osbourne reynolds apparatus experiment

15
INTRODUCTION The experiment is conducted mainly to study the criterion of laminar, transition and turbulent flow. In fluid mechanics, internal flow is defined as a flow for which the fluid is confined by a surface. The flow may be laminar or turbulent. Osborne Reynolds (23 August 1832 – 21 February 1912) was a prominent innovator in the understanding of fluid dynamics and mechanics. Osborne Reynolds Apparatus consists of water resource for the system supply, fix-head water input to big and small transparent pipes, dye input by injection unit, and water output unit to determine water flow rate. The laminar, transition and turbulent flows can be obtained by varying the water flow rate using the water outlet control valve. Water flow rate and hence the flow velocity is measured by the volumetric measuring tank. The supply tank consists of glass beads to reduce flow disturbances. Flow patterns are visualized using dye injection through a needle valve. The dye injection rate can be controlled and adjusted to improve the quality of flow patterns.

Upload: geek3112

Post on 07-Apr-2015

2.356 views

Category:

Documents


17 download

TRANSCRIPT

Page 1: Osbourne Reynolds Apparatus Experiment

INTRODUCTION

The expe r imen t i s conduc t ed ma in ly t o s t udy t he c r i t e r i on o f

l amina r , t r an s i t i on and t u rbu l en t f l ow . In f l u id mechan i c s , i n t e rna l f l ow i s

de f i ned a s a f l ow fo r wh ich t he f l u id i s con f ined by a su r f ace . The f l ow

may be l amina r o r t u rbu l en t . Osbo rne Reyno lds (23 Augus t 1832 – 21

Feb rua ry 1912 ) was a p rominen t i nnova to r i n t he unde r s t and ing o f f l u id

dynamics and mechan i c s .

Osbo rne Reyno lds Appa ra tu s cons i s t s o f wa t e r r e sou rce fo r t he

sy s t em supp ly , f i x -head wa t e r i npu t t o b ig and sma l l t r anspa ren t p ipe s ,

dye i npu t by i n j ec t i on un i t , and wa t e r ou tpu t un i t t o de t e rmine wa t e r f l ow

r a t e . The l amina r , t r an s i t i on and t u rbu l en t f l ows can be ob t a ined by

va ry ing t he wa t e r f l ow r a t e u s ing t he wa t e r ou t l e t con t ro l va lve . Wa te r

f l ow r a t e and hence t he f l ow ve loc i t y i s measu red by t he vo lume t r i c

measu r ing t ank . The supp ly t ank cons i s t s o f g l a s s beads t o r educe f l ow

d i s t u rbances . F low pa t t e rn s a r e v i sua l i z ed u s ing dye i n j ec t i on t h rough a

need l e va lve . The dye i n j ec t i on r a t e c an be con t ro l l ed and ad ju s t ed t o

improve t he qua l i t y o f f l ow pa t t e rn s .

Page 2: Osbourne Reynolds Apparatus Experiment

AIMS / OBJECTIVES

1 . To obse rve t he cha rac t e r i s t i c s o f l amina r , t r an s i t i on and t u rbu l en t

f l ow .

2 . To p rove t ha t t he Reyno lds number i s d imens ion l e s s by u s ing t he fo rmu la ;

ℜ= ρ ν dµ

THEORY

In f l u id mechan i c s , Reyno lds Number (R e ) i s a d imens ion l e s s

number t ha t i s exp re s sed a s t he r a t i o o f i ne r t i a l f o r ce s (pV 2 /L ) t o v i s cous

fo r ce s ( µV/L 2 ) . Thus , t he Reyno lds number c an be s imp l i f i ed a s

fo l l owings ;

R e = (pV 2 /L ) / ( µV/L 2 )

= pVL/ µ

Where p i s t he dens i t y o f t he f l u id , V i s t he mean f l u id ve loc i t y , L i s a

cha rac t e r i s t i c l i nea r d imens ion , and µ i s t he dynamic v i s cos i t y o f t he

f l u id .

