section 9.2: parametric modeling of stationary … 9.2: parametric modeling of stationary processes...

27
Section 9.2: Parametric Modeling of Stationary Processes Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5 Discrete-Event Simulation: A First Course Section 9.2: Parametric Modeling of Stationary Processes 1/ 27

Upload: truongliem

Post on 23-Mar-2018

218 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Section 9.2: Parametric Modeling of Stationary … 9.2: Parametric Modeling of Stationary Processes Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5

Section 9.2: Parametric Modeling of Stationary

Processes

Discrete-Event Simulation: A First Course

c©2006 Pearson Ed., Inc. 0-13-142917-5

Discrete-Event Simulation: A First Course Section 9.2: Parametric Modeling of Stationary Processes 1/ 27

Page 2: Section 9.2: Parametric Modeling of Stationary … 9.2: Parametric Modeling of Stationary Processes Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5

Parametric Modeling of Stationary Processes

We want to model an element given a data set collected onthe element of interest

e.g. arrival process or service times

One possibility: use trace driven methods

E.g., simulations in Chapter 1Described in detail in Chapter 9.1

The alternative: find a distribution that fits the data

Subject of today’s lecture, for stationary processesCalled parametric modeling

Obvious benefits for simulationDownside — additional error introduced

Discrete-Event Simulation: A First Course Section 9.2: Parametric Modeling of Stationary Processes 2/ 27

Page 3: Section 9.2: Parametric Modeling of Stationary … 9.2: Parametric Modeling of Stationary Processes Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5

Step 1: Hypothesizing a distribution

Requires some experience — consider these as guidelines to help

What is the source of the data?

Discrete or continuous?Bounded? Non-negative?Sum or product of random variables?

Look at histogram shape.

Useful to eliminate distributionsSymmetric? Flat?

Compute some simple statistics

Coefficient of variation s/x

Skewness: measures symmetry

Find a statistician to help

Discrete-Event Simulation: A First Course Section 9.2: Parametric Modeling of Stationary Processes 3/ 27

Page 4: Section 9.2: Parametric Modeling of Stationary … 9.2: Parametric Modeling of Stationary Processes Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5

Example 9.2.1

Data set of n = 23 service times x1, x2, . . . , x23

0 50 100 150 2000.0

0.1

0.2

0.3

0.4

f(x)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...................................................................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.....................................................................................................................................................................................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..................................................................................................................................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...................................................................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

x = 72.22 s = 37.49 sx

= 0.52 1n

n∑

i=1

(

xi − x

s

)3

= 0.88

Discrete-Event Simulation: A First Course Section 9.2: Parametric Modeling of Stationary Processes 4/ 27

Page 5: Section 9.2: Parametric Modeling of Stationary … 9.2: Parametric Modeling of Stationary Processes Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5

Guidelines to Select a Distribution

Plot skewness γ3 versus coefficient of variation γ2

As measured for sample dataPopulation values for parametric distributions

0.0 0.5 1.0 1.5 2.0 2.5−1

0

1

2

3

4

γ3

.

...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

.

..

.

..

.

..

.

..

.

..

.

..

.

.

..

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

.

..

.

.

..

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

γ2

GammaLognormal

Exponential

Weibull

Data

Discrete-Event Simulation: A First Course Section 9.2: Parametric Modeling of Stationary Processes 5/ 27

Page 6: Section 9.2: Parametric Modeling of Stationary … 9.2: Parametric Modeling of Stationary Processes Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5

Weibull Random Variates

The continuous r.v. X is Weibull(a, b) if and only if

The real-valued shape parameter a satisfies a > 0The real-valued scale parameter b satisfies b > 0The possible values of X are X = {x |x > 0}The cdf of X is

F (x) = 1 − exp(−(bx)a) x > 0

Alternate, legitimite cdfs:

F (x) = 1 − exp(−(x/b)a)F (x) = 1 − exp(−bxa)

The mean and standard deviation of X are

µ =1

(

1 +1

a

)

σ =1

b

Γ

(

1 +2

a

)

−[

Γ

(

1 +1

a

)]2

Discrete-Event Simulation: A First Course Section 9.2: Parametric Modeling of Stationary Processes 6/ 27

Page 7: Section 9.2: Parametric Modeling of Stationary … 9.2: Parametric Modeling of Stationary Processes Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5

