mr. pauly-t_p 1

Upload: trang-huyen

Post on 05-Apr-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 Mr. Pauly-t_p 1

    1/35

    29/11/2011

    1

    BP04:BP04:

    Introduction toIntroduction to

    BiotechnologyBiotechnology

    NicolasNicolas PaulyPauly

    [email protected]

  • 8/2/2019 Mr. Pauly-t_p 1

    2/35

    29/11/2011

    2

    Universit de Nice Sophia Antipolis

  • 8/2/2019 Mr. Pauly-t_p 1

    3/35

    29/11/2011

    3

    Institut Sophia Agrobiotech

    From genes to ecosystems

    Institut Sophia Agrobiotech

  • 8/2/2019 Mr. Pauly-t_p 1

    4/35

    29/11/2011

    4

    Research Area: Biotic Interactions and Plant Health

    Research for Sustainable Agriculture and the Environment

    Reduction of fertilizer use:

    Molecular bases of plant-pathogen interactions

    Molecular bases of plant- symbiotic bacteria interactions

    Plant Breeding for resistance

    Stimulate defence mechanisms

    Inhibit pathogen development

    Reduction of pesticide use:

    Optimize the symbiosis

    Reduce the negative impact of stress

    http://www.paca.inra.fr/

    Rhizobium Medicago truncatulasymbiosis (D. Hrouart & A. Puppo)

    Legumes

    Legumes represent a crop with nutritional properties particularly valuable for foodand feed (20 to 40% proteins in seeds, production of health-promoting secondarycompounds, blood cholesterol-reducing effect ).

    P. vulgaris V. faba P. sativum

  • 8/2/2019 Mr. Pauly-t_p 1

    5/35

    29/11/2011

    5

    Sinorhizobium meliloti / Medicago sp. Interactions

    MedicagoMedicago truncatulatruncatula

    SinorhizobiumSinorhizobium melilotimeliloti

    Fixed nitrogen(ammonia)

    RootRoot nodulesnodules

    N2

    Rhizobium

    Fixed carbon(malate, sucrose)

    Medicago

    Rhizobium Medicago truncatulasymbiosis

    1. Redox signalling: From symbiose establishment to nodule functionning

    2. Understanding senescence mechanism in the root nodule

    Nitric Oxide

    GlutathioneHydrogen

    peroxide

    Redox

    Signalling

    - Spatiotemporal dynamics

    - Cross-talks

    - Production systems

    - molecular targets

    Rhizobium Medicago truncatulasymbiosis

  • 8/2/2019 Mr. Pauly-t_p 1

    6/35

    29/11/2011

    6

    Plant biotechnology

  • 8/2/2019 Mr. Pauly-t_p 1

    7/35

    29/11/2011

    7

    Plant Biotechnology

    Haplodiplodisation

    Culture of meristems

    Micropropagation

    Save of embryo

    Protoplast fusion

    Induction of variability

    Plant biotechnologies:

    in vitroculture

    Molecular biology

    Agronomy :

    New CultivarsClonal micropapagation

    Cultivar identification

    Fundamentalresearch

    Industry:

    Synthesis of natural products or proteins

  • 8/2/2019 Mr. Pauly-t_p 1

    8/35

    29/11/2011

    8

    Plant totipotency

    Overview

    Definition

    Birth and development of in vitroculture

    Application et limitation of totipotency

    Mecanisms underlying totipotency

    Biological significance of plant cell totipotency

  • 8/2/2019 Mr. Pauly-t_p 1

    9/35

    29/11/2011

    9

    Some definitions

    Specific to plants

    In plants, the totipotency can be defined as the property of some cellsthat may regenerate a plant when they are placed under appropriateconditions (possibly via a stage of dedifferentiation)

    Exemple : micropropagation of Saint Paulia

    2 monthslater

  • 8/2/2019 Mr. Pauly-t_p 1

    10/35

    29/11/2011

    10

    Historical aspects

    Totipotency as the theme ofplant biotechnology birth

    Historical of tissue culture and plant organs

    Scientific context in the beginning of XXth century

    Cellular theory (Schleiden et Schwann)

    Microbiology and biochimistry

    How to study the behavior of single cells?

