math 30-1: answer keymath30.ca/.../workbook_key/math30-1_answer_key.pdf · answer key polynomial,...

39
www.math30.ca Answer Key Polynomial, Radical, and Rational Functions Lesson One: Polynomial Functions Example 1: a) Leading coefficient is a n ; polynomial degree is n; constant term is a 0 . i) 3; 1; -2 ii) 1; 3; -1 iii) 5; 0; 5 Example 2: a) i) Even-degree polynomials with a positive leading coefficient have a trendline that matches an upright parabola. End behaviour: The graph starts in the upper-left quadrant (II) and ends in the upper-right quadrant (I). ii) Even-degree polynomials with a negative leading coefficient have a trendline that matches an upside-down parabola. End behaviour: The graph starts in the lower-left quadrant (III) and ends in the lower-right quadrant (IV). b) i) Odd-degree polynomials with a positive leading coefficient have a trendline matching the line y = x. The end behaviour is that the graph starts in the lower-left quadrant (III) and ends in the upper-right quadrant (I). ii) Odd-degree polynomials with a negative leading coefficient have a trendline matching the line y = -x. The end behaviour is that the graph starts in the upper-left quadrant (II) and ends in the lower-right quadrant (IV). Example 3: a) Zero of a Polynomial Function: Any value of x that satisfies the equation P(x) = 0 is called a zero of the polynomial. A polynomial can have several unique zeros, duplicate zeros, or no real zeros. i) Yes; P(-1) = 0 ii) No; P(3) ≠ 0. b) Zeros: -1, 5. c) The x-intercepts of the polynomial’s graph are -1 and 5. These are the same as the zeros of the polynomial. d) "Zero" describes a property of a function; "Root" describes a property of an equation; and "x-intercept" describes a property of a graph. Example 4: a) Multiplicity of a Zero: The multiplicity of a zero (or root) is how many times the root appears as a solution. Zeros give an indication as to how the graph will behave near the x-intercept corresponding to the root. b) Zeros: -3 (multiplicity 1) and 1 (multiplicity 1). c) Zero: 3 (multiplicity 2). d) Zero: 1 (multiplicity 3). e) Zeros: -1 (multiplicity 2) and 2 (multiplicity 1). Example 5: a) i) Zeros: -3 (multiplicity 1) and 5 (multiplicity 1). ii) y-intercept: (0, -7.5). iii) End behaviour: graph starts in QII, ends in QI. iv) Other points: parabola vertex (1, -8). b) i) Zeros: -1 (multiplicity 1) and 0 (multiplicity 2). ii) y-intercept: (0, 0). iii) End behaviour: graph starts in QII, ends in QIV. iv) Other points: (-2, 4), (-0.67, -0.15), (1, -2). Example 5a Example 5b Example 6: a) i) Zeros: -2 (multiplicity 2) and 1 (multiplicity 2). ii) y-intercept: (0, 4). iii) End behaviour: graph starts in QII, ends in QI. iv) Other points: (-3, 16), (-0.5, 5.0625), (2, 16). b) i) Zeros: -1 (multiplicity 3), 0 (multiplicity 1), and 2 (multiplicity 2). ii) y-intercept: (0, 0). iii) End behaviour: graph starts in QII, ends in QI. iv) Other points: (-2, 32), (-0.3, -0.5), (1.1, 8.3), (3, 192). Example 6a Example 6b Example 7: a) i) Zeros: -0.5 (multiplicity 1) and 0.5 (multiplicity 1). ii) y-intercept: (0, 1). iii) End behaviour: graph starts in QIII, ends in QIV. iv) Other points: parabola vertex (0, 1). b) i) Zeros: -0.67 (multiplicity 1), 0 (multiplicity 1), and 0.75 (multiplicity 1). ii) y-intercept: (0, 0). iii) End behaviour: graph starts in QIII, ends in QI. iv) Other points: (-1, -7), (-0.4, 1.5), (0.4, -1.8), (1, 5). Example 7a Example 7b a) 3 b) a) b) Example 8: Example 9: Example 10: a) b) Example 11: a) x: [-15, 15, 1], y: [-169, 87, 1] b) x: [-12, 7, 1], y: [-192, 378, 1] c) x: [-12, 24, 1], y: [-1256, 2304, 1] b) i) Y ii) N iii) Y iv) N v) Y vi) N vii) N viii) Y ix) N

Upload: trinhtuyen

Post on 30-Jan-2018

244 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Answer KeyPolynomial, Radical, and Rational Functions Lesson One: Polynomial Functions

Example 1: a) Leading coefficient is an ; polynomial degree is n; constant term is a0. i) 3; 1; -2 ii) 1; 3; -1 iii) 5; 0; 5

Example 2: a) i) Even-degree polynomials with a positive leading coefficient have a trendline that matches an upright parabola. End behaviour: The graph starts in the upper-left quadrant (II) and ends in the upper-right quadrant (I).ii) Even-degree polynomials with a negative leading coefficient have a trendline that matches an upside-down parabola. End behaviour: The graph starts in the lower-left quadrant (III) and ends in the lower-right quadrant (IV).

b) i) Odd-degree polynomials with a positive leading coefficient have a trendline matching the line y = x. The end behaviour is that the graph starts in the lower-left quadrant (III) and ends in the upper-right quadrant (I). ii) Odd-degree polynomials with a negative leading coefficient have a trendline matching the line y = -x. The end behaviour is that the graph starts in the upper-left quadrant (II) and ends in the lower-right quadrant (IV).

Example 3: a) Zero of a Polynomial Function: Any value of x that satisfies the equation P(x) = 0 is called a zero of the polynomial. A polynomial can have several unique zeros, duplicate zeros, or no real zeros. i) Yes; P(-1) = 0 ii) No; P(3) ≠ 0.b) Zeros: -1, 5.c) The x-intercepts of the polynomial’s graph are -1 and 5.These are the same as the zeros of the polynomial.d) "Zero" describes a property of a function; "Root" describes a property of an equation;and "x-intercept" describes a property of a graph.

Example 4: a) Multiplicity of a Zero: The multiplicity of a zero (or root) is how many times the root appears as a solution.Zeros give an indication as to how the graph will behave near the x-intercept corresponding to the root.b) Zeros: -3 (multiplicity 1) and 1 (multiplicity 1). c) Zero: 3 (multiplicity 2).d) Zero: 1 (multiplicity 3). e) Zeros: -1 (multiplicity 2) and 2 (multiplicity 1).

Example 5: a) i) Zeros: -3 (multiplicity 1) and 5 (multiplicity 1). ii) y-intercept: (0, -7.5). iii) End behaviour: graph starts in QII, ends in QI. iv) Other points: parabola vertex (1, -8).

b) i) Zeros: -1 (multiplicity 1) and 0 (multiplicity 2). ii) y-intercept: (0, 0).iii) End behaviour: graph starts in QII, ends in QIV.iv) Other points: (-2, 4), (-0.67, -0.15), (1, -2).

Example 5a Example 5b

Example 6: a) i) Zeros: -2 (multiplicity 2) and 1 (multiplicity 2).ii) y-intercept: (0, 4). iii) End behaviour: graph starts in QII, ends in QI.iv) Other points: (-3, 16), (-0.5, 5.0625), (2, 16).

b) i) Zeros: -1 (multiplicity 3), 0 (multiplicity 1), and 2 (multiplicity 2).ii) y-intercept: (0, 0). iii) End behaviour: graph starts in QII, ends in QI.iv) Other points: (-2, 32), (-0.3, -0.5), (1.1, 8.3), (3, 192).

Example 6a Example 6b

Example 7: a) i) Zeros: -0.5 (multiplicity 1) and 0.5 (multiplicity 1).ii) y-intercept: (0, 1). iii) End behaviour: graph starts in QIII, ends in QIV.iv) Other points: parabola vertex (0, 1).

b) i) Zeros: -0.67 (multiplicity 1), 0 (multiplicity 1), and 0.75 (multiplicity 1).ii) y-intercept: (0, 0). iii) End behaviour: graph starts in QIII, ends in QI.iv) Other points: (-1, -7), (-0.4, 1.5), (0.4, -1.8), (1, 5).

