of the 3 section linacDevelopment and test of prototype cavities

    At 352 MHz with the LEP II sputtering technology At 704 MHz, bulk niobium, for the lowest β

    Design and engineering of cavity components and ancillaries Cryomodule, tuner system, piezo damping,

    RF Test infrastructure

    Papers contributed to this Conference (WE and TH)Papers contributed to this Conference (WE and TH)

    Clean room and HPR

    UPurewater

    RF Test Bunker

  • P. Pierini EPAC 2002, Paris, 3-7 June 2002 14

    Conceptual design: cavity design

    Parametric tool for the analysis of the cavity shape on the electromagnetic (and mechanical) parametersInner cell tuning is performed through the diameter, all the characteristic cell parameters stay constant: R, r, α, d, L, RirisEnd cell tuning is performed through the wall angle inclination, α,or distance, d. R, L and Riris are set independentlyEnd groups for a 4 die cavity can be tuned using the end cell diameter (and a,d,R,L, Riris are set independently)

    βg = 0.81 Cavity for SNS 4 dies

    Ep/Eacc 2.19 (2.14 inner cell)Bp/Eacc [mT/(MV/m)] 4.79 (4.58 inner cell)R/Q [Ω] 485G [Ω] 233k [%] 1.52QBCS @ 2 K [109] 36.2Frequency [MHz] 805.00Field Flatness [%] 1.1

    KL70 = -0.7 [Hz/(MV/m)2] KL80 = -0.8 [Hz/(MV/m)2]

    Nb thickness = 3.8 mm

    Effective β that matches the TTF curve = 0.830

    Geometrical ParametersInner cell End Cell Left End Group (coupler)

    Left RightL [mm] 75.5 75.5 75.5Riris [mm] 48.8 48.8 48.8 70.0D [mm] 164.15 164.15 166.11d [mm] 15.0 13.0 15.0 13.0r 1.8 1.6 1.8 1.6R 1.0 1.0 1.0α [deg] 7.0 10.072 7.0 10.0

    Tool used also for the SNS cavity design

    Longitudinal eigenmode analysis

  • P. Pierini EPAC 2002, Paris, 3-7 June 2002 15

    Conceptual design: linac design

    Build linac from simple rules, with control of longitudinal & transverse phase advances