When a f l u id f l ows t h rough a p ipe t he i n t e rna l r oughnes s ( e ) o f t he

p ipe wa l l c an c r ea t e l oca l eddy cu r r en t s w i th in t he f l u id add ing a

r e s i s t ance t o f l ow o f t he f l u id . P ipe s w i th smoo th wa l l s such a s g l a s s ,

coppe r , b r a s s and po lye thy l ene have on ly a sma l l e f f ec t on t he f r i c t i ona l

r e s i s t ance . P ipe s w i th l e s s smoo th wa l l s such a s conc re t e , c a s t i r on and

s t e e l w i l l c r ea t e l a rge r eddy cu r r en t s wh ich w i l l some t imes have a

Page 3: Osbourne Reynolds Apparatus Experiment

s i gn i f i c an t e f f ec t on t he f r i c t i ona l r e s i s t ance . The ve loc i t y p ro f i l e i n a

p ipe w i l l show tha t t he f l u id a t t he c en t r e o f t he s t r e am wi l l move more

qu i ck ly t han t he f l u id t owards t he edge o f t he s t r e am. The re fo re f r i c t i on

w i l l occu r be tween l aye r s w i th in t he f l u id . F lu id s w i th a h igh v i s cos i t y

w i l l f l ow more s l owly and w i l l gene ra l l y no t suppo r t eddy cu r r en t s and

t he r e fo re t he i n t e rna l r oughnes s o f t he p ipe w i l l have no e f f ec t on t he

f r i c t i ona l r e s i s t ance . Th i s cond i t i on i s known a s l amina r f l ow .

Reyno lds number ba s i ca l l y de t e rmines t he t r ans i t i on o f f l u id f l ow

fo rm l amina r f l ow to t u rbu l en t f l ow . When t he va lue o f Reyno lds number

i s l e s s t han 2300 , l amina r f l ow wi l l occu r and t he r e s i s t ance t o f l ow wi l l

be i ndependen t o f t he p ipe wa l l r oughnes s ( ℮ ) . Meanwhi l e , t u rbu l en t f l ow

occu r s when t he va lue o f Reyno lds number i s exceed ing 4000 .

Fo r l a rge v i s cous fo r ce , whe reby R e v a lue i s l e s s t han 2300 , v i s cous

e f f ec t s a r e g r ea t enough t o damp any d i s t u rbance i n t he f l ow and t he f l ow

r ema ins l amina r . The f l ow i s c a l l ed l amina r because t he f l ow t akes p l ace

i n l aye r s . Any combina t i on o f l ow ve loc i t y , sma l l d i ame te r , o r h igh

k inema t i c v i s cos i t y wh ich r e su l t s i n R e v a lue o f l e s s t han 2300 w i l l

p roduce l amina r f l ow . As Re i nc r ea se s , t he v i s cous damping o f f l ow

d i s t u rbances o r pe r t u rba t i ons dec rea se s r e l a t i ve t o t he i ne r t i a l e f f ec t s .

Because o f a l a ck o f v i s cous damping , d i s t u rbances a r e amp l i f i ed un t i l t he

en t i r e f l ow b reaks down in to i n i r r egu l a r mo t ion . The re i s s t i l l a de f i n i t e

f l ow d i r ec t i on , bu t t he r e i s an i r r egu l a r mo t ion supe r imposed on t he

ave rage mo t ion . Thus , f o r t u rbu l en t f l ow in a p ipe , t he f l u id i s f l owing i n

t he downs t r eam d i r ec t i on , bu t f l u id pa r t i c l e s have an i r r egu l a r mo t ion i n

add i t i on t o t he ave rage mo t ion . The t u rbu l en t f l uc tua t i ons a r e i nhe ren t l y

uns t eady and t h r ee d imens iona l . As a r e su l t , p a r t i c l e s wh ich pa s s t hough a

g iven po in t i n t he f l ow do no t f o l l ow the s ame pa th i n t u rbu l en t f l ow even

t hough t hey a l l a r e f l owing gene ra l l y downs t r eam. F lows w i th 2000 < Re

Page 4: Osbourne Reynolds Apparatus Experiment

< 4000 a r e c a l l ed t r ans i t i ona l . The f l ow can be uns t ab l e and t he f l ow

swi t ch back and fo r t h be tween t u rbu l en t and l amina r cond i t i ons .