Example 7a Example 7b

a)

3b)

a)

b)

Example 8: Example 9: Example 10:

a)

b)

Example 11: a) x: [-15, 15, 1], y: [-169, 87, 1] b) x: [-12, 7, 1], y: [-192, 378, 1] c) x: [-12, 24, 1], y: [-1256, 2304, 1]

b) i) Y ii) N iii) Y iv) N v) Y vi) N vii) N viii) Y ix) N

Page 2: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Answer Keya) b)Example 12:

Example 14:

a) Pproduct(x) = x2(x + 2); Psum(x) = 3x + 2

b) x3 + 2x2 - 3x - 11550 = 0.c) Window Settings: x: [-10, 30, 1], y: [-12320, 17160, 1]Quinn and Ralph are 22 since x = 22. Audrey is two years older, so she is 24.

a) Window Settings: x: [0, 6, 1], y: [-1.13, 1.17, 1]b) At 3.42 seconds, the maximum volume of 1.17 L is inhaledc) One breath takes 5.34 seconds to complete.d) 64% of the breath is spent inhaling.

Example 15:

Example 16:

Polynomial, Radical, and Rational Functions Lesson Two: Polynomial Division

Example 1: a) Quotient: x2 - 5; R = 4 b) P(x): x3 + 2x2 - 5x - 6; D(x) = x + 2; Q(x) = x2 - 5; R = 4c) L.S.= R.S. d) Q(x) = x2 - 5 + 4/(x + 2) e) Q(x) = x2 - 5 + 4/(x + 2)

Example 2: a) 3x2 - 7x + 9 - 10/(x + 1) b) x2 + 2x + 1 c) x2 - 2x + 4 - 9/(x + 2)

Example 3: a) 3x2 + 3x + 2 - 1/(x - 1) b) 3x3 - x2 + 2x - 1 c) 2x3 + 2x2 - 5x - 5 - 1/(x - 1)

Example 4: a) x - 2 b) 2 c) x2 – 4 d) x2 + 5x + 12 + 36/(x - 3)

Example 5: a) a = -5 b) a = -5

Example 6: The dimensions of the base are x + 5 and x - 3

Example 7: a) f(x) = 2(x + 1)(x - 2)2 b) g(x) = x + 1 c) Q(x) = 2(x – 2)2

Example 8: a) f(x) = 4x3 - 7x - 3 b) g(x) = x - 1

Example 9: a) R = -4 b) R = -4. The point (1, -4) exists on the graph. The remainder is just the y-value of the graph when x = 1.c) Both synthetic division and the remainder theorem return a result of -4 for the remainder.d) i) R = 4 ii) R = -2 iii) R = -2e) When the polynomial P(x) is divided by x - a, the remainder is P(a).

(1, -4) (1, 0)

Example 10: a) R = 0 b) R = 0. The point (1, 0) exists on the graph. The remainder is just the y-value of the graph.c) Both synthetic division and the remainder theorem return a result of 0 for the remainder.d) If P(x) is divided by x - a, and P(a) = 0, then x - a is a factor of P(x).e) When we use the remainder theorem, the result can be any real number. If we use the remainder theorem and get a result of zero, the factor theorem gives us one additional piece of information - the divisor fits evenly into the polynomial and is therefore a factor of the polynomial. Put simply, we're always using the remainder theorem, but in the special case of R = 0 we get extra information from the factor theorem.

Example 11: a) P(-1) ≠ 0, so x + 1 is not a factor.b) P(-2) ≠ 0, so x + 2 is not a factor.c) P(1/3) = 0, so 3x - 1 is a factor.d) P(-3/2) ≠ 0, so 2x + 3 is not a factor.Example 12: a) k = 3 b) k = -7 c) k = -7 d) k = -5Example 13: m = 4 and n = -7Example 14: m = 4 and n = -3Example 15: a = 5

Example 7c

Example 9Example 10

Remainder Theorem(R = any number)

Factor Theorem(R = 0)

Example 13:

a) V(x) = x(20 - 2x)(16 - 2x)b) 0 < x < 8 or (0, 8)c) Window Settings: x: [0,8, 1], y: [0, 420, 1]d) When the side length of a corner square is 2.94 cm, the volume of the box will be maximized at 420.11 cm3. e) The volume of the box is greater than 200 cm3 when 0.74 < x < 5.93.

or (0.74, 5.93)

Math 30-1 students are expected to know that domain and range can beexpressed using interval notation.

() - Round Brackets: Exclude pointfrom interval.[] - Square Brackets: Include pointin interval.Infinity ∞ always gets a round bracket.

Examples: x ≥ -5 becomes [-5, ∞); 1 < x ≤ 4 becomes (1, 4];x ε R becomes (-∞ , ∞);

Interval Notation

-8 ≤ x < 2 or 5 ≤ x < 11 becomes [-8, 2) U [5, 11),where U means “or”, or union of sets;x ε R, x ≠ 2 becomes (-∞ , 2) U (2, ∞);-1 ≤ x ≤ 3, x ≠ 0 becomes [-1 , 0) U (0, 3].

Page 3: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Answer KeyPolynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring

Example 1: a) The integral factors of the constant term of a polynomial are potential zeros of the polynomial.b) Potential zeros of the polynomial are ±1 and ±3.c) The zeros of P(x) are -3 and 1 since P(-3) = 0 and P(1) = 0d) The x-intercepts match the zeros of the polynomiale) P(x) = (x + 3)(x - 1)2.

Example 2: a) P(x) = (x + 3)(x + 1)(x - 1).b) All of the factors can be found using the graph.c) Factor by grouping.

Example 3: a) P(x) = (2x2 + 1)(x - 3).b) Not all of the factors can be found using the graph.c) Factor by grouping.

Example 4: a) P(x) = (x + 2)(x – 1)2.b) All of the factors can be found using the graph.c) No.

Example 5: a) P(x) = (x2 + 2x + 4)(x - 2). b) Not all of the factors can be found using the graph.c) x3 - 8 is a difference of cubes

Example 6: a) P(x) = (x2 + x + 2)(x - 3).b) Not all of the factors can be found using the graph.c) No.

Example 7: a) P(x) = (x2 + 4)(x - 2)(x + 2). b) Not all of the factors can be found using the graph.c) x4 – 16 is a difference of squares.

Example 8: a) P(x) = (x + 3)(x - 1)2(x - 2)2.b) All of the factors can be found using the graph.c) No.

Example 9: a) P(x) = 1/2x2(x + 4)(x – 1).

b) P(x) = 2(x + 1)2(x - 2).

Example 10: Width = 10 cm; Height = 7 cm; Length = 15 cm

Example 11: -8; -7; -6

Example 12: k = 2; P(x) = (x + 3)(x - 2)(x - 6)

Example 13: a = -3 and b = -1

Example 14: a) x = -3, 2, and 4 b)

Quadratic FormulaFrom Math 20-1:The roots of a quadratic equation with the form ax2 + bx + c = 0 can be found with the quadratic formula:

Page 4: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Answer KeyPolynomial, Radical, and Rational Functions Lesson Four: Radical Functions

Example 1:

x f(x)

-10149

undefined

0123

a) b) Domain: x ≥ 0;Range: y ≥ 0

Interval Notation:Domain: [0, ∞);Range: [0, ∞)

c)Example 2:a) b)

Example 3:a) b) c) d)

Example 4:a) b) c) d)

Example 5:a) b) c) d)

ORIGINAL:Domain: x ε R or (-∞, ∞)Range: y ε R or (-∞, ∞)

TRANSFORMED:Domain: x ≥ -4 or [-4, ∞)Range: y ≥ 0 or [0, ∞)

ORIGINAL:Domain: x ε R or (-∞, ∞)Range: y ≤ 9 or (-∞, 9]

TRANSFORMED:Domain: -5 ≤ x ≤ 1 or [-5, 1]Range: 0 ≤ y ≤ 3 or [0, 3]

ORIGINAL:Domain: x ε R or (-∞, ∞)Range: y ≥ -4 or [-4, ∞)

TRANSFORMED:Domain: x ≤ 3 or x ≥ 7or (-∞, 3] U [7, ∞)Range: y ≥ 0 or [0, ∞)

ORIGINAL:Domain: x ε R or (-∞, ∞)Range: y ≥ 0 or [0, ∞)

TRANSFORMED:Domain: x ε R or (-∞, ∞)Range: y ≥ 0 or [0, ∞)

Example 6:a) b)

Example 7:a) b)

Page 5: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

(7, 3)

(7, 0)

Example 9:a) x = 7

b) c)

Example 10:a) x = 2

b) c)

(2, 2)

(2, 0)

Example 11:a) x = -3, 1

b) c)

(-3, 0)

(1, 4)

(-3, 0) (1, 0)

Example 12:a) No Solution

b) c)

No Solution

No Solution

Example 13:

d

h(d)

1 2 3 4 5

1

2

3

4

5

Example 14:

a)b) Domain: 0 ≤ d ≤ 3; Range: 0 ≤ h(d) ≤ 3or Domain: [0, 3]; Range: [0, 3].When d = 0, the ladder is vertical. When d = 3, the ladder is horizontal.c) 2 m

h

t

1 2 3 4 5 6 7 8

0.5

1.0

1.5

2.0

2.5

3.0

× original time

h t

8

4

1

1.2778

0.9035

0.4517

Example 15:

a)b) 1/2 × original time c)

Example 16:

a)

b)

1

10

2 3 4 5 6 r

V(r)

20

30

40

50

60

Answer Key

a) b) c) d)

ORIGINAL:Domain: x ε R or (-∞, ∞)Range: y ≤ 0 or (-∞, 0]

TRANSFORMED:Domain: x = -5Range: y = 0

ORIGINAL:Domain: x ε R or (-∞, ∞)Range: y ≥ 0.25 or [0.25, ∞)

TRANSFORMED:Domain: x ε R or (-∞, ∞)Range: y ≥ 0.5 or [0.5, ∞)

Example 8:a) b)

Page 6: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Answer KeyPolynomial, Radical, and Rational Functions Lesson Five: Rational Functions I

Example 1:

x y

-2

-1

-0.5

-0.25

0

0.25

0.5

1

2

-0.5

-1

-2

-4

undef.