    10.0 mm X 3.000 mrad

    A= -2.479 B= 8.6115 HA= -0.467 B= 3.0957 V

    10.0 Deg X 1000.0 KeV

    A= 0.001 B= 0.0476 Z

    10.0 mm X 3.000 mrad

    10.0 Deg X 1000.0 KeV

    10.0 mm 10. Deg Length= 506397.mmVert

    Horiz, Long

    1

    Q

    2 3

    Q

    4 5

    TNK

    6 7

    TNK

    8 9

    Q

    10 11

    Q

    12 13

    TNK

    14 15

    TNK

    16 17

    Q

    18 19

    Q

    20 21

    TNK

    22 23

    TNK

    24 25

    Q

    26 27

    Q

    28 29

    TNK

    30 31

    TNK

    32 33

    Q

    34 35

    Q

    36 37

    TNK

    38 39

    TNK

    40 41

    Q

    42 43

    Q

    44 45

    TNK

    46 47

    TNK

    48 49

    Q

    50 51

    Q

    52 53

    TNK

    54 55

    TNK

    56 57

    Q

    58 59

    Q

    60 61

    TNK

    62 63

    TNK

    64 65

    Q

    66 67

    Q

    68 69

    TNK

    70 71

    TNK

    72 73

    Q

    74 75

    Q

    76 77

    TNK

    78 79

    TNK

    80 81

    Q

    82 83

    Q

    84 85

    TNK

    86 87

    TNK

    88 89

    Q

    90 91

    Q

    92 93

    TNK

    94 95

    TNK

    96 97

    Q

    98 99

    Q

    100101

    TNK

    102103

    TNK

    104105

    Q

    106107

    Q

    108109

    TNK

    110111

    TNK

    112113

    Q

    114115

    Q

    116117

    TNK

    118119

    TNK

    120121

    Q

    122123

    Q

    124125

    TNK

    126127

    TNK

    128129

    Q

    130131

    Q

    132133

    TNK

    134135

    TNK

    136137

    Q

    138139

    Q

    140141

    TNK

    142143

    TNK

    144145

    Q

    146147

    Q

    148149

    TNK

    150151

    TNK

    152153

    Q

    154155

    Q

    156157

    TNK

    158159

    TNK

    160161

    Q

    162163

    Q

    164165

    TNK

    166167

    TNK

    168169

    Q

    170171

    Q

    172173

    TNK

    174175

    TNK

    176177

    Q

    178179

    Q

    180181

    TNK

    182183

    TNK

    184185

    Q

    186187

    Q

    188189

    TNK

    190191

    TNK

    192193

    Q

    194195

    Q

    196197

    TNK

    198199

    TNK

    200201

    Q

    202203

    Q

    204205

    TNK

    206207

    TNK

    208209

    Q

    210211

    Q

    212213

    TNK

    214215

    TNK

    216217

    Q

    218219

    Q

    220221

    TNK

    222223

    TNK

    224225

    Q

    226227

    Q

    228229

    TNK

    230231

    TNK

    232233

    Q

    234235

    Q

    236237

    TNK

    238239

    TNK

    240241

    Q

    242243

    Q

    244245

    TNK

    246247

    TNK

    248249

    Q

    250251

    Q

    252253

    TNK

    254255

    TNK

    256257

    Q

    258259

    Q

    260261

    TNK

    262263

    TNK

    264265

    Q

    266267

    Q

    268269

    TNK

    270271

    TNK

    272273

    Q

    274275

    Q

    276277

    TNK

    278279

    TNK

    280281

    Q

    282283

    Q

    284285

    TNK

    286287

    TNK

    288289

    Q

    290291

    Q

    292293

    TNK

    294295

    TNK

    296297

    Q

    298299

    Q

    300301

    TNK

    302303

    TNK

    304305

    Q

    306307

    Q

    308309

    TNK

    310311

    TNK

    312313

    Q

    314315

    Q

    316317

    TNK

    318319

    TNK

    320321

    Q

    322323

    Q

    324325

    TNK

    326327

    TNK

    328329

    Q

    330331

    Q

    332333

    TNK

    334335

    TNK

    336337

    Q

    338339

    Q

    340341

    TNK

    342343

    TNK

    344345

    Q

    346347

    Q

    348349

    TNK

    350351

    TNK

    352353

    Q

    354355

    Q

    356357

    TNK

    358359

    TNK

    360361

    Q

    362363

    Q

    364365

    TNK

    366367

    TNK

    368369

    Q

    370371

    Q

    372373

    TNK

    374375

    TNK

    376377

    Q

    378379

    Q

    380381

    TNK

    382383

    TNK

    384385

    TNK

    386387

    TNK

    388389

    Q

    390391

    Q

    392393

    TNK

    394395

    TNK

    396397

    TNK

    398399

    TNK

    400401

    Q

    402403

    Q

    404405

    TNK

    406407

    TNK

    408409

    TNK

    410411

    TNK

    412413

    Q

    414415

    Q

    416417

    TNK

    418419

    TNK

    420421

    TNK