APPARATUS

* A r e - en t r an t be l l mou thed g l a s s expe r imen t a l t ube o f 16 mm bo re and

app rox ima te ly 790 mm long moun ted ho r i zon t a l l y i n a 103 mm bo re

Pe r spex t ube .

* Dye i n j ec to r w i th need l e va lve con t ro l .

* Ro tome te r f l ow me te r .

* Wa te r supp ly f rom a t ank w i th c l e a r t e s t s ec t i on t ube and “be l l mou th”

en t r ance .

EXPERIMENTAL PROCEDURES

Thi s expe r imen t demons t r a t e s v i sua l l y l amina r (o r s t r e aml ine ) f l ow and

i t s t r ans i t i on t o t u rbu l en t f l ow a t a pa r t i cu l a r ve loc i t y .

1 . F i r s t l y , t he appa ra tu s i s s e t up and i n se r t t he r ed dye i n to t he dye

r e se rvo i r w i th a s t e ady f l ow o f wa t e r .

2 . The dye i s a l l owed t o f l ow f rom the nozz l e a t t he en t r ance o f t he

channe l un t i l a co lo r ed s t r e am i s v i s i b l e a l ong t he pa s sage . The

ve loc i t y o f wa t e r f l ow shou ld be i nc r ea sed i f t he dye accumula t e s

a round t he nozz l e .

3 . Ad jus t t he wa t e r f l ow un t i l a l amina r f l ow pa t t e rn wh ich i s a

s t r a i gh t t h in l i ne o r s t r e aml ine o f dye i s ab l e t o be s een a long t he

who le pa s sage .

Page 5: Osbourne Reynolds Apparatus Experiment

4 . Co l l e c t t he vo lume o f wa t e r t ha t f l ows fo r 10 s econds t hen measu re

t he amoun t o f wa t e r i n t he vo lume t r i c measu r ing t ank . Repea t t h i s

s t ep 3 t imes t o ge t t he ave rage and more accu ra t e vo lume o f wa t e r .

The vo lume f l ow r a t e i s c a l cu l a t ed f rom the vo lume and a known

t ime .

5 . The wa t e r f l ow r a t e i s i nc r ea sed by open ing t he p ipe ve s se l and t he

f l ow pa t t e rn o f t he f l u id i s obse rved . Repea t s t ep 2 -4 fo r t r ans i t i on

and t u rbu l en t f l ow .

6 . C lean a l l t he appa ra tu s a f t e r t he expe r imen t i s done .

RESULTS

SAMPLE CALCULATIONS

Time (s) Volume( × 10-5 m3)

Flow Rate( × 10-5 m3/s)

Velocity, V (m/s)

Reynolds No.

Type of Flow

1 3 8.40 2.80 0.1393 2228.8 laminar

2 3 8.00 2.67 0.1328 2124.8 laminar

3 3 9.60 3.20 0.1592 2547.2 transition

4 3 9.40 3.13 0.1557 2491.2 transition

5 3 13.0 4.33 0.2153 3444.8 transition

6 3 12.4 4.13 0.2054 3286.4 transition

7 3 18.0 6.00 0.2984 4774.4 turbulent

8 3 17.2 5.73 0.2850 4560.0 turbulent

9 3 16.8 5.60 0.2785 4456.0 turbulent

Page 6: Osbourne Reynolds Apparatus Experiment

Data Given:

Times = 3 sec

Density of water, ρ = 1000 kg/m³

Viscosity, μ = 10.00 x 10-4 Ns/m²

Diameter of tube, d = 16 x 10 ³ mˉ

Length, l = 0.103 m

Area of cross passage, a = πd²/4

= π (16 x 10ˉ0³) / 4

= 2.0106 x 10ˉ4 m²

From experiment:

Laminar Flow:

Volume flow rate = volume/ time

= 8.4 x 10-5 m3 / 3s

= 2.8 x 10-5 m3/s

Velocity, v = (m / ρa) = volume flow rate / area

= 2.8 x 10-5 m3/s ÷ 2.0106x 10-4 m2

= 0.1393 m/s

Reynolds number, Re = ρvd / μ

= (1000 kgm-3 x 0.1393 m/s x 16 x 10-3 m) ÷ 10.00 x 10-4Ns/m2

Page 7: Osbourne Reynolds Apparatus Experiment

= 2228.8

* For laminar flow Re should be less than 2300.

Transition Flow:

Volume flow rate = volume/ time

= 9.6 x 10-5 m3 ÷ 3s

= 3.2 x 10-5 m3/s

Velocity, v = (m / ρa) = volume flow rate / x area

= 3.2 x 10-5 m3/s ÷ 2.0106 x 10-4m

= 0.1592 m/s

Reynolds number, Re = ρvd / μ

= (1000 kgm-3 x 0.1592 m/s x 16x 10-3m) ÷ 10.00 ˉ4 Ns/m²

= 2547.2

*For transition flow Re should be in between 2300 and 4000

Page 8: Osbourne Reynolds Apparatus Experiment

Turbulent Flow:

Volume flow rate = volume/ time

= 16.8 x 10-5 m3 ÷ 10s

= 5.60 x 10-5 m3/s

Velocity, v = (m / ρa) = volume flow rate / area

= 5.60 x 10-5 m3/s ÷ 2.0106 x 10-4m2

= 0.2785 m/s

Reynolds number, Re = ρvd / μ

= (1000kgm-3x 0.2785 m/s x 0.016m) ÷ 10.00 x 10 4ˉ Ns/m²

= 4456.0

*For turbulent flow Re should be more than 4000

DISCUSSION

I t i s nece s sa ry t o know the d i f f e r ences be tween l amina r , t u rbu l en t

and t r ans i t i on f l ow be fo re one i s abou t t o conduc t t h i s expe r imen t . As fo r

l amina r f l ow , i t i s de f i ned a s a h igh ly o rde red f l u id mo t ion w i th smoo th

s t r e aml ine s . Tu rbu l en t f l ow i s much d i f f e r en t w i th l amina r , a s i t i s a

h igh ly d i so rde red f l u id mo t ion cha rac t e r i z ed by ve loc i t y and f l uc tua t i ons

and edd i e s , whe rea s t r ans i t i on f l ow i s known a s a f l ow tha t con t a in s bo th

l amina r and t u rbu l en t r eg ions .

Page 9: Osbourne Reynolds Apparatus Experiment

Based on Reyno lds appa ra tu s expe r imen t , l amina r f l ow i s ob t a ined

when a s i ng l e o rde red l i ne i s s een a f t e r a t h in f i l amen t o f dye i s i n j e c t ed

i n to t he t r anspa ren t g l a s s t ube . The re i s no t much d i spe r s i on o f dye can be

obse rved t h roughou t t he f l owing f l u id . Neve r the l e s s , t he c a se i s no t t he

s ame wi th t u rbu l en t f l ow , a s t he r e i s obv ious d i spe r s i on o f dye a long t he

g l a s s t ube , whe reby t he l i ne s o f dye b r eaks i n to myr i ad en t ang l ed t h r eads

o f dye .