4

2

1

0.5

Example 4:

Reciprocal: x ε R, x ≠ -2, 2; y ≤ -1 or y > 0

Asymptotes: x = ±2; y = 0

Reciprocal: x ε R, x ≠ -4, 2; y < 0 or y ≥ 2

Asymptotes: x = -4, x = 2; y = 0

b) Original: x ε R; y ≤ 1/2

Reciprocal: x ε R, x ≠ 4, 8; y ≤ -1/2 or y > 0

Asymptotes: x = 4, x = 8; y = 0

c) Original: x ε R; y ≥ -2

Reciprocal: x ε R, x ≠ 0; y > 0

Asymptotes: x = 0; y = 0

d) Original: x ε R; y ≥ 0

a) b)1. The vertical asymptote of the reciprocal graph occurs at the x-intercept of y = x.

2.The invariant points (points that are identical on both graphs) occur when y = ±1.

3. When the graph of y = x is below the x-axis, so is the reciprocal graph.When the graph of y = x is above the x-axis, so is the reciprocal graph.

c) d)

a) Original: x ε R; y ≥ -1

Example 2:

Reciprocal Graph:Domain: x ε R, x ≠ 5 or (-∞, 5) U (5, ∞); Range: y ε R, y ≠ 0 or (-∞, 0) U (0, ∞)

Asymptote Equation(s):Vertical: x = 5; Horizontal: y = 0

b) Original Graph:Domain: x ε R or (-∞, ∞); Range: y ε R or (-∞, ∞)

Reciprocal Graph:Domain: x ε R, x ≠ 4 or (-∞, 4) U (4, ∞); Range: y ε R, y ≠ 0 or (-∞, 0) U (0, ∞)

Asymptote Equation(s):Vertical: x = 4; Horizontal: y = 0

a) Original Graph:Domain: x ε R or (-∞, ∞);Range: y ε R or (-∞, ∞)

Example 3:

x y

-3

-2

-1

0

1

2

3

x y

-2.05

-1.95

x y

1.95

2.05

0.20

undef.

-0.33

-0.25

-0.33

undef.

0.20

4.94

-5.06

-5.06

4.94

b)1. The vertical asymptotes of the reciprocal graph occur at the x-intercepts of y = x2 - 4.

2. The invariant points (points that are identical in both graphs) occur when y = ±1.

3. When the graph of y = x2 - 4 is below the x-axis, so is the reciprocal graph.When the graph of y = x2 - 4 is above the x-axis, so is the reciprocal graph.

c) d)a)

or D: (-∞, ∞); R: [-1, ∞).

or D: (-∞, -2) U (-2, 2) U (2, ∞); R: (-∞, -1] U (0, ∞)

or D: (-∞, ∞); R: (-∞, 1/2].

or D: (-∞, -4) U (-4, 2) U (2, ∞); R: (-∞, 0) U [2, ∞)

or D: (-∞, ∞); R: [-2, ∞).

or D: (-∞, 4) U (4, 8) U (8, ∞); R: (-∞, -1/2] U (0, ∞)

or D: (-∞, ∞); R: [0, ∞).

or D: (-∞, 0) U (0, ∞); R: (0, ∞)

Page 7: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Example 4 (continued):

Reciprocal: x ε R; -2 ≤ y < 0

Asymptotes: y = 0

f) Original: x ε R; y ≤ -1/2

Reciprocal: x ε R; 0 < y ≤ 1/2

Asymptotes: y = 0

e) Original: x ε R; y ≥ 2

Example 5:

V

P

1 2 3 4 5 6 7 8 9 10

5

10

15

20

25

30

35

40

45

50

Pressure V.S. Volume of 0.011 mol of a gas at 273.15 K

PV

0.5

1.0

2.0

5.0

10.0

(kPa)(L)

50

25

12.5

5.0

2.5

d

I

1 2 3 4 5 6

10

20

30

40

50

60

70

80

90

100

110

120

130

7 8 9 10 11 12

Illuminance V.S. Distance for a Fluorescent Bulb

Id

2

4

8

12

(W/m2)(m)

ORIGINAL

1

Example 6:

Example 7:

Example 8:

Example 9: Example 10:

a) P(V) = nRT(1/V).

b) 1/2 × original

c) 2 × original

d) 8.3 kPa•L/mol•K

e) See table & graph

f) See table & graph

a) 1/4 × original

b) 1/9 × original

c) 4 × original

d) 16 × original

e) See table & graph

f) See table & graph

Answer Key

a) b) c) d)

a) x = 1.5; y = 0 b) x = -4, 6; y = 0 c) x = -0.5, 0, 1.33 ; y = 0 d) y = 0

a) VS: 4 b) VT: 3 down c) VS: 3; HT: 4 left d) VS: 2; HT: 3 right; VT: 2 up

a) VT: 2 down b) HT: 2 right; VT: 1 up c) VS: 4; HT: 1 right; VT: 2 down d) VS: 3; HT: 5 right; VT: 2 down

or D: (-∞, ∞); R: [2, ∞).

or D: (-∞, ∞); R: (0, 1/2]

or D: (-∞, ∞); R: (-∞, -1/2].

or D: (-∞, ∞); R: [-2, 0)

Page 8: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Answer KeyPolynomial, Radical, and Rational Functions Lesson Six: Rational Functions II

Example 1:

Example 2:

Example 3:

Example 4:

i) Horizontal Asymptote: y = 2

ii) Vertical Asymptote(s): x = -2

v) Domain: x ε R, x ≠ -2; Range: y ε R, y ≠ 2

iii) y - intercept: (0, -3)iv) x - intercept(s): (3, 0)

Example 5: Example 6:

i) Horizontal Asymptote: Noneii) Vertical Asymptote(s): x = 1

v) Domain: x ε R, x ≠ 1; Range: y ε R

iii) y - intercept: (0, 8)iv) x - intercept(s): (-4, 0), (2, 0)

vi) Oblique Asymptote: y = x + 3

Example 7:

i) y = x - 3

ii) Hole: (2, -1)

v) Domain: x ε R, x ≠ 2; Range: y ε R, y ≠ -1

iii) y - intercept: (0, -3)

iv) x - intercept(s): (3, 0)

y = xx2 - 9

y =x2 + 1x + 2 y =

x2 - 16x + 4 y =

x3 - x2 - 2xx2 - x - 2

y = 4xx - 2

y =x2 - 1

x2

y =x2 + 93x2

y =x2 - x - 6

3x2 - 3x - 18

y =x + 4

x2 + 5x + 4 y =x - 3

x2 - 4x + 3 y = x2 - x - 6x + 1

y = x2 + 5x - 1

a)

a)

a)

b)

b)

b)

c)

c)

c)

d)

d)

d)

i) Horizontal Asymptote: y = 0

ii) Vertical Asymptote(s): x = ±4

v) Domain: x ε R, x ≠ ±4; Range: y ε R

iii) y - intercept: (0, 0)iv) x - intercept(s): (0, 0)

or D: (-∞, -4) U (-4, 4) U (4, ∞); R: (-∞, ∞) or D: (-∞, -2) U (-2, ∞); R: (-∞, 2) U (2, ∞) or D: (-∞, 2) U (2, ∞); R: (-∞, -1) U (-1, ∞)or D: (-∞, 1) U (1, ∞); R: (-∞, ∞)

Page 9: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Example 8:

Example 10: a) x = 4

Example 12: a) x = 1. x = 2 is an extraneous root

b) c)

(1, -3) (1, 0)

(6, 0)

c) Graphing Solution: x-intercept method.

b) Cynthia: 9 km/h; Alan: 6 km/h

d s t

Cynthia

Alan

a)

x

x + 315

10

x + 315

x10

(10, 0)(-0.4, 0)

c) Graphing Solution: x-intercept method.

b) Canoe speed: 10 km/h

d s t

24

24

x - 2

x + 2

24x - 2

24x + 2

Upstream

Downstream

a)

Example 13:

Example 14:

Example 15:

c) Graphing Solution: x-intercept method.