Step 2: Parameter Estimation

We have a hypothesis distribution

We must determine appropriate parameters for thedistribution

Parameters to match the sample data

Let q denote the number of parameters to determine

Exponential has one parameter so q = 1Uniform has two parameters so q = 2

Two basic approaches to estimate parameters

Method of momentsMaximum likelihood estimation

Discrete-Event Simulation: A First Course Section 9.2: Parametric Modeling of Stationary Processes 7/ 27

Page 8: Section 9.2: Parametric Modeling of Stationary … 9.2: Parametric Modeling of Stationary Processes Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5

Method of Moments

Idea: select parameters so that

First q population moments

E [X k ] k = 1, 2, . . . , q

equal the first q sample moments

1

n

n∑

i=1

xki k = 1, 2, . . . , q

Gives q equations to solve q unknowns

Discrete-Event Simulation: A First Course Section 9.2: Parametric Modeling of Stationary Processes 8/ 27

Page 9: Section 9.2: Parametric Modeling of Stationary … 9.2: Parametric Modeling of Stationary Processes Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5

Example 9.2.3

Estimate q = 1 parameters for Poisson(µ)

Population first moment is E [X ] = µ

Sample first moment is x

Set equal, solve for estimator µ

Gives method of moments estimator µ = x

Discrete-Event Simulation: A First Course Section 9.2: Parametric Modeling of Stationary Processes 9/ 27

Page 10: Section 9.2: Parametric Modeling of Stationary … 9.2: Parametric Modeling of Stationary Processes Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5

Example 9.2.4

Estimate q = 1 parameters for Exponential(µ)

Population first moment is E [X ] = µSample first moment is x = 72.22 from sample dataGives estimator µ = 72.22

Exponential(72.22) cdf and empirical cdf:

0 20 40 60 80 100 120 140 160 1800.00

0.25

0.50

0.75

1.00

F (x)

x.......................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.......................................................

.

.

.

.

.

.

.

.

.

.

.

.

........................................................................................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.............................................................

.

.

.

.

.

.

.

.

.

.

.

.

........................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

....

.

.

.

.

.

.

.

.

.

.

.

.

............................................................................................................................................................................

.

.

.

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

..

.

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

Discrete-Event Simulation: A First Course Section 9.2: Parametric Modeling of Stationary Processes 10/ 27

Page 11: Section 9.2: Parametric Modeling of Stationary … 9.2: Parametric Modeling of Stationary Processes Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5

Example 9.2.5

Estimate q = 2 parameters for Normal(µ, σ)

Denote first sample moment as m1 = x

Denote second sample moment as m2 = 1n

∑ni=1 x2

i

Set E [X ] = m1 and E [X 2] = m2

Since σ2 = E [X 2] − µ2, rewrite as

µ = m1

σ2 + µ2 = m2

Solve for µ and σ to get estimators

µ = m1 = x

σ =√

m2 − m21 = s

Discrete-Event Simulation: A First Course Section 9.2: Parametric Modeling of Stationary Processes 11/ 27

Page 12: Section 9.2: Parametric Modeling of Stationary … 9.2: Parametric Modeling of Stationary Processes Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5

Example 9.2.6

Estimate q = 1 parameter for Geometric(p)

Population mean isp

1 − p

Sample mean is x

Set equal, solve for p

Get estimator

p =x

1 + x

Do we have 0 < p < 1 ?

Discrete-Event Simulation: A First Course Section 9.2: Parametric Modeling of Stationary Processes 12/ 27

Page 13: Section 9.2: Parametric Modeling of Stationary … 9.2: Parametric Modeling of Stationary Processes Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5

Example 9.2.7

Estimate parameter for Gamma(a, b) for sample data

Use equations

µ = m1

σ2 + µ2 = m2

Gamma distribution (see Chapter 7.6) has

µ = ab and σ = b√

a

Get estimators

a =x2

s2

b =s2

x

Discrete-Event Simulation: A First Course Section 9.2: Parametric Modeling of Stationary Processes 13/ 27

Page 14: Section 9.2: Parametric Modeling of Stationary … 9.2: Parametric Modeling of Stationary Processes Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5

Example 9.2.7 ctd

For our sample data, we estimate parameters as

a = x2

s2 = 72.222

37.492 ≃ 3.7

b = s2

x= 37.492

72.22 ≃ 19.46

Gamma(3.7, 19.46) cdf and empirical cdf:

0 20 40 60 80 100 120 140 160 1800.00

0.25

0.50

0.75

1.00

F (x)

x.......................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.......................................................

.

.

.

.

.

.

.

.

.

.

.

.

........................................................................................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.............................................................

.

.

.

.

.

.

.

.

.

.

.

.

........................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

....

