quantum control of superconducting...

30
Quantum Control of Superconducting Circuits Liang Jiang Yale University, Applied Physics Victor Albert, Stefan Krastanov, Chao Shen, Changling Zou Brian Vlastakis, Matt Reagor, Andrei Petrenko, Steven Touzard, Zaki Leghtas, Reinier Heeres, Wolfgang Pfaff Mazyar Mirrahimi, Michel Devoret, Rob Schoelkopf City Tech Physics Seminar 2014.11.13 Supported by: DARPA, ARO, AFOSR, Sloan, Packard.

Upload: hoangcong

Post on 26-May-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Quantum Control of Superconducting Circuits

Liang Jiang Yale University, Applied Physics

Victor Albert, Stefan Krastanov, Chao Shen, Changling Zou

Brian Vlastakis, Matt Reagor, Andrei Petrenko, Steven Touzard, Zaki Leghtas, Reinier Heeres, Wolfgang Pfaff

Mazyar Mirrahimi, Michel Devoret, Rob Schoelkopf

City Tech Physics Seminar 2014.11.13

Supported  by:  DARPA,  ARO,  AFOSR,  Sloan,  Packard.  

45mm

Superconduc*ng  Cavity-­‐Qubit  System  

storage  cavity

transmon  qubit

coupler  port

Effec*ve  Hamiltonian:  

−χ sa†a e eH =ω sa

†a +ω q e e

readout  cavity

χ s ≫κ s ,γ q

Interac9on  strength  dominates  photon  loss  &  qubit  decoherence

κ s :  photon  decay  rate γ q :  qubit  decoh.  rate

•  QND  readout  of  the  qubit  has  been  demonstrated    in  many  groups  (e.g.,  F>99.5%  in  300  ns)  

•  Long  lived  SC  cavity  (T>10  ms  >>  Tqubit~100us)  

storage  cavity Manipulate  the  cavity  

H = ω s − χ s e e( )a†a +ω q e e

, gβ0,gD gβ

Weak  Drive: Condi9onal  cavity  displacement

0,e0,gD eβ

β,g

0,e

in-­‐phase

quadrature

Phase-­‐space  diagram

Quantum  circuit

cavity

qubit

gDβ

Strong  Drive: Uncondi9onal  cavity  displacement

βDβ 0indep. of qubit state

in-­‐phase

quadrature

Phase-­‐space  diagram

θ

β

Quantum  circuit

cavity Dβ

Create  superposi4on  of  cavity  state  depending  on  the  qubit.

+ε t( )a† eiω st + h.c.

storage  cavity Manipulate  the  qubit  

H =ω sa†a + ω q − χ sa

†a( ) e e

Query  the  qubit:  ‘Are  there  m  photons  in  the  cavity?’

Kirchmair  G.  et  al.  Nature  495  205-­‐209  2013

Johnson  B.R.  et  al.  Nature  Phys.  6,  663-­‐667  2010

Integrated  Signal

Spectroscopy  frequency  (GHz)

Qubit  Spectroscopy

χ s

cavity

qubit Yπm

m,eYπm m,g

Yπm n,g n,gn ≠ m

Weak  Drive: Condi9onal  qubit  rota9on:

Yπ n,g n,efor all n

Strong  Drive: Uncondi9onal  qubit  rota9on:

qubit Yπ

Quantum  circuit

+Ωm t( ) e g ei ωq−mχs( )t + h.c.

Determinis)c  qubit-­‐cavity  mapping  

Leghtas  et.  al  PRA  87,  042315  (2013) Theory:

Transfer  arbitrary  state    from  qubit  to  cavity  

Storage

0

Yπ /2 Yπ0

Dβ Cπ Dβ†Dβ

qubit a g b e+

a bβ β+ −

g

Vlastakis  et.  al  Science  342,  6158    (2013) Experiment:

0.0  

-­‐0.6  

0.6  

Measure  Wigner  func*on  (based  on  QND  parity  meas)  

-­‐    Can  we  prepare  the  cavity  in  arbitrary  superposiTon  of  photon  number  states?  

( ) ( ) ( ) ( )† †1 a aW Tr D Dα α ρ α⎡ ⎤= ⎢ ⎥⎣ ⎦

-­‐    Can  we  robustly  encode  quantum  informaTon  in  cavity?  

