p. baumann, p. duperrex, s. jollet, a. knecht, d. laube, c

24
WIR SCHAFFEN WISSEN – HEUTE FÜR MORGEN Progress and challenges of the PSI Meson targets and relevant systems Daniela Kiselev :: Department head ASA :: Paul Scherrer Institut P. Baumann, P. Duperrex, S. Jollet, A. Knecht, D. Laube, C. Nyfeler, D. Reggiani, R. Sobbia, V. Talanov, M. Wohlmuther The 3rd J-PARC Symposium (J-PARC2019) September 23-26, 2019, Tsukuba, Japan

Upload: others

Post on 20-Jun-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: P. Baumann, P. Duperrex, S. Jollet, A. Knecht, D. Laube, C

WIR SCHAFFEN WISSEN – HEUTE FÜR MORGEN

Progress and challenges of the PSI Meson targets and relevant systems

Daniela Kiselev :: Department head ASA :: Paul Scherrer InstitutP. Baumann, P. Duperrex, S. Jollet, A. Knecht, D. Laube, C. Nyfeler, D. Reggiani, R. Sobbia, V. Talanov, M. Wohlmuther

The 3rd J-PARC Symposium (J-PARC2019)September 23-26, 2019, Tsukuba, Japan

Page 2: P. Baumann, P. Duperrex, S. Jollet, A. Knecht, D. Laube, C

Accelerator Facilities at PSI

p-Therapy250MeV, <1µA

Swiss Light Source2.4GeV, 400mA

High Intensity Proton Accelerator590 MeV, max. 2.4mA

SWISSFEL 5.8 GeV

Central control room

SINQ Spallation Neutron SourceUCN

Page 3: P. Baumann, P. Duperrex, S. Jollet, A. Knecht, D. Laube, C

The PSI Proton Accelerator Facilities

HIPA (High Intensity Proton Accelerator)- CW (50.63 MHz), 590 MeV, - up to 2.4 mA(1.44 MW) - 2 meson production targets - 7 secondary beam lines- SINQ and UCN spallation source

Page 3

PROSCAN (Proton therapy): since 2007Comet: superconducting cyclotronCW, 250 MeV, up to 1 µA protonsmedical treatment:3 Gantries, 1 Eye Cancer Treatment StationIrradiation Station: PIF

PIF

SecondaryBeam Lines

hot cell HIPA

Gantry 1, 2 3Target M

Comet

Target E

Spallation neutron source SINQ

Injector II

Injector IECR-source &Cockroft-Walton

OPTIS

Ring

UCN

Page 4: P. Baumann, P. Duperrex, S. Jollet, A. Knecht, D. Laube, C

μ/π Secondary Beam Lines

Seite 4

Target E

p-Beam Spin rotator

πE1

μE1μE4

πM1

πM3

πE5

Target M

πE3

Target M:πM1: 100-500 MeV/c PionsπM3: 28 MeV/c Surface Muons

Target E:πE1: 10 - 500 MeV/c High Intensity Pions und MuonsμE1: Polarized Muon BeamπE3: 28MeV/c Surface polarized MuonsμE4: 30 - 100 MeV/c High Intensity Polarized MuonsπE5: 10 - 120 MeV/c High Intensity Muons

Page 5: P. Baumann, P. Duperrex, S. Jollet, A. Knecht, D. Laube, C

Challenges for meson production targets

• Power deposition: at 2.4 mA, 590 MeV protons ~ 50 kW on Target E cooling high temperature resistant material thermal stress

• Radiation damage: embrittlement deformation (also due to heating) loss of conductivity

Approach:• distribute power:

rotating wheel with 1 Hz needs bearings• cooling by radiation:

- independent of conductivity- local shielding (Cu) is cooled by water

p-beam

Target E

Page 6: P. Baumann, P. Duperrex, S. Jollet, A. Knecht, D. Laube, C

Drive shaft Motor

• Motor: 2.5 m above the beam lineFunctioning is not affected by irradiation life time ~ 5 – 8 years

Targetwheel

Watercooling

Localshielding

deep grooveball bearings

angular contactball bearings

140 oC

50 oC

Challenges for meson production targets

• Wheel deformation reduced by- polycrystalline graphite isotropic properties- slits in wheel rim für thermal expansion

- spokes: allows thermal expansion of target conehollow to avoid high temperature at bearing

12 segments with 1 mm slit

1700 K

Page 7: P. Baumann, P. Duperrex, S. Jollet, A. Knecht, D. Laube, C

Critical components: Bearings

No grease as lubrication! brittle due to hard irradiationso called radiation hard grease does not help proofed