(6, 0)

Example 16:

c) Graphing Solution: x-intercept method.

a)

b) Mass of almonds required: 90 g

-300 300

-1

1

0.5

-0.5

(90, 0)

Answer Key

Sum of times equals 5 h.

Equal times.a) b)

(4, 4)

b)

(4, 0)

c)

Example 9:

a) b)

c) d)

Example 11: a) x = -1/2 and x = 2

(2, -6)(-0.5, -6)

(2, 0)(-0.5, 0)

b) c)

a)

b) Number of goals required: 6

Page 10: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Answer KeyTransformations and Operations Lesson One: Basic Transformations

Example 1:

Example 2: a) b) c) d)

Example 3: a) b) c)

Example 4: a) b) c)

Example 5: a) b) c) d)

Example 6: a) b) c) d)

a) b) c) d)

Page 11: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Example 7: a) b) c) d)

Example 9: a) b) c) d)

Example 10: a) b) c) d)

Example 8: a) b) c) d)

Example 11:

a) b)

Example 12:

a) b)

Example 13:

a) R(n) = 5nC(n) = 2n + 150b) 50 loavesc) C2(n) = 2n + 200d) R2(n) = 6ne) 50 loaves

$

n

100

200

300

400

500

20 40 60 80

(50, 250)

Example 14:

a)

$

n

100

200

300

400

500

20 40 60 80

(50, 300)

b) 12 metres

Example 13a Example 13e

Answer Key

or

or

R(n)

C(n)

R2(n)

C2(n)

Page 12: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Answer KeyTransformations and Operations Lesson Two: Combined Transformations

Example 1: a) a is the vertical stretch factor.b is the reciprocal of the horizontal stretch factor.h is the horizontal displacement.k is the vertical displacement.

Example 2:

Example 3: b) i. H.T. 1 rightV.T. 3 up

a) H.T. 3 left ii. H.T. 2 leftV.T. 4 down

iii. H.T. 2 rightV.T. 3 down

iv. H.T. 7 leftV.T. 5 up

Example 4:

Example 5: b) i. V.S. 2H.T. 3 leftV.T. 1 up

a) Stretches and reflections should be applied first, in any order.Translations should be applied last, in any order.

ii. H.S. 3Reflection about x-axisV.T. 4 down

iii. V.S. 1/2Reflection about y-axisH.T. 2 left; V.T. 3 down

iv. V.S. 3; H.S. 1/4Reflection about x-axisReflection about y-axisH.T. 1 right; V.T. 2 up

Example 6: a) b) c) d)

Example 7: a) b) c) d)

Example 8:a) (1, 0)b) (3, 6)c) m = 8 and n = 1

Example 9:a) y = -3f(x – 2)b) y = -f[3(x + 2)]

Example 10:Axis-IndependenceApply all the vertical transformations together and apply all the horizontal transformations together, in either order.

Example 11:a) H.T. 8 right; V.T. 7 upb) Reflection about x-axis; H.T. 4 left; V.T. 6 downc) H.S. 2; H.T. 3 left; V.T. 7 upd) H.S. 1/2; Reflection about x & y-axis; H.T. 5 right; V.T. 7 down.e) The spaceship is not a function, and it must be translated in a specific order to avoid the asteroids.

b) i. V.S. 1/3H.S. 1/5

ii. V.S. 2H.S. 4

iii. V.S. 1/2H.S. 3Reflection about x-axis

iv. V.S. 3H.S. 1/2Reflection about x-axisReflection about y-axis

a) b) c) d)

a) b) c) d)

Page 13: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Answer KeyTransformations and Operations Lesson Three: Inverses

Example 1: a) Line of Symmetry: y = x

b)

Example 2:

a) b) c) d)

Original:D: x ε RR: y ε R

Inverse:D: x ε RR: y ε R

Original:D: x ε RR: y ε R

Inverse:D: x ε RR: y ε R

The inverse is a function.

Example 3:

a) b) a) b)

Example 4:

Example 5:

a) b) a) b)

Example 6:

Example 7:

a) (10, 8)

b) True.f-1(b) = a

c) f(5) = 4

d) k = 30

Example 8:

a) 28 °C is equivalent to 82.4 °F

b)

c) 100 °F is equivalent to 37.8 °C

d) C(F) can't be graphed since its dependent variable is C, but the dependent variable on the graph's y-axis is F. This is a mismatch.

e)

f) The invariant point occurs when the temperature in degrees Fahrenheit is equal to the temperature in degrees Celsius. -40 °F is equal to -40 °C.

°C

50

100°F

-50

50-50 100-100

-100

(-40, -40)

F(C)

F-1(C)

Restrict the domain ofthe original function to-10 ≤ x ≤ -5 or -5 ≤ x ≤ 0

Restrict the domain of the original function tox ≤ 5 or x ≥ 5.

Restrict the domain ofthe original function tox ≤ 0 or x ≥ 0

Restrict the domain of the original function tox ≤ -3 or x ≥ -3.

The inverse is a function.

D: x ε R D: x ≥ 4

Page 14: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Answer KeyTransformations and Operations Lesson Four: Function Operations

Example 1:

c) d)

x (f • g)(x)

-6

-3

0

3

6

-4

-8

-2

-3

DNE

x (f ÷ g)(x)

-6

-4

-2

0

2

4

6

DNE

-4

-8

-6

-4

-2

DNE

Domain: -6 ≤ x ≤ 3or [-6, 3]

Range: -8 ≤ y ≤ -2or [-8, -2]

f(x)

g(x)

f(x)

g(x)

Domain: -4 ≤ x ≤ 4or [-4, 4]

Range: -8 ≤ y ≤ -2or [-8, -2]

Example 2:

a) i. (f + g)(-4) = -2 ii. h(x) = -2; h(-4) = -2b) i. (f – g)(6) = 8 ii. h(x) = 2x – 4; h(6) = 8c) i. (fg)(-1) = -8 ii. h(x) = -x2 + 4x - 3; h(-1) = -8d) i. (f/g)(5) = -0.5 ii. h(x) = (x - 3)/(-x + 1); h(5) = -0.5

Domain: 3 < x ≤ 5 or (3, 5]Range: 0 < y ≤ 1 or (0, 1]

Domain: x ≥ -4 or [-4, ∞)Range: y ≤ 9 or (-∞, 9]

Domain: 0 < x ≤ 10 or (0, 10] Range: -10 ≤ y ≤ 0 or [-10, 0]

Domain: x > -2 or (-2, ∞)Range: y > 0 or (0, ∞)

f(x)

g(x)f(x)

g(x)

f(x)

g(x)

f(x)

g(x)

m(x)

Example 3:

Domain: x ≥ -4 or [-4, ∞)Range: y ≥ 0 or [0, ∞)Transformation: y = f(x) - 1

f(x)

g(x)

Example 4:

a)

Domain: x ≥ -4 or [-4, ∞)Range: y ≤ -1 or (-∞, -1]Transformation: y = -f(x).

f(x)

g(x)

Domain: x ε R or (-∞, ∞)Range: y ≤ -6 or (-∞, -6]Transformation: y = f(x) - 2

Example 5:

a)

Domain: x ε R or (-∞, ∞)Range: y ≤ -2 or (-∞, -2]Transformation: y = 1/2f(x)

b)b)

f(x)

g(x)

f(x)

g(x)

a)

f(x)

g(x)

x (f + g)(x)

-8

-4

-2

0

1

4

-6

-6

0

-6

-9

-9

Domain:-8 ≤ x ≤ 4or [-8, 4]

Range:-9 ≤ y ≤ 0or [-9, 0]

f(x)

g(x)

x (f - g)(x)

-9

-5

-3

0

3

6

DNE

10

9

2

5

DNE

Domain: -5 ≤ x ≤ 3;or [-5, 3]

Range:2 ≤ y ≤ 10or [2, 10]

b)

a) b) c) d)

Reminder: Math 30-1 students are expected to know that domain and range can be expressed using interval notation.

