soil resistivity testing services - storesonline resistivity... · soil resistivity testing...

2
www.libertyconsulting.com.au Copyright © LCS 2016 Soil Resistivity Testing Services Liberty Consulting Services (LCS) has conducted extensive electrical soil resistivity testing for many years, in some of the most difficult soil conditions Australia has to offer. During this time, LCS has developed reliable techniques to provide accurate test data so that a low margin of error is able to be obtained for earth system designs using the provided test measurements. The use of adequately powered test equipment to suit the conditions is crucial to performing meaningful electrical soil resistivity testing. Why soil resistivity testing is so important Soil resistivity is the basis upon which earth grids are designed so that electrical parameters are determined and modelled (e.g. grid resistance, and mesh voltages due to injected fault currents). This is a crucial step in designing and assessing any earthing system. Soil is rarely homogeneous, and is commonly made up of horizontal layers which need to be identified so that the correct placement of earthing conductors can be determined during the design process. The use of uniform or “averaged” tested resistivity values can lead to significant errors in earthing designs. Qualified LCS engineers perform testing so that difficult conditions encountered in the field can be handled on site, and retesting suspect data points is done as required. This ensures the provision of accurate test data to the designing engineer(s). These Standards detail soil resistivity test methods: Soil Resistivity Testing Standards ENA EG0 Power System Earthing Guide (Section 7 – especially 7.2.3) ENA EG1 Substation Earthing Guide (Section 5.2 – especially 5.2.2) AS/NZS 1768 Lightning protection (Appendix C.10 – especially C10.1) IEEE Std 80 IEEE Guide for Safety in AC Substation Grounding (Sections 13.3 & 13.4) IEEE Std 81 IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Grounding System (Section 7) Soil electrical characteristics The key determinant of error in the earthing design process is the inaccuracy or variation of the soil resistivity input to the design. Therefore it is important to understand electric current flow in nonuniform, multilayered soils, and how to accurately test soil resistivity in a diverse range of conditions. www.libertyconsulting.com.au Tel: 0434 005 393

Upload: duongnhu

Post on 05-May-2018

220 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: Soil Resistivity Testing Services - StoresOnline Resistivity... · Soil Resistivity Testing Services ... Accurate soil resistivity for power system earthing ... equations from IEEE80

 

www.libertyconsulting.com.au Copyright © LCS 2016 

 

Soil Resistivity Testing Services 

Liberty Consulting Services (LCS) has conducted extensive electrical soil resistivity testing for many years, in some of 

the most difficult soil conditions Australia has  to offer. During  this  time, LCS has developed reliable  techniques  to 

provide accurate test data so that a  low margin of error  is able to be obtained for earth system designs using the 

provided  test measurements.  The use of  adequately powered  test  equipment  to  suit  the  conditions  is  crucial  to 

performing meaningful electrical soil resistivity testing. 

Why soil resistivity testing is so important 

Soil resistivity  is the basis upon which earth grids are 

designed so that electrical parameters are determined 

and modelled (e.g. grid resistance, and mesh voltages 

due to injected fault currents). This is a crucial step in 

designing and assessing any earthing system. 

Soil is rarely homogeneous, and is commonly made up 

of  horizontal  layers  which  need  to  be  identified  so 

that the correct placement of earthing conductors can 

be determined during  the design process. The use of 

uniform  or  “averaged”  tested  resistivity  values  can 

lead to significant errors in earthing designs. 

Qualified  LCS  engineers  perform  testing  so  that 

difficult  conditions  encountered  in  the  field  can  be 

handled on site, and re‐testing suspect data points  is 

done  as  required.  This  ensures  the  provision  of 

accurate test data to the designing engineer(s). 