    Growth in axenic cultures Characterisation of growth substances

  • 8/2/2019 Mr. Pauly-t_p 1

    11/35

    29/11/2011

    11

    G. Haberlandt : the concept of totipotency ofthe plant cell

    Historical aspects

    Two main important ideas:

    culture of isolated cells constitute a potentialresearch model

    keep alive isolated cells

    No cellular multiplication

    We can potentially regenerate a whole plant from a single cell totipotency

    Failure (bad choice of explants, ignorance of growth substances)

    Emergence of culture techniques

    Haberlandt (1902) : concept of totipotency

    White (1934) : in vitroculture of tomato root

    Gautheret (1935) : use of auxin to grow willow cambium

    1939 : First callus culture of carrot

    Tissue culture is possible using growth substances and / ormeristematic tissues

    https://www2.carolina.com

    Historical aspects

  • 8/2/2019 Mr. Pauly-t_p 1

    12/35

    29/11/2011

    12

    Emergence of culture techniques

    Braun (1941) : work on crown gall

    Miller (1955) : cytokinins

    Murashige and Skoog : development ofeffective culture media containing cytokinins andauxins

    In vitro tumor growth withouthormon supply!!

    Historical aspects

    Validation of Haberlandt hypothesis

    1956 (Muir) cell suspensioncultures

    1958 (Reinart et Stewart) Carrotsomatic embryogenesis

    Historical aspects

  • 8/2/2019 Mr. Pauly-t_p 1

    13/35

    29/11/2011

    13

    Validation of Haberlandt hypothesis

    1965 (Vasil et Hilderbrandt) Regeneration of a tobaccoplant from a single cell

    1971 (Nagata et Takabe) Regenerating a whole plantfrom a protoplast

    Historical aspects

    Developement:agronomic tools

    1965 (Morel) in vitro propagation oforchids

    1972 (Sharp) : tomato plants fromhaploid pollen

    1973 : hybrid from a protoplastfusion

    Historical aspects

  • 8/2/2019 Mr. Pauly-t_p 1

    14/35

    29/11/2011

    14

    Development: production ofsecondary metabolites

    1977 : culture of tobacco cells in a reactor of 20000 liters

    1983 (Mitsui Petrochemical) : industrial production ofsecondary metabolites

    Historical aspects

    Development : GMO

    Van Montaigu (1983) : kanamycinresistant tobacco plants

    1994 : Flavr Savr (Calgene)

    1996 : GM maize in the United States

    Historical aspects

  • 8/2/2019 Mr. Pauly-t_p 1

    15/35

    29/11/2011

    15

    Sussex, Plant Cell 2008

    Conclusions

    Initial problem :

    Search for a isolated cell model

    Validation of plant cell totipotency

    Identification of the role of growth substances

    Development of many techniques

    Transgenesis

    Historical aspects

  • 8/2/2019 Mr. Pauly-t_p 1

    16/35

    29/11/2011

    16

    Totipotency: applications andlimitations

    Meristem

    SAM

    Node

    Culture ofmeristem

    rootingPlantules

    Leafy stem

    Indirectmorphogenesis

    Callogenesis

    callus

    Cellsuspension

    Indirectcaulogenesis

    Indirect somaticembryogenesis

    Direct

    morphogenesis

    Caulogenesis

    Direct somaticembryogenesis Artificial

    seeds

    Main methods of micropropagation

    From Lindsey et Jones 1989

    Explants (root,stem, leaves, )

  • 8/2/2019 Mr. Pauly-t_p 1

    17/35

    29/11/2011

    17

    Cells more or less totipotent

    Meristems:

    a pool of totipotent cells

    Other cell types: totipotency more or less easy to express

    Use of exogenous growth substances

    direct regeneration

    Regeneration through a callus stage

    interspecificvariability

  • 8/2/2019 Mr. Pauly-t_p 1

    18/35

    29/11/2011

    18

    Limitations of totipotency :technical impossibility

    Differentiation irreversible xylem (!)