Page 15: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

f(x)

g(x)

f(x)

g(x)

f(x)

g(x)f(x)

g(x)

Domain: x ε R, x ≠ 0;Range: y ε R, y ≠ 0

Example 6:

a)

Domain: x ε R, x ≠ 2;Range: y ε R, y ≠ 0

Domain: x ε R, x ≠ -3;Range: y ε R, y ≠ 0

c)

Domain: x ≥ -3, x ≠ -2;Range: y ε R, y ≠ 0

d)b)

a) AL(x) = 8x2 – 8x

b) AS(x) = 3x2 – 3x

c) AL(x) - AS(x) = 10; x = 2

d) AL(2) + AS(2) = 22;

e) The large lot is 2.67 times larger than the small lot

Example 7:

100

200

300

400

-100

$

n

500

20 40 60

R(n)

E(n)P(n)

a) R(n) = 12n;E(n) = 4n + 160;P(n) = 8n – 160

b) When 52 games are sold, the profit is $256

c) Greg will break even when he sells 20 games

Example 8: Example 9:

a) The surface area and volume formulae have two variables, so they may not be written as single-variable functions.

b) c) d)

e) f)

Answer Key

Transformations and Operations Lesson Five: Function Composition

Example 1:

Example 2: a) m(3) = 33 b) n(1) = -4 c) p(2) = -2 d) q(-4) = -16

Example 3: a) m(x) = 4x2 – 3 b) n(x) = 2x2 – 6 c) p(x) = x4 – 6x2 + 6 d) q(x) = 4x e) All of the results match

Example 4: a) m(x) = (3x + 1)2 b) n(x) = 3(x + 1)2

The graph of f(x) is horizontally stretched by a scale factor of 1/3.

The graph of f(x) is vertically stretched by a scale factor of 3.

n(x)

m(x)

x g(x)

-3

-2-101

f(g(x))

23

9

410149

6

1-2-3-216

x f(x)

0

1

2

3

g(f(x))

-3

-2

-1

0

9

4

1

0

d) m(x) = x2 – 3

e) n(x) = (x – 3)2

a) b) f)c) Order matters in a composition of functions.

or D: (-∞, 0) U (0, ∞); R: (-∞, 0) U (0, ∞) or D: (-∞, 2) U (2, ∞); R: (-∞, 0) U (0, ∞) or D: (-∞, -3) U (-3, ∞); R: (-∞, 0) U (0, ∞) or D: [-3, -2) U (-2, ∞); R: (-∞, 0) U (0, ∞)

Page 16: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Answer KeyExample 5: a)

Example 6:

b)

a) ( ) 1

| 2|h x

x=

+b) ( ) 2 2h x x= + +

Example 7: a) b)

d

M(d)

100

10

200 300 400 500 600

20

30

40

50

60

Example 8:

Example 9: Example 10:

a) The cost of the trip is $4.20. It took two separate calculations to find the answer.b) V(d) = 0.08dc) M(V) = 1.05Vd) M(d) = 0.084de) Using function composition, we were able to solve the problem with one calculation instead of two.

Example 11:

a) A(t) = 900πt2

b) A = 8100π cm2

c) t = 7 s; r = 210 cm

Example 12:

a) a(c) = 1.03c

b) j(a) = 78.0472a

c) b(a) = 0.6478a

d) b(c) = 0.6672c

Example 13:

a)

b)

c) h = 4 cm

a) b) c)

d) e) f)

a) (f-1 ◦ f)(x) = x, so the functions are inverses of each other.b) (f-1 ◦ f)(x) ≠ x, so the functions are NOT inverses of each other.

Domain: x ≥ 8 Domain: x ≥ 2

Domain: x ε R, x ≠ -2 Domain: x ≥ -2

Domain: x ε R, x ≠ -2 Domain: x ≥ -2

Page 17: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Answer KeyExponential and Logarithmic Functions Lesson One: Exponential Functions

Example 1:

Example 2:

Example 3:

5

5-5

10

-5

5

5-5

10

-5

5

5-5

10

-5

Domain: x ε R or (-∞, ∞)Range: y > 0 or (0, ∞)Asymptote: y = 0

Domain: x ε R or (-∞, ∞)Range: y > 0 or (0, ∞)Asymptote: y = 0

Domain: x ε R or (-∞, ∞)Range: y > 3 or (3, ∞)Asymptote: y = 3

Domain: x ε R or (-∞, ∞)Range: y > 0 or (0, ∞)Asymptote: y = 0

5

5-5

10

-5

Example 4:

5

5-5

10

-5

5

5-5

10

-5

Domain: x ε R or (-∞, ∞)Range: y > -4 or (-4, ∞)Asymptote: y = -4

Domain: x ε R or (-∞, ∞)Range: y > -2 or (-2, ∞)Asymptote: y = -2

Domain: x ε R or (-∞, ∞)Range: y > 0 or (0, ∞)Asymptote: y = 0

Domain: x ε R or (-∞, ∞)Range: y > 0 or (0, ∞)Asymptote: y = 0

5

5-5

10

-5

5

5-5

10

-5

Example 5: a) b)

Example 6: a) V.S. of 9equals H.T.2 units left.

See Videob) c) d) e) f)

Parts (a-d):Domain: x ε R or (-∞, ∞)Range: y > 0 or (0, ∞)x-intercept: Noney-intercept: (0, 1)Asymptote: y = 0

An exponential function is defined as y = bx, where b > 0 and b ≠ 1. When b > 1, we get exponential growth. When 0 < b < 1, we get exponential decay. Other b-values, such as -1, 0, and 1, will not form exponential functions.

a) b) c) d)

a) b) c) d)

a) b) c) d)

a) b) c) d)

; ; ; ;

Page 18: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Example 7: Example 8: Example 9: Example 10: Example 11: Example 12: Example 13: Example 14:

a)b)

c)

d)

a)b)c)d)

a)b)c)

d)

a)b)c)d)

a)infinite solutions

b)

c)d)

a)

b)

c)d)

a)

b)c)d)

a)b)c)d)

no solution

m

t

100

10 20

50

m

t

1

10 50

0.5

20 30 40 60

(49, 0.1)

Example 15:

a)

b) 84 g

Example 16:

a)

b) 32254 bacteria

B

t

50000

100000

5 10

B

t

200

1000

0 2-8

400

600

800

(-6, 50)

Example 17: a) ; 69 MHz b) ; $600

Example 18:

a) 853,370

b) 54 years

c) 21406

d) 77 years

P%

t

5

20 40 60 80 100

4

3

2

1

(53.7, 2)

t

1

20 40 60 80 100

0.8

0.6

0.4

0.2

P%

(76.7, 0.5)

Example 18b

Example 19c

Example 18d

Example 19:

a)

b) $565.70Interest: $65.70

( ) ( )500 1.025t

A t =

c) See graph

d) 28 years

$

t

1000

10 20

500

P%

t20 50

1

10 30 40

2

3

4

5

(28, 2)

e) $566.14; $566.50; $566.57As the compounding frequency increases, there is less and less of a monetary increase.

Example 19d

Example 16c Example 16d

Example 15c Example 15d

c) See Graph

d) 49 years

c) See Graph

d) 6 hours ago

Answer Key

e)

f)

Watch Out! The graph requires hours on the t-axis, so we can rewrite the exponential function as:

Page 19: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Answer KeyExponential and Logarithmic Functions Lesson Two: Laws of Logarithms

Example 1:

Example 2:

Example 4:

a)

b)

c)

d)

e)

f)

g)

h)

Example 5:

a)

b)

c)

d)

e)

f)

g)

h)

Example 6:

a)

b)

c)

d)

e)

f)

g)

h)

Example 7:

a)

b)

c)

d)

e)

f)

g)

h)

Example 8:

a)

b)

c)

d)

e)

f)

g)

h)

Example 9:

a)

b)

c)

d)

e)

f)

g)

h)

Example 10:

a)

b)

c)

d)

e)

f)

g)

h)

Example 17:

a)

b)

c)

d)

e)

f)

g)

h)

a) The base of the logarithm is b,a is called the argument of the logarithm,and E is the result of the logarithm.