Balls Si3N4, GMN, GermanyCoating: MoS2, Ag for ring & cage1 -2 x exchange/year Graphite wheel lasts muchlonger: ~ 4Years (39 Ah record)

• Ball bearings:

in use:

Shun Makimura(JPARC)

in test:

Balls stainless steel + WS2 blocks Koyo, JapanTest (without radiation): > 420 daysTest in beam at PSI planned next year

Page 8: P. Baumann, P. Duperrex, S. Jollet, A. Knecht, D. Laube, C

Monitoring of the motor currentcu

rren

t[A

]

0

1

2

3

4

5

averagemotor current

new bearing

Targ

et E

Exc

hang

e

peakmotor current

rotation/min

beam current

Page 9: P. Baumann, P. Duperrex, S. Jollet, A. Knecht, D. Laube, C

Extraction of Target E insert

Exchange flask: − 45 t, shielded with 40 cm steel− remotely operated

Working platform:− ~ 2m above beamline, shielded with steel− Accessible after removing 3 – 4 m of concrete

"Bridge":− contains contamination protection− door to close lifting hole− sticks for positioning of the flask

Page 10: P. Baumann, P. Duperrex, S. Jollet, A. Knecht, D. Laube, C

Transport of 2. target insert to beamline

Seite 10

open closedparking lot

sluice to hotcell

To save time:Spare Target E insert is taken out from the parking lot

Exchange flask on parking lot

At the same time:Reparing of the insert from beamline in hotcell

Page 11: P. Baumann, P. Duperrex, S. Jollet, A. Knecht, D. Laube, C

Transport to hotcell PSI West (ATEC)

Exchange of bearings with manipulatorView into hotcell of ATEC

Hub

− Remote handling necessary: up to 3 Sv/h− Handing over from flask to hotcell via sluice

Usually only the hub needs to be exchanged not much radioactive waste (up to 200 mSv/h)

Page 12: P. Baumann, P. Duperrex, S. Jollet, A. Knecht, D. Laube, C

Design of the hotcell ATEC

Seite 12

ATEC: 2. service cell in 2019− wall in between can be opened vertically

Advantage:− in case of unavoidable access to one service cell (in case of failure),

radioactive components are moved to the other service cell.− less personal dose rate during cleaning:

drums with rad. waste can be moved temporarly to the other service cell.

2. Service cell 1. Service cell

Sluice in between Sluice for Target E

Room for personal

Sluice pulled up by external crane

Moved byATEC crane

Page 13: P. Baumann, P. Duperrex, S. Jollet, A. Knecht, D. Laube, C

Standard equipment of hotcell ATEC

6 high-resolution cameras/service cell

1 power manipulator/service cell

"cold" handin control room

"hot" handin service cell

for wall shielding

+ 1 leadglass window+ 1 dosimeter+ a trolley to move things around

(up to 60 t)+ 1 crane/cellmovable over 2 service cells(important, if 1 crane fails)

Gripfor camera

Page 14: P. Baumann, P. Duperrex, S. Jollet, A. Knecht, D. Laube, C

Target E93 in April 2012: 33.5 Ah ~ 3.5 years

Tilt of the segments observed! Quantitative measurement

of tilt in hot cell (ATEC) Displacement up to -2 mm Shrinking of about 1% at 39Ah likely due to radiationWhy only E93?

A closer look to the target E93 after irradiation

Page 15: P. Baumann, P. Duperrex, S. Jollet, A. Knecht, D. Laube, C

Target development I: Target E with grooves

Seite 15

Grooves inside and outside − with different frequencies:

114 Hz and 138 Hz− to distinguish beam left and right

from center− different depths:

0.3mm, 0.5mm, 0.7mm, 0.9mm− to find comprommise between

losses and signal

Purpose: Beam centering on the 6 mm rim of Target E

Idea:Modulation of the beam current measurement (MHC5) after Target E Strength of the signal is a measure for the deviation of the beam from center

Page 16: P. Baumann, P. Duperrex, S. Jollet, A. Knecht, D. Laube, C

Modulation of beam current at 0.75 mA after Tg E

Page 16

1 1.5 2 2.5

time [sec.]

-0.01

0

0.01

[mA]

AC part of the beam intensity monitor MHC5 raw signal

1 1.5 2 2.5

time [sec.]