Theory of Cat Codes

Mo*va*ons:    1.  How  to  construct  robust  quantum  memory?  

a)  Overcome  cavity  dephasing  errors  b)  Overcome  cavity  loss  errors  

2.  How  to  control  such  robust  quantum  memory?  a)  Gates  over  single  logical  qubits  b)  Gates  between  two  logical  qubits  

† † †1 1 1

1 12 2loss a a a a a aκ ρ κ ρ ρ ρ−

⎛ ⎞= − −⎜ ⎟⎝ ⎠D

Dominant  Errors  in  Cavity  Quantum  Memory  

2 21 12 2dephase n n n nφ φκ ρ κ ρ ρ ρ⎛ ⎞= − −⎜ ⎟⎝ ⎠

D

Dephasing  Error   Photon  Loss  Error  

No  Change  in  photon  number!   Reduce  photon  number  by  one!  

(Env.  is  probing  photon  number)   (Env.  is  stealing  our  photons  one  by  one)  

Strategy:  quickly  shuffle  photon  number  …   Strategy:  monitor  photon  parity  …  

generator

Dissipation to Transmission line

LC oscillator

I

Q

D a⎡⎣ ⎤⎦ρ = aρa† − 1

2a†aρ − 1

2ρa†a

Steady state:

ρ∞ = α∞ α∞ ,α∞ = 2ε /κ

Driven  damped  harmonic  oscillator  

Driving  +  DissipaTon  à  Pure  Steady  State  à  Suppress  dephasing  noise!  

ddt

ρ = [εa† − ε * a,ρ]+κ1D a⎡⎣ ⎤⎦ρ

ddt

ρ =κ1D a −α∞⎡⎣ ⎤⎦ρ

† *d d[ ( ) , ]d d d

dd a a adt

ρ ε ε ρ κ ρ⎡ ⎤= − + ⎣ ⎦D

Case d=2 : 2-dim steady state subspace!

{ }2 2, 2 /cρ α α ε κ∞ ± ∞ ∞∈ ± =∑

Case d=4 : 4-dim steady state subspace!

{ }1/4( ) 4 4( ) , (2 / )ic iρ α α ε κ∞ ± ∞ ∞∈ ± =∑

Mul*-­‐photon  Driven  &  Mul*-­‐photon  Damped  Oscillator  

I

Q

I

Q

I

Q

I

Q

I

Q

I

Q

I

QI

Q

I

Q

I

Q

I

Q

45mm  

Pump & Readout Cavity

Storage Cavity

Vertical Transmon Qubit

Coupler Port

Mirrahimi,  Leghtas,  Albert,  et  al.,  NJP  16,  045014  (2014)  

ddt

ρ =κ d D ad −α∞d⎡⎣ ⎤⎦ρ

α∞ = 2εd /κ d( )1/d

Ongoing  experiment    in  Devoret’s  group  

𝑄

𝐼

𝑄

𝐼

Steady  states  dependent  on  ini*al  states  Case d=2 : Two dimensional steady state subspace!

{ }2 2, 2 /cρ α α ε κ∞ ± ∞ ∞∈ ± =∑

2( ) 2nN c nα α∞ ∞+ − =∑0n =ie δφα∞ α∞

0

1Z

Z

n

n

+ = =

− = =

Choice  of  memory  basis  (|n=0>  and  |n=1>)  

|+X⟩ ≈ |α⟩|−X⟩ ≈ |−α⟩

|+Z⟩ = |C+α⟩

|−Z⟩ = |C−

α⟩

Y

|+Z⟩ = |C(0mod4)α

|−Z⟩ = |C(2mod4)α

|+X⟩ ≈ |C+α⟩|−X⟩ ≈ |C+

iα⟩

Y

(b)

1

|+𝑧⟩= |0⟩  

|−𝑧⟩= |1⟩  

|+𝑥⟩= |0⟩+ |1⟩  |−𝑥⟩= |0⟩− |1⟩  

Vulnerable  to  both  -­‐  Dephasing  Errors  -­‐  Photon  Loss  Errors  

|+X⟩ ≈ |α⟩|−X⟩ ≈ |−α⟩

|+Z⟩ = |C+α⟩

|−Z⟩ = |C−

α⟩

Y

|+Z⟩ = |C(0mod4)α

|−Z⟩ = |C(2mod4)α

|+X⟩ ≈ |C+α⟩|−X⟩ ≈ |C+

iα⟩

Y

(b)