    422423

    TNK

    424425

    Q

    426427

    Q

    428429

    TNK

    430431

    TNK

    432433

    TNK

    434435

    TNK

    436437

    Q

    438439

    Q

    440441

    TNK

    442443

    TNK

    444445

    TNK

    446447

    TNK

    448449

    Q

    450451

    Q

    452453

    TNK

    454455

    TNK

    456457

    TNK

    458459

    TNK

    460461

    Q

    462463

    Q

    464465

    TNK

    466467

    TNK

    468469

    TNK

    470471

    TNK

    472473

    Q

    474475

    Q

    476477

    TNK

    478479

    TNK

    480481

    TNK

    482483

    TNK

    484485

    Q

    486487

    Q

    488489

    TNK

    490491

    TNK

    492493

    TNK

    494495

    TNK

    496497

    Q

    498499

    Q

    500501

    TNK

    502503

    TNK

    504505

    TNK

    506507

    TNK

    508509

    Q

    510511

    Q

    512513

    TNK

    514515

    TNK

    516517

    TNK

    518519

    TNK

    520521

    Q

    522523

    Q

    524525

    TNK

    526527

    TNK

    528529

    TNK

    530531

    TNK

    532533

    Q

    534535

    Q

    536537

    TNK

    538539

    TNK

    540541

    TNK

    542543

    TNK

    544545

    Q

    546547

    Q

    548549

    TNK

    550551

    TNK

    552553

    TNK

    554555

    TNK

    556557

    Q

    558559

    Q

    560561

    TNK

    562563

    TNK

    564565

    TNK

    566567

    TNK

    568569

    Q

    570571

    Q

    572573

    TNK

    574575

    TNK

    576577

    TNK

    578579

    TNK

    580581

    Q

    582583

    Q

    584585

    TNK

    586587

    TNK

    588589

    TNK

    590591

    TNK

    592593

    Q

    594595

    Q

    596597

    TNK

    598599

    TNK

    600601

    TNK

    602603

    TNK

    604605

    Q

    606607

    Q

    608609

    TNK

    610611

    TNK

    612613

    TNK

    614615

    TNK

    616617

    Q

    618619

    Q

    620621

    TNK

    622623

    TNK

    624625

    TNK

    626627

    TNK

    628629

    Q

    630631

    Q

    632633

    TNK

    634635

    TNK

    636637

    TNK

    638639

    TNK

    640641

    Q

    642643

    Q

    644645

    TNK

    646647

    TNK

    648649

    TNK

    650651

    TNK

    652653

    Q

    654655

    Q

    656657

    TNK

    658659

    TNK

    660661

    TNK

    662663

    TNK

    664665

    Q

    666667

    Q

    668669

    TNK

    670671

    TNK

    672673

    TNK

    674675

    TNK

    676677

    Q

    678679

    Q

    680681

    TNK

    682683

    TNK

    684685

    TNK

    686687

    TNK

    688689

    Q

    690691

    Q

    692693

    TNK

    694695

    TNK

    696697

    TNK

    698699

    TNK

    700701

    Q

    702703

    Q

    704705

    TNK

    706707

    TNK

    708709

    TNK

    710711

    TNK

    712713

    Q

    714715

    Q

    716717

    TNK

    718719

    TNK

    720721

    TNK

    722723

    TNK

    724725

    Q

    726727

    Q

    728729

    TNK

    730731

    TNK

    732733

    TNK

    734735

    TNK

    736737

    Q

    738739

    Q

    740741

    TNK

    742743

    TNK

    744745

    TNK

    746747

    TNK

    748749

    Q

    750751

    Q

    752753

    TNK

    754755

    TNK

    756757

    TNK

    758759

    TNK

    760761

    Q

    762763

    Q

    764765

    TNK

    766767

    TNK

    768769

    TNK

    770771

    TNK

    772773

    Q

    774775

    Q

    776777

    TNK

    778779

    TNK

    780781

    TNK

    782783

    TNK

    784785

    Q

    786787

    Q

    788789

    TNK

    790791

    TNK

    792793

    TNK

    794795

    TNK

    796

    A= -0.957 B= 15.5345 HA= -0.210 B= 10.0358 V

    A= -0.122 B= 0.0015 Z

    I= 40.00 mAW = 87.000 2007.422 MeVFREQ= 704.40 MHz WL= 425.60 mmEMITI= 4.221 4.221 1000.00EMITO= 0.625 0.625 1000.00

    PRINTOUT VALUES NP NE VALUE 1 1 8.2720 1 6 468.0000 2 6 0.0000 3 6 0.0000

    MATCHING TYPE = 9DESIRED VALUES (BEAMF) alpha betax -2.0553 15.4239y -0.7381 7.3608z -0.0259 0.0060

    MATCH VARIABLES (NC=6) MP ME VALUE 3 373 -31.6848 3 381 -16.8251 1 369 14.2740 1 371 -14.1363 1 377 15.0778 1 379 -14.6226

    CODE: TRACE3D vMI1FILE: G:\dynrash\224\cav\cav-quad.t3dDATE: 22/12/1999TIME: 17:56:59