Th roughou t t he expe r imen t , we obse rved t ha t t he r ed dye l i ne s t a r t s

f l owing i n a s t r a i gh t o rde red l i ne t h rough t he g l a s s t ube , and a s t he

ve loc i t y i nc r ea se s a f t e r some t ime , t he o rde red s t r e aml ine s i s s een t o

beg in t o d i spe r se a t abou t t he m idd l e o f t he s t r e aml ine s , bu t s t i l l r ema in

t he s t r a i gh t l i ne a t t he e a r l i e r pa r t . Nex t , t he d i spe r s i on s t a r t ed t o

i nc r ea se , i nd i ca t i ng t he t u rbu l en t f l ow . These obse rva t i ons a r e conc luded

a s t he s t r e aml ine s i s unde rgo ing a change o f t ype o f f l ow , wh ich i s f r om

l amina r f l ow , t r ans i t i on f l ow to t u rbu l en t f l ow .

The re a r e a f ew ca r e l e s s m i s t ake s t ha t have been done du r ing t h i s

expe r imen t . Mos t o f a l l , t he a ccu racy o f co l l e c t i ng t he f l u id f l owing ou t

o f t he t ube w i th in 3 s econds i s a b i t i naccu ra t e . The one who co l l e c t t he

f l u id m igh t no t beg in r i gh t when t he pe r son mon i to r i ng t he s t opwa tch

s t a r t ed t i ck ing on i t , and he / she migh t a l so no t s t op co l l e c t i ng exac t l y

a f t e r t he t h i rd s econd . The re fo re , t he va lue s c a l cu l a t ed i n r e su l t s s ec t i on

migh t no t be exac t l y 100% co r r ec t .

Page 10: Osbourne Reynolds Apparatus Experiment

CONCLUSION

As a conc lu s ion , a s wa t e r f l ow r a t e i s i nc r ea s ing , t he Reyno lds

number w i l l au toma t i ca l l y i nc r ea se a s we l l , and t he r ed dye l i ne change

f rom s t r a igh t l i ne t o sw i r l i ng s t r e aml ine s . L ikewi se , i t i s p roven t ha t

Reyno lds number i s d imens ion l e s s , s i nce no un i t i s r ep re sen t i ng t he va lue

o f Reyno lds number . Lamina r f l ow i s ob t a ined i f t he Reyno lds number i s

l e s s t han 2300 ; meanwhi l e t he Reyno lds number fo r t u rbu l en t f l ow i s more

t han 4000 . The Reyno lds number fo r t r ans i t i on f l ow i s i n be tween 2300

un t i l 4000 .

RECOMMENDATIONS

The re a r e some r ecommenda t i ons t o make su re t h i s expe r imen t wou ld

a t t a i n more accu ra t e and p r ec i s e r e su l t s i n t he fu tu r e :

Check whe the r t he wa t e r i n t he t ube f l ows i n a co r r ec t way and we

shou ld a l so make su re t ha t t he f l ow i s s t ab l e be fo re measu r ing t he

f l ow r a t e by mon i to r i ng t he t ime t aken fo r co l l e c t i ng an amoun t o f

wa t e r i n t he vo lume t r i c measu r ing t ank .

Befo re i n j ec t i ng t he dye i n to t he f l u id , we shou ld make su re t he dye

i s no t t oo much and no t t oo i n su f f i c i en t . I t w i l l be ha rd t o s t ab l e t he

f l u id t o ge t a l amina r f l ow .

The expe r imen t shou ld be r epea t ed tw ice t o ge t be t t e r r e su l t .

The pe r son co l l e c t i ng t he wa t e r shou ld synch ron i ze we l l w i th t he

t ime keepe r .

Page 11: Osbourne Reynolds Apparatus Experiment

REFERENCES

Flu id Mechan i c s by Dr . Andrew S l e igh ( J . F r anz in i /E . F innemore ) ,

McGraw Hi l l .

F . M. Whi t e , F lu id Mechan i c s (Mc-Graw Hi l l , I nc . , New York ,

1994 ) .

J . Baggett and L . Trefethen, “Low-dimensional models of

subcr i t ica l t rans i t ion to turbulence,”Phys. F lu ids 9 , 1043

(1997) .

www.pipef low.co.uk

APPENDICES