-0.01

0

0.01

[mA]

MHC5 filtered signal

With Filter

Raw signal

1 s

1 Hz: period of the target wheel12 Hz: 12 Slits: broad due angle

Slits

Modulation due to grooves

Modulation due to grooves not seen by eye and effected by noise Frequency analysis (FFT) necessary

MH

C4*T

-MH

C4M

HC4

*T-M

HC4

MHC4: current before Target ET: transmission: for 60 mm target T = 0.6MHC5: current behind Target E

Page 17: P. Baumann, P. Duperrex, S. Jollet, A. Knecht, D. Laube, C

Signal as a function of position

Seite 17

• Very sensitive method of ~factor 10 in signal change!• Much more sensitive than transmission T = MHC5/MHC4

59.1

59.15

59.2

59.25

59.3

59.35

Target

-E tran

smissi

on [%]

1.6 mA (MHC4)

-1.5 -1 -0.5 0 0.5 1 1.5

AHPos [mm]

0

1

2

3

4

5

6

7

Mod

ulat

ion

Ampl

itude

[a.u

.]

F=138Hz

F=114Hz

Deviation from center of Target E [mm]-1.5 -1 -0.5 0 0.5 1 1.5

Ampl

itude

ofm

odul

atio

n

7

6

5

4

3

2

1

0

114 Hz138 Hz

-1 -0.5 0 0.5 1

Tran

smiss

ion

59.1

59.2

59.3- Small change in

Transmission- Slower than

modulationanalysis

Page 18: P. Baumann, P. Duperrex, S. Jollet, A. Knecht, D. Laube, C

Target development II: Slanted Target E

Beam

Standard Target E Slanted Target E

effective 40 mmgraphite target Geant4 simulation:

30 – 60 % forsurface muon production(A. Papa talk)

40 m

m

Proton beam

100

mm

oCAnsys simulation:

More thermal stress due to inhomogeneoustemperature distribution Deformation??

Page 19: P. Baumann, P. Duperrex, S. Jollet, A. Knecht, D. Laube, C

Seite 19

Test with slanted type target out of Aluminum

Test of slanted type target

Test End of November 2019 in Target E vacuum chamber

Slanted target:very tight!

Needs to be tested first!

on bothtargetinserts

There should be 8 – 10 mm space

in parking slot= same dimensionsthan in beamline

Page 20: P. Baumann, P. Duperrex, S. Jollet, A. Knecht, D. Laube, C

Target-M

P-BEAM

Target M:

Mean diameter: 320 mm

Target thickness: 5.2 mm

Target width: 20 mm

Graphite density: 1.8 g/cm3

Beam loss: 1.6 %

Power deposition: 2.4 kW/mA

Temperature: 1100 K

Irradiation damage: 0.1 dpa/Ah

Rotational Speed: 1 Hz

Current limit: 5 mA

Life time: up to several years

up to ~ 60 Ah ~ 6 DPA

.

Improved design(2013)

Page 21: P. Baumann, P. Duperrex, S. Jollet, A. Knecht, D. Laube, C

Target-M insert

Drive-motor

p

(old) Target M insert mounted on wheels

π, µ

π, µ

Page 22: P. Baumann, P. Duperrex, S. Jollet, A. Knecht, D. Laube, C

Design of the new Target-M insert (2012)

• improved vacuum flange: seal can be exchanged/cleaned• drive shaft: better heat protection for the bearings

1. part made from Ti-V ( instead of steel) to prevent heat conduction• additonal cooled Cu- plate better cooling and protection of bearings

against radiated heat

VacuumChamber

Graphite Wheel

TungstenCollimator

TemperatureSensors

Drive-Motor

Proton-Beam

Secondarybeamlines

CooledCu-plate

TiVshaft

Steel shaft

Page 23: P. Baumann, P. Duperrex, S. Jollet, A. Knecht, D. Laube, C

Future Project: High Intensity Muon Beam (HIMB)

Seite 23

slanted 20 mm graphite wheel

2 solenoids close to target

Factor 100 more Muons

Many constraints due to present beamline Feasibility study will start soon

Present design:

Future design:

5 mm graphite

Talk A. Papa

Page 24: P. Baumann, P. Duperrex, S. Jollet, A. Knecht, D. Laube, C

Summary

• Introduction to the PSI High Intensity Proton Accelerator (HIPA)

• Extraction from the Ring Cyclotron

• Beam transfer to the meson production targets M/E and SINQ spallation source

• Beam diagnostics for setup & optimization

• Feasibility study of beam rotation for SINQ

• Beam switchover to the UCN source

• Conclusion

PSI Meson target facility M and E with several beamline: π, µ Bearings are critical for Target E For exchange infrastructure needed: exchange flask, hot cell New target designs: grooves for beam position diagnostics Slanted target for test and higher muon rates Target M: Ideas for increasing muon rate by factor 100 (HIMB project)

Page 24

PSI congratulates to 10 years of J-PARC