In the exponential form, a is the result,b is the base, and E is the exponent.

b) i. 0; 1; 2; 3 ii. 0; 1; 2; 3

c) i. log42 ii.

a)

b)

c)

Example 3:

a)

b)

c)

d)

e)

f)

g)

h)

Example 11:

a)

b)

c)

d)

Example 12:

a)

b)

c)

d)

Example 13:

a)

b)

c)

d) ±

Example 14:

a)

b)

c)

d)

Example 15:

a)

b)

c)

d)

Example 16:

a)

b)

c)

d)

e)

f)

g)

h)

Example 18:

a)

b)

c)

d)

e)

f)

g)

h)

see video

Example 19:

a)

b)

c)

d)

e)

f)

g)

h)

Example 20:

a)

b)

c)

d)

e)

f)

g)

h)

Page 20: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Answer KeyExponential and Logarithmic Functions Lesson Three: Logarithmic Functions

Example 1:

Example 2:

Example 3:

D: x > 0or (0, ∞)

R: y ε Ror (-∞, ∞)

A: x = 0

D: x > 0or (0, ∞)

R: y ε Ror (-∞, ∞)

A: x = 0

Example 4:

D: x > -2or (-2, ∞)

R: y ε Ror (-∞, ∞)

A: x = -2

D: x > 3or (3, ∞)

R: y ε Ror (-∞, ∞)

A: x = 3

D: x > -4or (-4, ∞)

R: y ε Ror (-∞, ∞)

A: x = -4

Example 5:

D: x > -3or (-3, ∞)

R: y ε Ror (-∞, ∞)

A: x = -3

D: x > 0or (0, ∞)

R: y ε Ror (-∞, ∞)

A: x = 0

D: x > -3or (-3, ∞)

R: y ε Ror (-∞, ∞)

A: x = -3

D: x > -2or (-2, ∞)

R: y ε Ror (-∞, ∞)

A: x = -2

D: x > 0or (0, ∞)

R: y ε Ror (-∞, ∞)

A: x = 0

D: x > 0or (0, ∞)

R: y ε Ror (-∞, ∞)

A: x = 0

D: x > 0or (0, ∞)

R: y ε Ror (-∞, ∞)

A: x = 0

D: x > 0or (0, ∞)

R: y ε Ror (-∞, ∞)

A: x = 0

D: x > 0or (0, ∞)

R: y ε Ror (-∞, ∞)

A: x = 0

D: x > 0or (0, ∞)

R: y ε Ror (-∞, ∞)

A: x = 0

D: x > 0or (0, ∞)

R: y ε Ror (-∞, ∞)

A: x = 0

a) b) c) d)

a) b) c) d)

a) b) c) d)

a) b) c) d)

Domain

Range

x-intercept

y-intercept

AsymptoteEquation

y = 2x y = log2x

x ε R

y > 0

none

(0, 1)

y = 0

x > 0

y ε R

(1, 0)

none

x = 0

5

10

-5

-5 5

f(x) = 2x

f-1(x) = log2x

a) See Graph c) See Video d) e)i) -1, ii) 0, iii) 1, iv) 2.8

b) See Graph

10

is a function.

f)y = log1x, y = log0x, and y = log-2x are not functions.

g) The logarithmic function y = logbx is the inverse of the exponential function y = bx. It is defined for all real numbers such that b>0 and x>0.

h) Graph log2x using logx/log2

Page 21: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Example 6:

D: x > 0or (0, ∞)

R: y ε Ror (-∞, ∞)

A: x = 0

D: x > 1or (1, ∞)

R: y ε Ror (-∞, ∞)

A: x = 1

D: x > 2or (2, ∞)

R: y > log34or (log34, ∞)

A: none

D: x > 0or (0, ∞)

R: y ε Ror (-∞, ∞)

A: x = 0

Example 7:

(8, 262144)

(-0.60, 0.72)

No Solution

(8, 2)

(25, 12)

(4, 3)

Example 8:

a) b) c) d)

a) x = 8 b) c) No Solution

a) x = 8 b) x = 25 c) x = 4

Example 9:a)

b) (-3, 0) and (0, 2)

c)

d)

e)

Example 10:a)

b)

c)

d)

e)

Example 11:a)

b)

c)

d)

e)

Example 12:

a) 4

b) 0.1 m

c) 31.6 times stronger

d) See Video

e) 10 times stronger

f) See Video

g) 5.5

h) 5.4

Example 13:

a) 60 dB

b) 0.1 W/m2

c) 100 times more intense

d) See Video

e) 100 times more intense

f) See Video

g) 23 dB

h) 37 dB

Example 14:

a) pH = 4

b) 10-11 mol/L

c) 1000 times stronger

d) See Video

e) pH = 2

f) pH = 5

g) 100 times more acidic

Example 15:

a) 200 cents

b) 784 Hz

c) 1200 cents separate the two notes

Answer Key

(y-axis)

Page 22: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Answer KeyTrigonometry Lesson One: Degrees and Radians Note: For illustrative purposes,

all diagram angles will be in degrees.

120°

-120°

θ

a) The rotation angle between the initial arm and the terminal arm is called the standard position angle.

Example 1:b) An angle is positive if we rotate the terminal arm counter-clockwise, and negative if rotated clockwise.

c) The angle formed between the terminal arm and the x-axis is called the reference angle.

d) If the terminal arm is rotated by a multiple of 360° in either direction, it will return to its original position. These angles are called co-terminal angles.

e) A principal angle is an angle that exists between 0°and 360°.

f) The general form of co-terminal angles is θc = θp + n(360°) using degrees, or θc = θp + n(2π) using radians.

420° 60°

45°,405°, 765°, 1125°, 1485°

45°, -315°, -675°, -1035°, -1395°

57.3°

Example 2:

150°

30°

a) i. One degree is defined as 1/360th of a full rotation.

ii. One radian is the angle formed when the terminal arm swipes out an arc that has the same length as the terminal arm. One radian is approximately 57.3°.

iii. One revolution is defined as 360º, or 2pi. It is one complete rotation around a circle.

b) i. 0.40 rad ii. 0.06 rev iii. 148.97° iv. 0.41 rev v. 270° vi. 4.71 rad c) i. 0.79 rad ii. π/4 rad

Conversion Multiplier Reference Chart

degree radian revolution

degree

radian

revolution

π180°

π180°

2π1 rev

2π1 rev

1 rev

360°

1 rev

360°

Example 3: a) 3.05 rad b) 7π/6 rad c) 1/3 rev d) 143.24° e) 270° f) 4.71 rad g) 1/4 rev h) 180° i) 6π rad

30° =

45° =

60° =

0° =

330° =

315° =

300° =

90° =

= 270°

= 120°

= 135°

= 150°

= 180°

= 210°

= 225°

= 240°

360° =

Example 4:

210°

30°θ

-260°

80°

θ

304°

θ

56°

135°

θ45°

309°

51°

θ

Example 5:a) θr = 30° b) θr = 80° c) θr = 56°

(or 0.98 rad)d) θr = 45°(or π/4 rad)

e) θr = 51°(or 2π/7 rad)

120°

θ

60°156°

θ24°

225°

θ45°

210°

θ30°

Example 6:a) θp = 210°, θr = 30° b) θp = 225°, θr = 45° c) θp = 156°, θr = 24° d) θp = 120°, θr = 60°

(or θp = 2.72, θr = 0.42) (or θp = 2π/3, θr = π/3)

Example 7:

a) θ = 60°, θp = 60° b) θ = -495°, θp = 225°

c) θ = 675°, θp = 315° d) θ = 480°, θp = 120°

θc = -855°, -135°, 225°, 585°θc = -300°, 420°, 780° Example 8:a) θp = 93° b) θp = 148° c) θp = 144° d) θp = 330°

(or 2.58 rad) (or 4π/5 rad) (or 11π/6 rad)

Example 9:a) θc = 1380° b) θc = -138π/5 c) θc = 20° d) θc = 2π/3

60°

225°

θc = -45°, 315° θc = -960°, -600°, -240°, 120°,840°, 1200°(or θc = -0.785, 5.50)

(or θc = -16π/3,-10π/3, -4π/3, 2π/3, 14π/3, 20π/3)

120°

315°

93°

148° 144°

330°

Page 23: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Example 10:a) θp = 112.62°, θr = 67.38° b) θp = 303.69°, θr = 56.31°

Example 11:a) sinθ: QI: +, QII: +, QIII: -, QIV: -b) cosθ: QI +, QII: -, QIII: -, QIV: +c) tanθ: QI +, QII: -, QIII: +, QIV: -d) cscθ: QI: +, QII: +, QIII: -, QIV: -e) secθ: QI +, QII: -, QIII: -, QIV: +f) cotθ: QI +, QII: -, QIII: +, QIV: -g) sinθ & cscθ share the same quadrant signs.cosθ & secθ share the same quadrant signs.tanθ & cotθ share the same quadrant signs

Example 12: a) i. QIII or QIV ii. QI or QIV iii. QI or QIII b) i. QI ii. QIV iii. QIII c) i. none ii. QIII iii. QI

-12

-513

22.62°202.62°

θ

73

154.62°

25.38°

θ

Example 13:a) θp = 202.62°, θr = 22.62° b) θp = 154.62°, θr = 25.38°

(or θp = 3.54 rad, θr = 0.39 rad) (or θp = 2.70 rad, θr = 0.44 rad)

Example 14:

-2

3

33.69°

326.31°

θ

4

-35

323.13°

36.87°

θ

a) θp = 323.13°, θr = 36.87° b) θp = 326.31°, θr = 33.69°

Example 15:

If the angle θ could exist in either quadrant ___ or ___ ...