    Find matched beam solution in all linac

    Poster WEPLE109: Adiabatic Matching in Periodic Accelerating Lattices for Superconducting Proton Linacs

    Poster WEPLE109: Adiabatic Matching in Periodic Accelerating Lattices for Superconducting Proton Linacs

    Run non-linear multi-particle simulations for confirmation of design

  • P. Pierini EPAC 2002, Paris, 3-7 June 2002 16

    352 MHz cavities with CERN (MOU) Use LEP II sputtering technology Single cell and 5 cell sputtered β = 0.85 Cavity integrated in a LEP type cryostatAll tests reached the design goals, indeed performed as the best LEP batchBut: Bulk niobium is needed at lower β, and the gradient is moderate w.r.t 704 MHz

    352 MHz β=0.85 prototypes with CERN

    Test in a modified LEPII cryomodule (Aug. 2001)

    Powered to 250 kW 7 MV/m

  • P. Pierini EPAC 2002, Paris, 3-7 June 2002 17

    0 20 40 60 80 100 120 140109

    1010

    1011

    Quench No quench Quench

    design value, Bp=50 mT

    Ep=30.3 MV/m,

    Eacc

    =8.5 MV/m

    Q0

    Bp [mT], E

    p [MV/m], E

    acc [MV/m]

    Z101 RRR=30 Z102 RRR=30 Z103 RRR=250 Z104 RRR=250

    0 10 20 30 40 50 60 70

    0 2 4 6 8 10 12 14 16 18 20 22

    Poster THPDO023: RF Tests of the Single Cell Prototypes for the TRASCO β=0.47 Cavities

    Poster THPDO023: RF Tests of the Single Cell Prototypes for the TRASCO β=0.47 Cavities

    β=0.47 single cell cavities prototypes

    For 1-cell:Ep/Eacc = 2.90Bp/Eacc = 5.38 mT/(MV/m)

    For 5-cell:Ep/Eacc = 3.57Bp/Eacc = 5.88 mT/(MV/m)

    Max Epeak = 74 MV/mMax Bpeak = 138 mT

    Fabricated with RRR>30 & RRR>250 Niobium at ZanonBCP, HPR and tests at TJNAF (Z104) and Saclay (Z101-Z103)

    Two 5 cell cavities are under fabrication

    BpEpEacc

  • P. Pierini EPAC 2002, Paris, 3-7 June 2002 18

    Baseline of the smooth linac design

    Continuous phase advances at transitions

    RFQ

  • P. Pierini EPAC 2002, Paris, 3-7 June 2002 19

    Full SC linac from 5 MeV to 1 GeV

    Results of non-linear simulationsNo particle losses, beams well confined

    x rms envelope

    y rms envelope

    Phase rms envelope

    Input @ 5 MeV 105 ptcl

    Output @ 1 GeV

  • P. Pierini EPAC 2002, Paris, 3-7 June 2002 20

    Rms emittances growth (from end of RFQ to full energy) < 2%

    Avoided: Structure resonances Tune resonances Big tune depression

    Guaranteed: Smooth beamline changes Good matching procedures

  • P. Pierini EPAC 2002, Paris, 3-7 June 2002 21

    Rms emittances growth (from end of RFQ to full energy) < 2%

    Avoided: Structure resonances Tune resonances Big tune depression

    Guaranteed: Smooth beamline changes Good matching procedures

  • P. Pierini EPAC 2002, Paris, 3-7 June 2002 22

    The effort to build a complete ADS system exceeds the capabilities (and the funding availability) of any national program like TRASCO

    TRASCO means to provide significant R&D and prototipical effort along the road to the design of a transmuter system

    cfr. A European Roadmap for Developing Accelerator Driven Systems (ADS) for Nuclear Waste Incineration, by the European Technical Working Group on ADS, April 2001 (available in http://itumagill.fzk.de/ADS/)

    Already in the FP5 of the European Commission a Program has beenfunded: PDS-XADS Preliminary Design Studies for an eXperimental Accelerator Driven System

    25 Partners, from Research Institutions to EU Industries 12 M Program (50% supported by the Commission) Several Working Packages, dealing with various aspects of an ADS WP3 is dedicated to the Accelerator

    More to come in the FP6

    Perspectives