.

.

.

.

.

.

.

.

.

.

.

.

............................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..............................

..

Discrete-Event Simulation: A First Course Section 9.2: Parametric Modeling of Stationary Processes 14/ 27

Page 15: Section 9.2: Parametric Modeling of Stationary … 9.2: Parametric Modeling of Stationary Processes Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5

Example 9.2.8

Estimate parameters for Uniform(a, b)

Equate population and sample moments

a + b

2= m1

(b − a)2

12+

(

a + b

2

)2

= m2

Solve for a and b to obtain estimates

a = x −√

3 s b = x +√

3 s

Truly Uniform(a, b) data must fall between a and b

Estimators a and b may not satisfy this

Discrete-Event Simulation: A First Course Section 9.2: Parametric Modeling of Stationary Processes 15/ 27

Page 16: Section 9.2: Parametric Modeling of Stationary … 9.2: Parametric Modeling of Stationary Processes Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5

Maximum Likelihood Estimators

Idea: find parameters most likely to produce the sample data

Let θ = (θ1, θ2, . . . , θq) denote the vector of q unknownparameters

Define the likelihood function

L(θ) =n∏

i=1

f (xi , θ)

where f (·) is the distribution’s pdf (including parameters θ)

The Maximum Likelihood Estimators (MLE) θ maximize L(θ)

Sometimes easier to maximize the log likelihood function

log L(θ) =

n∑

i=1

log f (xi , θ)

Discrete-Event Simulation: A First Course Section 9.2: Parametric Modeling of Stationary Processes 16/ 27

Page 17: Section 9.2: Parametric Modeling of Stationary … 9.2: Parametric Modeling of Stationary Processes Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5

Example 9.2.9

Let x1, x2, . . . , xn be a random sample from an Exponential(µ)population.

The likelihood function is:

L(µ) =

n∏

i=1

f (xi , µ) =

n∏

i=1

1

µexp(−xi/µ) = µ−n exp

(

−n∑

i=1

xi/µ

)

The log likelihood function is:

log L(µ) = −n log µ −n∑

i=1

xi/µ

Discrete-Event Simulation: A First Course Section 9.2: Parametric Modeling of Stationary Processes 17/ 27

Page 18: Section 9.2: Parametric Modeling of Stationary … 9.2: Parametric Modeling of Stationary Processes Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5

Example 9.2.9 ctd

Maximize log likelihood function:

Differentiate (with respect to µ)Set derivitive to zeroSolve for µ

0 =d

dµlog L(µ) =

d

(

−n log µ −n∑

i=1

xi/µ

)

= −n

µ+

∑ni=1 xi

µ2

Obtain MLE

µ =1

n

n∑

i=1

xi = x

For this distribution, method of moments and MLE areidentical

Discrete-Event Simulation: A First Course Section 9.2: Parametric Modeling of Stationary Processes 18/ 27

Page 19: Section 9.2: Parametric Modeling of Stationary … 9.2: Parametric Modeling of Stationary Processes Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5

Example 9.2.10

Given a sample of size n = 3 from an Exponential population:

x1 = 1 x2 = 2 x3 = 6

The MLE µ = x = 3 is the value of µ that maximizes L(µ)

0 1 2 3 4 5 6 7 8 9 100.0

0.1

0.2

0.3

0.4

f(x)

x

.

.

.

.

.

..

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

..

.

..

.

.

..

.

..

.

..

.

..

.

.

..

..

.

.........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

Product of lengths of vertical dashed lines is maximized

Discrete-Event Simulation: A First Course Section 9.2: Parametric Modeling of Stationary Processes 19/ 27

Page 20: Section 9.2: Parametric Modeling of Stationary … 9.2: Parametric Modeling of Stationary Processes Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5

Example 9.2.11

Let x1, . . . , xn be a random sample from a Weibull(a, b) population

Pdf is f (x) = baaxa−1 exp(−(bx)a)

Likelihood function:

L(a, b) =n∏

i=1

f (xi ) = banan

(

n∏

i=1

xi

)a−1

exp

(

−n∑

i=1

(bxi )a

)

Log likelihood function:

log L(a, b) = n log a + an log b + (a − 1)n∑

i=1

log xi − ba

n∑

i=1

xai

Discrete-Event Simulation: A First Course Section 9.2: Parametric Modeling of Stationary Processes 20/ 27

Page 21: Section 9.2: Parametric Modeling of Stationary … 9.2: Parametric Modeling of Stationary Processes Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5

Example 9.2.11 ctd

Maximize log likelihood function: multi-variable calculus!