The calculator alwayspicks quadrant

I or III or IIII or IVII or IIIII or IVIII or IV

IIIIIIVIV

a)

b) Each answer is different because the calculator is unawareof which quadrant the triangle is in. The calculator assumesMark’s triangle is in QI, Jordan’s triangle is in QII, and Dylan’striangle is in QIV.

Example 16:a) The arc length can be found by multiplying the circumference by the sector percentage. This gives us:a = 2πr × θ/2π = rθ.b) 13.35 cmc) 114.59°d) 2.46 cme) n = 7π/6

Example 17:a) The area of a sector can be found by multiplying the area of the full circle by the sector percentage to get the area of the sector.This gives us:a = πr2 × θ/2π = r2θ/2.b) 28π/3 cm2

c) 3π cm2

d) 81π/2 cm2

e) 15π cm2

Example 18:a) 600°/sb) 0.07 rad/sc) 1.04 kmd) 70 rev/se) 2.60 rev/s

Example 19:a) π/2700 rad/sb) 468.45 km

θ-5

1312

112.62°

67.38°2

-356.31°

θ

303.69°

Answer Key

Page 24: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Answer KeyTrigonometry Lesson Two: The Unit Circle

Example 1:

-10

10

10 -10

10

10

(0.6, 0.8)

(0.5, 0.5)

a) i. ii. b) i. Yes ii. No

Example 2: See Video.

a)Example 3: b) -1 c)

d) e) 0 f) 0 g) h)

a)Example 4: b) 1 c)

d) e) -1 f) g) h)

, , , ,

, , , ,

Example 5:

a)

b)

, , , ,

, , , ,

Example 6:

a)

b)

Example 7: See Video.

Example 8:

a) -2 b) undefined c) d) e) f) -1 g) 0 h)

Example 9:

a) b) 1 c) d)

Example 10:

a) 1 b) c) d)

Example 11:

a) -1 b) c) undefined d) undefined

Example 12: See Video.

Example 13:a) P(π/3) means "point coordinates at π/3".

b) c)

d) e) P(3) = (-0.9900, 0.1411)

Example 14:a) C = 2π b) The central angle and arc length of

the unit circle are equal to each other.c) a = 2π/3 d) a = 7π/6

Example 15:a) The unit circle and the line y = 2do not intersect, so it's impossible for sinθ to equal 2.

y = 2

b)

cosθ & sinθ

cscθ & secθ

tanθ & cotθ

Range Number Line

10-1

10-1

10-1

c) d) 53.13°, 302.70° e)

Example 16:a) Inscribe a right triangle with side lengths of |x|, |y|, and a hypotenuse of 1 into the unit circle. We use absolute values because technically, a triangle must have positive side lengths. Plug these side lengths into the Pythagorean Theorem to get x2 + y2 = 1.

|x|

|y|1

b) Use basic trigonometric ratios (SOHCAHTOA)to show that x = cosθ and y = sinθ. c) θp = 167.32°, θr = 12.68°

Example 17:a) (167, 212) b) (-792, 113)

Example 18:a) See Video b) 160 m

c) i. ii.

iii. y = 0 iv.

Page 25: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Answer KeyTrigonometry Lesson Three: Trigonometric Functions I

Example 1:a) (-5π/6, 3), (-π/6, -4), (7π/6, 1) b) (-3π/4, -12), (π/4, 16), (7π/4, -8) c) (-6π, 8), (-2π, -8), (4π, -4) d) (-3π, 10), (3π/2, -30), (5π/2, -20)

Example 2: a) y = sinθ b) a = 1 c) P = 2πd) c = 0 e) d = 0 f) θ = nπ, nεI g) (0, 0)h) Domain: θ ε R, Range: -1 ≤ y ≤ 1

π2

3π2

0 π 2ππ2

π3π2

-1

22

32

12

12

22

32

1

π6

π4

π3

3π4

2π3

5π6

7π6

5π4

4π3

5π3

7π4

11π6

π6

π4

π3

2π3

3π4

5π6

7π6

5π4

4π3

5π3

7π4

11π6 θ

y

Example 3: a) y = cosθ b) a = 1 c) P = 2πd) c = 0 e) d = 0 f) θ = π/2 + nπ, nεI g) (0, 1)h) Domain: θ ε R, Range: -1 ≤ y ≤ 1

π2

3π2

0 π 2ππ2

π3π2

-1

22

32

12

12

22

32

1

π6

π4

π3

3π4

2π3

5π6

7π6

5π4

4π3

5π3

7π4

11π6

π6

π4

π3

2π3

3π4

5π6

7π6

5π4

4π3

5π3

7π4

11π6 θ

y

π 2ππ2π π6

π4

π3

3π4

2π3

5π6

7π6

5π4

4π3

5π3

7π4

11π6

π6

π4

π3

2π3

3π4

5π6

7π6

5π4

4π3

7π4

11π6 θ

y

3

-3

1

-1

3π2

π2

3π2

π2

3

33

3

33

5π3

Example 4: a) y = tanθ b) Tangent graphs do not have an amplitude. c) P = π d) c = 0 e) d = 0 f) θ = nπ, nεIg) (0, 0) h) Domain: θ ε R, θ ≠ π/2 + nπ, nεI, Range: y ε R

Example 5:

a)

b)

Example 6:

c)

d)

a) b)Example 8: -c) d) 5

c) d)

a) b)

0

-5

5

2π0

-5

5

0

-5

5

2π0

-5

5

0

-5

5

2π0

-5

5

2π2π0

-5

5

0

-5

5

Example 7:

c) d)a) b)

Example 9:

c) d)a) b)

0

-1

1

2ππ0

-1

1

2ππ0

-1

1

6π2π 4π0

-1

1

10π8π6π4π2π

Page 26: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Answer KeyExample 10:

a) b)

2π-2π π-π

-1

1

2π-2π π-π

-12

12

6

-6

c) d)

2π-2π π-π

-3

3

1

-1

-2

2

0

-1

1

6π2π 4π

a) b)

Example 11:

c) d)

4π-4π 2π-2π

-1

1

-4π 2π-2π

-1

1

2π-2π π-π

-1

1

-2π π-π

-4

4

Example 12:

a) b)

c) d)

2πππ2

-1

1

6π-2π 4π2π

-1

1

4π2π-π

2

1

-1

Example 13:

a) b)

c) d)

2π-2π π-π

4

a) b)

Example 14:

c) d)

0

-5

5

6π2π 4π0

-1

1

2ππ

0

-5

5

2ππ0

-6

6

2ππ

Example 15:

a) b)

c) d)

Example 16:

a) b)

Page 27: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Answer Key

π2

3π2

0 π 2ππ2

π3π2

2π π6

π4

π3

3π4

2π3

5π6

7π6

5π4

4π3

5π3

7π4

11π6

π6

π4

π3

2π3

3π4

5π6

7π6

5π4

4π3

5π3

7π4

11π6 θ

y

3

2

-3

22

33

-2

233

2

1

-1

π 2ππ2π π6

π4

π3

3π4

2π3

5π6

7π6

5π4

4π3

5π3

7π4

11π6

π6

π4

π3

2π3

3π4

5π6

7π6

5π4

4π3

5π3

7π4

11π6 θ

y

3

-3

1

-1

3π2

π2

3π2

π2

3

3

33

33

π2

3π2

0 π 2ππ2

π3π2

2π π6

π4

π3

3π4

2π3

5π6

7π6

5π4

4π3

5π3

7π4

11π6

π6

π4

π3

2π3

3π4

5π6

7π6

5π4

4π3

5π3

7π4

11π6 θ

y

3

2

-3

22

33

-2

233

2

1

-1

Example 17: a) y = secθ b) P = 2π c) Domain: θ ε R, θ ≠ π/2 + nπ, nεI; Range: y ≤ -1, y ≥ 1d) θ = π/2 + nπ, nεI

Example 18: a) y = cscθ b) P = 2π c) Domain: θ ε R, θ ≠ nπ, nεI; Range: y ≤ -1, y ≥ 1d) θ = nπ, nεI

Example 19: a) y = cotθ b) P = π c) Domain: θ ε R, θ ≠ nπ, nεI; Range: yεRd) θ = nπ, nεI