1

2

2 1

( ) 2

( ) 2 1

Z n

Z n

C N c n

C N c n

α

α

α α

α α +

++ = = + − =−− = = − − = +

∑∑

Choice  of  qubit  basis  (2-­‐photon  process)  |+𝒛⟩= |𝜶⟩+ |−𝜶⟩  

|−𝒛⟩= |𝜶⟩− |−𝜶⟩  

|−𝒙⟩= |−𝜶⟩   |+𝒙⟩= |+𝜶⟩  

2| |2

!

n

nc en

α α−=

+1

-1

Par

ity

|+X⟩ ≈ |α⟩|−X⟩ ≈ |−α⟩

|+Z⟩ = |C+α⟩

|−Z⟩ = |C−

α⟩

Y

|+Z⟩ = |C(0mod4)α

|−Z⟩ = |C(2mod4)α

|+X⟩ ≈ |C+α⟩|−X⟩ ≈ |C+

iα⟩

Y

(b)

1

Choice  of  qubit  basis  (2-­‐photon  process)  

( )0

0

| |

| 1 |

nn

nn

n

x c n

x c n

=

=

+ 〉 = 〉

− 〉 = − 〉

∑with  

|−𝒙⟩= |−𝜶⟩   |+𝒙⟩= |+𝜶⟩  

2| |2

!

n

nc en

α α−=

|+X⟩ ≈ |α⟩|−X⟩ ≈ |−α⟩

|+Z⟩ = |C+α⟩

|−Z⟩ = |C−

α⟩

Y

|+Z⟩ = |C(0mod4)α

|−Z⟩ = |C(2mod4)α

|+X⟩ ≈ |C+α⟩|−X⟩ ≈ |C+

iα⟩

Y

(b)

1

Choice  of  qubit  basis  (2-­‐photon  process)  

|−𝒙⟩= |−𝜶⟩   |+𝒙⟩= |+𝜶⟩  

Key  property:  Difference  in  average  photon  number  <n>  is  exponen-ally  small,  for  any  superposiTon  state  of    

e−α2

Cα+ and Cα

Choice  of  qubit  basis  (4-­‐photon  process)  

+Z = Cα (0mod 4) = N α + −α( ) + iα + −iα( )( ) = c4n∑ 4n

−Z = Cα (2mod 4) = N α + −α( )− iα + −iα( )( ) = c4n+2∑ 4n+ 2

|+X⟩ ≈ |α⟩|−X⟩ ≈ |−α⟩

|+Z⟩ = |C+α⟩

|−Z⟩ = |C−

α⟩

Y

(a) |+Z⟩ = |C(0mod4)α

|−Z⟩ = |C(2mod4)α

|+X⟩ ≈ |C+α⟩|−X⟩ ≈ |C+

iα⟩

Y

1

+1

-1

Par

ity

Key  property:  Difference  in  average  photon  number  <n>  is  exponen-ally  small,  for  any  superposiTon  state  of    

e−α2 /2

Cα0mod 4( ) and Cα

2mod 4( )

Zaki  Leghtas  

Leghtas, et al., PRL 111, 120501 (2012).

No  change  in  photon  number  (modulo  2  or  4)  è  

Constant  populaTon  of    è  

No  logical  bit-­‐flip  errors  

±Z

Effect  of  photon  dephasing    (in  presence  of  driven  dissipa*ve  process)    

[ ] 2 21 12 2

n n n n nφ φκ ρ κ ρ ρ ρ⎛ ⎞= − −⎜ ⎟⎝ ⎠D

|𝛼|

(a) Two-photon ƉƌŽĐĞƐƐ (b) Four-photon ƉƌŽĐĞƐƐ

𝛾 �����

/2𝜅

2𝛾�����

/𝜅

|𝛼|

Suppression  of  cavity  dephasing  error  -­‐-­‐  by  mul*-­‐photon  driven  dissipa*ve  process    

[ ]† *d d[ ( ) , ]d d d

dd a a a ndt φρ ε ε ρ κ ρ κ ρ⎡ ⎤= − + +⎣ ⎦D D

MulT-­‐photon  driven  dissipaTon   Dephasing  

/ dφκ κ

( )1/d2 / ddα ε κ∞ =

Two  Dimensionless  Para:  

Induced  phase-­‐flip  rate:  ExponenTally  suppressed  with  the  cat  size                        .  α∞

2

Out[133]=

0 5 10 1510-4

0.001

0.01

0.1

1

»a• 2

-2g

bit-flipêk f

Num: kfêk2 ph=1ê200Num: kfêk2 ph=1ê20

Out[133]=

0 5 10 1510-4

0.001

0.01

0.1

1

»a• 2

-2g

bit-flipêk f

Num: kfêk2 ph=1ê200Num: kfêk2 ph=1ê20

0 2 4 6 810-610-510-40.0010.010.11

»a• 2

-2g

bit-flipêk f

Pert. Thry.