    Depending on the method of preparation of protoplastsrecalcitrance to regeneration

    For many species of agronomic interest, theprotoplasts are not totipotent (recalcitrant) ex: Vitis

    vinifera

    Limitations of totipotency: Somaclonal variation: regenerated plants often

    have problems

    Loss of characters (chimeras)

    Chromosomal deletions

    Changing the character juvenile

    Impact on fertility

  • 8/2/2019 Mr. Pauly-t_p 1

    19/35

    29/11/2011

    19

    Mechanisms underlyingtotipotency

    In plant cells

    Why do plant cells are totipotent:common arguments

    Small number of cell types

    Only 3 or 4 basic types of organs (root, stem, leaves)whose flowers, tendrils, thorns, fruits and tubers are derivatives

    Large genomic plasticity

    growth may remain nearly normal despite profoundchromosomal rearrangements

  • 8/2/2019 Mr. Pauly-t_p 1

    20/35

    29/11/2011

    20

    Steps related to totipotency

    Step 1 :

    Differentiated cells: need of dedifferentiation

    Meristematic stem cells

    Step 2 : initiation of mitotic activity use of growthsubstances

    Step 3 : autonomous tissue growth with respect to

    exogenous growth substances

    Current scientific issues:- Understanding the mechanisms of dedifferentiation- Understanding the nature of stem cells

    Understanding the mechanisms ofdedifferentiation

    Modulation de lexpression gntique via desmcanismes pigntiques

    Reconformation de la chromatine

    Modification des histones

    Mthylation de lADN

  • 8/2/2019 Mr. Pauly-t_p 1

    21/35

    29/11/2011

    21

    Understanding the nature of stemcells

    Stem cell concept in plant biology

    Concept of stem cell niche in plant biology

    Basic techniques of vitroculture

  • 8/2/2019 Mr. Pauly-t_p 1

    22/35

    29/11/2011

    22

    Equipment and media are steri lizedby autoclaving

    Manipulation and transfer of the explant are madein a laminar flow hood

    The explant was cultured in steriletubes, petri dishes or bottles

    Concept of axenic conditions

    Technical aspects

    Laboratory organisationMedia

    preparation and

    sterilization

    Subculturing

    under sterile

    conditions

    Growth

    chambersLaundry

  • 8/2/2019 Mr. Pauly-t_p 1

    23/35

    29/11/2011

    23

    Sterilization of explants

    Ethanol

    Sodium or calcium hypochlorite

    Hydrogen peroxide

    Silver nitrate

    Sterilization protocol of explants

    Selecting explant

    1/ Ethanol 10 s

    2/ Ca(OCl)2 7%, 10 mn

    3/ 3 washes in sterile H2O

    Division and

    cultivation of the

    explant

  • 8/2/2019 Mr. Pauly-t_p 1

    24/35

    29/11/2011

    24

    Culture medium

    Water

    Gelling agents :

    agar phytagel :

    polymer of bacterial origin (glucuronic acid, rhamnose and glucose)

    translucent

    !! Interference with kanamycin!!

    Growth conditions

    Culture medium

    Carbon supply?