Compute partial derivatives, set to zeroSolve q simultaneous equations for q unknowns

0 =∂

∂aL(a, b) =

n

a+ n log b +

n∑

i=1

log xi −n∑

i=1

(bxi )a log bxi

0 =∂

∂bL(a, b) =

an

b− aba−1

n∑

i=1

xai

No closed-form solution for a and b

Can use numerical methods to estimate a and b

Discrete-Event Simulation: A First Course Section 9.2: Parametric Modeling of Stationary Processes 21/ 27

Page 22: Section 9.2: Parametric Modeling of Stationary … 9.2: Parametric Modeling of Stationary Processes Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5

Fitted Weibull

For the 23 service times, obtain MLE a = 2.10 and b = 0.0122

Weibull(2.10, 0.0122) cdf and empirical cdf:

0 20 40 60 80 100 120 140 160 1800.00

0.25

0.50

0.75

1.00

F (x)

x.......................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.......................................................

.

.

.

.

.

.

.

.

.

.

.

.

........................................................................................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.............................................................

.

.

.

.

.

.

.

.

.

.

.

.

........................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

....

.

.

.

.

.

.

.

.

.

.

.

.

............................................................................................................................................................................

............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

......................................

Discrete-Event Simulation: A First Course Section 9.2: Parametric Modeling of Stationary Processes 22/ 27

Page 23: Section 9.2: Parametric Modeling of Stationary … 9.2: Parametric Modeling of Stationary Processes Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5

Accuracy of Point Estimators

So far, have used point estimates for parameters

Also makes sense to use interval estimates

For q = 1 parameter, will get a confidence interval

For q > 1 parameters, will get a confidence region

Details beyond this class

Discrete-Event Simulation: A First Course Section 9.2: Parametric Modeling of Stationary Processes 23/ 27

Page 24: Section 9.2: Parametric Modeling of Stationary … 9.2: Parametric Modeling of Stationary Processes Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5

Example 9.2.12

95% confidence region for Weibull parameters:

0 1 2 3 40.000

0.005

0.010

0.015

0.020

b

a

.

.

.

.

.

.

.

.

.

......

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

..

.............................................................................................

...................................................................................................................

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

......................................................................................................................

.........................................................................

................................

2 (−113.691 − log L(a, b)) < 5.99

Point is (a, b) = (2.10, 0.0122)

Notice region does not include a = 1

Discrete-Event Simulation: A First Course Section 9.2: Parametric Modeling of Stationary Processes 24/ 27

Page 25: Section 9.2: Parametric Modeling of Stationary … 9.2: Parametric Modeling of Stationary Processes Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5

Step 3: Goodness of Fit

Visual tests:

Compare fitted pdf f with empirical histogram

Compare fitted cdf F with empirical cdf

Generate a P-P plot

Sort the sample data, x(1), x(2), . . . , x(n)

Define adjusted empirical cdf F (x(i)) = (i − 0.5)/n

Plot F (·) versus F (·) for sample dataPerfect fit: points will fall on line y = x

Discrete-Event Simulation: A First Course Section 9.2: Parametric Modeling of Stationary Processes 25/ 27

Page 26: Section 9.2: Parametric Modeling of Stationary … 9.2: Parametric Modeling of Stationary Processes Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5

Example 9.2.13

The P-P plot for the fitted Weibull distribution:

0.0 0.2 0.4 0.6 0.8 1.0

F (x(i))

0.0

0.2

0.4

0.6

0.8

1.0

F (x(i))

.

..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

• •

• •••

• • • •

• •

• •

Discrete-Event Simulation: A First Course Section 9.2: Parametric Modeling of Stationary Processes 26/ 27

Page 27: Section 9.2: Parametric Modeling of Stationary … 9.2: Parametric Modeling of Stationary Processes Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5

Analytical Tests for Goodness of Fit

“Standard” statistical tests

Discrete data: chi-square test

Uses differences between discrete histogram and fitted pdfChi-square statistic is a function of the squared differences

Continuous data: Kolmogorov-Smirnov test

Largest vertical distance between empirical and fitted cdfUsually denoted Dn for sample of size n

Example 9.2.14: Kolmogorov-Smirnov tests for sample data

Distribution D23

Exponential(µ) 0.307Weibull(a, b) 0.151Gamma(a, b) 0.123

Lognormal(a, b) 0.090

Discrete-Event Simulation: A First Course Section 9.2: Parametric Modeling of Stationary Processes 27/ 27