Num: kfêk2 ph=1ê200Num: kfêk2 ph=1ê200 2 4 6 8

10-610-510-40.0010.010.11

»a• 2

-2g

bit-flipêk f

Pert. Thry.

Num: kfêk2 ph=1ê200Num: kfêk2 ph=1ê20

Victor  Albert  

† † †1 1 1

1 12 2loss a a a a a aκ ρ κ ρ ρ ρ−

⎛ ⎞= − −⎜ ⎟⎝ ⎠D

Dominant  Errors  in  Cavity  Quantum  Memory  

2 21 12 2dephase n n n nφ φκ ρ κ ρ ρ ρ⎛ ⎞= − −⎜ ⎟⎝ ⎠

D

Dephasing  Error   Photon  Loss  Error  

No  Change  in  photon  number!   Reduce  photon  number  by  one!  

(Env.  is  probing  photon  number)   (Env.  is  stealing  our  photons  one  by  one)  

Strategy:  quickly  shuffle  photon  number  …   Strategy:  monitor  photon  parity  …  

QND  Measurement  of  Qubit!  

0

5

-5

0 50 100 150 Time (ms)

Results from Devoret group, Yale: Hatridge et al., Science 2013*

dispersive circuit QED readout + JJ paramp

Readout fidelity > 99.5% in ~ 300 nsec

Many groups now working with JJ paramps & feedback, including: Berkeley, Delft, JILA, ENS/Paris, IBM, Wisc., Saclay, UCSB, …

*First jumps: R. Vijay et al., (UCB)

QND  Measurement  of  Photon  Number  Parity  

H = −χqsa†a e e U T = π

χqs

⎝⎜⎞

⎠⎟=

g g + e e for even n

g g − e e for odd n

⎧⎨⎪

⎩⎪

Sun, Petrenko, et al, Nature 511, 444 (2014)

Effect  of  photon  loss  (in  presence  of  driven  dissipa*ve  process)    

a Cα

+ → Cα − and a Cα

− → Cα +

a Cα (0mod 4) → Cα

(3mod 4) = N α − −α( ) + i iα − −iα( )( )a Cα

(2mod 4) → Cα (1mod 4) = N α − −α( )− i iα − −iα( )( )

For  two-­‐photon  process:      photon  loss  à  logical  bit-­‐flip  error  

For  four-­‐photon  process:      photon  loss  à  tractable  by  parity  measurement  

Summary  on  Quantum  Memory  

Two-­‐photon  process:  1.  Logical  qubit  basis  of    2.  Photon  dephasing  induces  phase-­‐flip  errors  whose  rate  

is  exp.  suppressed  by  the  cat  size.  3.  Photon  loss  induces  bit-­‐flip  errors.      

Four-­‐photon  process:  1.  Logical  qubit  basis  of    2.  Photon  dephasing  induces  phase-­‐flip  errors  whose  rate  is  

exp.  suppressed  by  the  cat  size.  3.  Photon  loss  induces  errors  that  are  tractable  by  photon-­‐

number  parity  measurements.      

How  to  achieve  universal  gates  on  encoded  quantum  memory?  

( )†2 2 22- 2-

†[ [ , ] [, ]] phX phid a aat

a ad

ρ ε ρ κε ρρ= + − +− + D

Quantum  Zeno  dynamics  for      1.  Resonant  drive  è  Small  displacement    

2.  Two-­‐photon  process  è  ProjecTon  on  to  logical  space      

 

D(iε ) Cα

+ = N e− iεα −α + iε + eiεα α + iε( )Cα

+ , Cα −{ }

N e−iεα −α + iε + eiεα α + iε( )→ cos(εα) Cα + + isin(εα) Cα

ε XΠ Cα

+ , Cα − (a + a† )Π

Cα + , Cα

− = (α +α∗)ε X Cα + Cα

− + Cα − Cα

+( )∝ X L

2-X phε κ<<Steady  State    Subspace  

               gates  (2-­‐ph  process)  Xθ

Two-photon process:

Four-photon process:

Decay  operator   κ2-­‐pha2  Driving  Hamiltonian   iε2-­‐ph  (a*2-­‐a2)  Arbitrary  rot.  around  X   εX(a*+a)  π/2-­‐rotaTon  around  Z   -­‐χKerr(a*a)2  Two-­‐qubit  entanglement   εXX(a1*a2+a2*a1)  

Decay  operator   κ4-­‐pha4  Driving  Hamiltonian   iε4-­‐ph  (a*4-­‐a4)  Arbitrary  rot.  around  X   εX(a*2+a2)  π/2-­‐rotaTon  around  Z   -­‐χKerr(a*a)2  Two-­‐qubit  entanglement   εXX(a1*2a22+a2*2a12)  

Universal  Gates  on  Quantum  Memory  

Mirrahimi,  Leghtas,  Albert,  et  al.,  NJP  16,  045014  (2014)  

Mazyar Mirrahimi

Summary  of  Cat  Codes  

1. How  to  construct  robust  quantum  memory?  a)  Overcome  cavity  dephasing  errors  b)  Overcome  cavity  loss  errors  

2. How  to  control  such  robust  quantum  memory?  a)  Single  qubit  gates  b)  Two  qubit  gates  

Autonomous  QEC  of  cat  code  

Quantum  Zeno  Dynamics    Steady  State    Subspace  

I

Q

I

Q

Symmetry  &  Conserved  Quan**es  in  Lindblad  Systems  

Q:  What  informaTon  from  iniTal  state  is  preserved  as  infinite  Tme?  

Albert,  L  J,  PRA  89,022118  (2014);              Mirrahimi,  et  al.,  NJP  16,  045014  (2014)      

For open system ddt

ρ = Lρ =κ 2D a2 −α∞2⎡⎣ ⎤⎦ρ, initial state ρinit involves into ρ∞ = eLtρinit t→∞

,

which is c++ c+−

c−+ c−−

⎣⎢⎢

⎦⎥⎥

in the steady state basis Cα+ , Cα

−{ }.

Each degree cjk is associated with a conserved quantity J jk , such that cjk = Tr J jk† ρinit

⎡⎣ ⎤⎦.

The corresponding quantities can be calculated:

which satisfies d

dtJ jk = L†J jk ≡ 0 with no evolution (conserved).

Key  result:  #(conserved  quanTTes)  =  #(degrees  in  steady  state  density  matrix)  Conserved quantities: (1) efficient tool to compute steady state, (2) extract stored quantum information, (3) perturbative calculation for other decoherences,

Victor  Albert  

Outlook:  Two-­‐Qubit  Quantum  Modules  

Design  of  Two-­‐Qubit  Quantum  Modules    

1.  Memory  Qubit  (m)  •  Long  coherence  Tme  

 2.  CommunicaTon  Qubit  (c)  

•  IniTalizaTon  •  Measurement  •  Entanglement  generaTon  

 3.  Local  Two-­‐Qubit  Unitary  Gates  

𝑚     𝑐    

Outlook:  Scalable  QC  

DiVincenzo’s  Criteria  •  A  scalable  physical  system  with  well  characterized  qubits  •  The  ability  to  ini*alize  the  state  of  the  qubits  •  The  ability  to  measure  specific  single  qubits  •  A  universal  set  of  quantum  gates  •  Long  relevant  decoherence  *me,  much  longer  than  the  gate  opera*on  *mes  

…  

Use  cavity  mode  for  long-­‐lived  quantum  

memory!  

Outlook:  Scalable  QC  

DiVincenzo’s  Criteria  •  A  scalable  physical  system  with  well  characterized  qubits  •  The  ability  to  ini*alize  the  state  of  the  qubits  •  The  ability  to  measure  specific  single  qubits  •  A  universal  set  of  quantum  gates  (esp.,  focusing  on  the  remote  gates)  •  Long  relevant  decoherence  *me,  much  longer  than  the  gate  opera*on  *mes  

…  

…   Switchable

Router

Acknowledgement  

Victor  Albert  

Stefan  Krastanov  

Chao  Shen  

Brian  Vlastakis  

Zaki  Leghtas   Rob  Schoelkopf  

Michel  Devoret  

Mazyar  Mirrahimi  Reinier  Heeres