    Most of in vitro plant cultures are htrotrophs

    Choice of carbon source

    Sucrose

    Glucose

    Maltose

    Case by case basis:

    growth substances

    genotype

    Growth conditions

  • 8/2/2019 Mr. Pauly-t_p 1

    25/35

    29/11/2011

    25

    Culture medium

    Minerals

    Macroelements : N,P,K, Ca, Mg, S

    ex : NO3- / NH4

    + ratio

    Microelements : others trace elements

    Use of silver nitrate as ethylene antagonist

    Growth conditions

    Plant growth substances

    Auxins (from tryptophan)

    Cytokinins (from adenine)

    AuxinCytokinins Gibberellins

    Abscisic Acid

    Ethylene

    BrassinosteroidsSalicyla

    tes

    JasmonatesStrigolactones

  • 8/2/2019 Mr. Pauly-t_p 1

    26/35

    29/11/2011

    26

    Plant growth substances

    Auxins

    Growth conditions

    Natural:

    Indole Acetic Acid = IAAN

    CH2

    CO2

    H

    HCH2CO2H

    Synthetic:

    Naphthalene Acetic Acid NAA

    2,4-D (dichlorophenoxyacetic acid )

    OCH2

    CO2

    H

    Cl

    Cl

    At cellular level: they stimulate elongation

    At tissular level: they stimulate root growth at low

    concentration (except 2,4-D)

    Roles of auxins

    They inhibit stem elongation and auxiliary bud

    Growth conditions

  • 8/2/2019 Mr. Pauly-t_p 1

    27/35

    29/11/2011

    27

    Cytokinins

    Naturals

    Isoprenod CK (ex: zeatin)

    Aromatic CK (ex: BA)

    SyntheticsKinetinBenzyl AdenoPurine (BAP)

    Plant growth substances

    Growth conditions

    At cellular level: they stimulate cell division

    At tissular level: in general, they inhibit RAM growth

    Activation of the SAM

    Role of cytokinins

  • 8/2/2019 Mr. Pauly-t_p 1

    28/35

    29/11/2011

    28

    Gibberellins (gibberellic acid)

    ent-Kaurene (from geranyl-geranyl PP)

    Plant growth substances

    Growth conditions

    Gibberellins (gibberellic acid)

    Complex effects:

    Stimulation of internodal growth, leaf expansion

    Inhibition of root growth in the light Instead promotes root growth in the dark

    Growth conditions

  • 8/2/2019 Mr. Pauly-t_p 1

    29/35

    29/11/2011

    29

    Culture medium

    Various organic compounds

    Amino acids (glycine, cysteine)

    Vitamins (thiamin: B1, nicotinic acid: PP, folic acid: B9)

    Complex organic mixtures

    Antioxidants

    Growth conditions

    Organogenesis and callogenesis

    Undifferentiated cells

    Differentiated cells (organ cultures)

  • 8/2/2019 Mr. Pauly-t_p 1

    30/35

    29/11/2011

    30

    Callogenesis

    Callus of undifferentiated cells from organs(leaves, roots ...)

    Subculturing on fresh medium regularly, infinitegrowth

    Genetic drift

    Used to make cell suspensions or regeneration

    How to obtain callus and undifferenciated cells?

    undifferentiated cells

    Cut

    callogenesis

  • 8/2/2019 Mr. Pauly-t_p 1

    31/35

    29/11/2011

    31

    callogenesis

    callogenesis

  • 8/2/2019 Mr. Pauly-t_p 1

    32/35

    29/11/2011

    32

    OrganogenesisSkoog and Miller (1957)

    Auxin

    Cytokinin

    organogenesis

    auxins cytokinins

    rooting

    callus

    buds

    Axilary buds

    R=1: callus only

    R1: roots on callus

    FLEURS

    organogenesis

  • 8/2/2019 Mr. Pauly-t_p 1

    33/35

    29/11/2011

    33

    organogenesis

    organogenesis

  • 8/2/2019 Mr. Pauly-t_p 1

    34/35

    29/11/2011

    34

    Solid medium

    Callus

    Cell suspension

    Direct way!

    Obtaining of cell suspension cultures

    callogenesis

    callogenesis

  • 8/2/2019 Mr. Pauly-t_p 1

    35/35

    29/11/2011

    callogenesis