These Standards detail soil resistivity test methods: 

        Soil Resistivity Testing Standards  ENA EG‐0 Power System Earthing Guide 

(Section 7 – especially 7.2.3) 

ENA EG‐1 Substation Earthing Guide (Section 5.2 – especially 5.2.2) 

AS/NZS 1768 Lightning protection (Appendix C.10 – especially C10.1) 

IEEE Std 80 IEEE Guide for Safety in AC Substation Grounding (Sections 13.3 & 13.4) 

IEEE Std 81 IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Grounding System (Section 7) 

 

Soil electrical characteristics 

The  key  determinant  of  error  in  the  earthing  design 

process  is  the  inaccuracy  or  variation  of  the  soil 

resistivity input to the design.  

Therefore  it  is  important  to  understand  electric 

current  flow  in non‐uniform, multi‐layered  soils,  and 

how  to  accurately  test  soil  resistivity  in  a  diverse 

range of conditions.  

www.libertyconsulting.com.au 

Tel: 0434 005 393 

Page 2: Soil Resistivity Testing Services - StoresOnline Resistivity... · Soil Resistivity Testing Services ... Accurate soil resistivity for power system earthing ... equations from IEEE80

 

 

www.libertyconsulting.com.au Copyright © LCS 2016 

There  are  four  basic  parameters  that  influence  soil 

resistivity values: 

1. Chemical content (soil type, constituents); 

2. Moisture content; 

3. Temperature; and 

4. Particle size and distribution. 

The  use  of  geotechnical  data  from  the  proposed 

testing  area  will  often  provide  good  background 

information and sanity check of test results. 

Accurate soil resistivity for power system earthing 

The Wenner or “four pin equal spacing” method is the 

preferred  test  regime  used  by  LCS.  Other  methods 

include  the  Schlumberger  or  Driven  Rod,  and  these 

have advantages in certain specific conditions. 

In the Wenner method,  it  is  important to understand 

how  far  apart  test  probes  need  to  be  in  successive 

tests to provide an accurate soil profile as an input to 

the design software. 

The  largest  spacing  (see  “a”  below)  needs  to  be  at 

least equal to the “zone of  influence” of the earthing 

system  being  designed.  A  sample  test  instruction  is 

provided with recommended spacings. 

 

 

The  meter  measures  “apparent  resistivity”,  not  the 

“actual” resistivity. The value obtained  is a “weighted 

average” of  the  actual  resistivity down  to  the  depth 

(spacing)  being  tested.  This  raw  data  must  be 

interpreted by software (e.g. CDEGS RESAP module) in 

order to determine the actual soil resistivity. 

How many test points are required in a traverse set? 

Experience has shown that the greater number of test 

points  in  a Wenner  traverse,  a  higher  accuracy  soil 

model (multi‐layer) will be developed by software. We 

recommend at least 10 data points in each traverse. 

Software computations are more accurate  if the data 

recorded does not have too many “gaps” between the 

spacings. The preferred ratio between spacings is 1.5. 

A  reading  taken  at  5  metres,  would  need  to  be 

followed up by a 7.5 metre spacing, and preceded by 

at least 3.5 metres, in order to adhere to this 1.5 rule. 

Soil resistivity test results and analysis 

The use of  sophisticated modelling  software  such  as 

CDEGS’  RESAP  module  is  able  to  provide  accurate 

multi‐layer  soil  profiles.  A  %  error  is  provided  with 

each software model. 

Multi‐layer  software  analysis  is  critical  to  providing 

accurate  inputs  to  the  design  process.  High/Low 

versus  Low/High  soil  models  give  quite  different 

results for an injected earth fault current. 

Large  variations  in  soil  resistivity  near  the  surface 

influence  step  and  touch  voltage  performance. 

Whereas  large  variation  deeper  below  the  ground 

surface  affect  the  transfer  of  earth  potential  rise  to 

adjacent metalwork and services. 

Using equivalent uniform soil resistivity and empirical 

equations  from  IEEE80  give  large  errors.  Therefore 

simply  “averaging”  the  raw  test  data  results  is  not 

advisable.