Example 20:

Domain: θ ε R, θ ≠ π/2 + nπ, nεI;(or: θ ε R, θ ≠ π/2 ± nπ, nεW) Range: y ≤ -1/2, y ≥ 1/2

Domain: θ ε R, θ ≠ n(2π), nεI;(or: θ ε R, θ ≠ ±n(2π), nεW) Range: y ε R

Domain: θ ε R, θ ≠ π/4 + nπ/2, nεI;(or: θ ε R, θ ≠ π/4 ± nπ/2, nεW) Range: y ≤ -1, y ≥ 1

Domain: θ ε R, θ ≠ π/4 + nπ, nεI;(or: θ ε R, θ ≠ π/4 ± nπ, nεW) Range: y ≤ -1, y ≥ 1

0 2π2π θ

y

-3

3

0 2π2π θ

y

-3

3

0 2π2π θ

y

-3

3

a)

0

-3

3

2ππ

b)

0

-3

3

2ππ 0

-3

3

2ππ

d)c)

0

-3

3

2ππ

Page 28: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Answer KeyTrigonometry Lesson Four: Trigonometric Functions II

Example 1:

-2

2

π 2π 3π θ

y

1

-1

-2

2

180º θ

y

1

-1

360º 540º

a) b)

-2

2

t

h

1

-1

15 30 45 60

-2

2

x

y

1

-1

88 16 24

Example 2:

a) b)

-26

4 8

y

x

-24-22-20-18-16-14-12-10-8-6-4-2

1 2 3 5 6 7

x-225-200 -150

-175 -125 -75 -25-100 -50

025

50 10075 125 175

150 200 250225 275

25

50

75y

Example 3:

a) b)

-8

y

x

-6-4-202468

10121416

120110100908070605040302010

1820

y

x

2

54321-1-2-3

468

101214161820

Example 4:

a) b)

Example 5:

a)

b)

c)

d)

Example 6:

a)

b)

c)

d)

5e)

Example 7:

a)

b)

c)

d)

Example 8:

a) b) The b-parameter is doubled when the period is halved. The a, c, and d parameters remain the same.

c) The d-parameter decreases by 2 units, giving us d = 4. All other parameters remain unchanged.

Page 29: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Answer Key

t

h(t)

5 10

45

75

105

Example 9:

a)

b) c) If the wind turbine rotates counterclockwise, we still get the same graph.

Example 10:

a)

θ

h(θ)

90°

c) The angle of elevation increases quickly at first, but slows down as the helicopter reaches greater heights. The angle never actually reaches 90°.

b) ,

Example 11:

a)

b) c) 2.86 m

Example 12:

a)

c) 28.14 mb)

t

h(t)

5.2

4.0

2.8

1 2

t

h(t)

0 25 50 75 100 125 150 175 200

1

16

31

d) 0.26 s

Example 13:

b)

d) 15.86 h

n

d(n)

-50 0 50 100 150 200 250 300 350 400

4

8

12

16

20

24

( ) ( )2

5.525cos 11 12.295365

d n nπ = − + +

c)

a) Decimal daylight hours: 6.77 h, 12.28 h, 17.82 h, 12.28 h, 6.77 h

e) 64 days

Example 14:

b)

d) 10.75 m

a) Decimal hours past midnight: 2.20 h, 8.20 h, 14.20 h, 20.20 h

e) 32.3%

t

h(t)

4

8

12

16

0 4 8 12 16 20 24

c)

Population

Time(years)

200

250

300

8000

12000

16000

1 2 3 4 5 60

Mic

eO

wls

7 8

M(t)

O(t)

Example 15:

a) b) See Video.

Example 16: 2.5 m

Example 17: 15.6 s and 18.3 s

t

h(t)

1.5

15

3.0

30 45 60

(8, 2.5)

t

h(t)

10

15

19

30 45 60

(18.3, 13.1)

1

(15.6, 10.5)

d) 26.78 s

Page 30: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Answer KeyTrigonometry Lesson Five: Trigonometric Equations

Example 1:

b) , c) d)

Note: n ε I for all general solutions.

Example 2:

-1

1

2ππ

-1

1

2ππ

-1

1

2ππ

Example 3:

360°

90°

180°

270°

30°30°

30°150°

360°

90°

180°

270°

30°

150°

30°

210°

360°

90°

180°

270°

45°

45°

45°

225°

Intersection point(s)of original equation

-3

3

-2

-1

2

1

2ππ

θ-intercepts

-3

3

-2

-1

2

1

2ππ

-3

3

-2

-1

2

1

2ππ

Intersection point(s)of original equation

-3

3

-2

-1

2

1

2ππ

θ-intercepts

Example 4:

b)

,a)

a) b) c)

d) no solution e) f)

-2

2

2ππ

1

-1

3

-3

-2

2

2ππ

1

-1

3

-3-2

2

1

-1

2ππ

a) b) c)

a)

Page 31: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Answer KeyExample 5:

60°

60°

120°

240°

-3

3

-2

-1

2

1

2ππ

-3

3

-2

-1

2

1

2ππ

Example 6:

a) 197.46° and 342.54° b) 197.46° and 342.54° c) 197.46° and 342.54° d) 197.46° and 342.54°

17.46°

197.46°

17.46°

342.54°

-3

3

-2

-1

2

1

2ππ

-3

3

-2

-1

2

1

2ππ

The unit circle is not useful for this question.

Example 7:

Example 8:

a) No Solution b) c)

d) e) f)

-2

2

1

-1

2ππ

-2

2

1

-1

2ππ

-2

2

2ππ

1

-1

-2

2

2ππ

1

-1

-2

2

2ππ

1

-1

-2

2

2ππ

1

-1

a) b) c) d)

a) b) c)

Page 32: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Answer Key

Intersection point(s)of original equation θ-intercepts

Intersection point(s)of original equation θ-intercepts

Example 10:

b)a) No Solution

-3

3

-2

-1

2

1

2ππ

-3

3

-2

-1

2

1

2ππ

-3

3

-2

-1

2

1

2ππ

-3

3

-2

-1

2

1

2ππ

Example 11:

a) b) c) d)

30°

210°

30°

330°

-3

3

-2

-1

2

1

2ππ

-3

3

-2

-1

2

1

2ππ

Example 12:

a) b) c) d)

115°

245°

65°65°

The unit circle is not useful for this question.

-3

3

-2

-1

2

1

2ππ

-3

3

-2

-1

2

1

2ππ

Example 13:

a) b) d)c)

360°

90°

180°

270°

60°60°

60°120°

360°

90°

180°

270°

60°

60°

240°

60°

Example 9:

a) b) c)

360°

90°

180°

270°

60°

60°

120°

240°

Page 33: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Answer KeyExample 14:

-1

1

2ππ

-1

1

2ππ

-1

1

2ππ

-1

1

2ππ

Example 15:

a) b) c) d)

-1

1

2ππ

-1

1

2ππ

-3

3

-2

-1

2

1

2ππ

-1

1

2ππ

Example 16:

a) b) c)

-3

3

-2

-1

2

1

2ππ

-3

3

-2

-1

2

1

2ππ

-3

3

-2

-1

2

1

2ππ

Example 17:

a) b) a) b)

Example 18:

Example 19:

1.00

28147 210

0.50

t

Visible %

a)

b) Approximately 12 days.

Example 20: a)

b) See graph. c) 0.4636 rad (or 26.6°)

-8

8

2πππ2

3π2

4

-4

θ

d

0.4636

2

Example 21: See Video

a) b) c) d)

-1

1

2ππ

-1

1

π2

π 2π3π2

-1

1

4π2ππ 3π

-1

1

8π4π2π 6π

Page 34: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Answer KeyTrigonometry Lesson Six: Trigonometric Identities I

Example 1:

Note: n ε I for all general solutions.

Example 2:

Example 3:

a) b)

Example 4:

a) b) -1

1

2ππ

-1

1

2ππ

-1

1

2ππ

-1

1

2ππ

Example 5:

,a) b)

c) d)

Identity

-3

3

-2

-1

2

1

2ππ

Equation

-3

3

-2

-1

2

1

2ππ

-1

1

2ππ

-3

3

2ππ

-2

-1

2

1

-3

3

2ππ

-2

-1

2

1

-3

3

-2

-1

2

1

2ππ

-3

3

-2

-1

2

1

2ππ

a)

a)

b) i) ii) iii) iv) v)

Not an Identity Not an Identity Identity Identity

-1

1

2ππx

1Use basic trigonometry(SOHCAHTOA) to showthat x = cosθ and y = sinθ.

b) Verify that the L.S. = R.S. for each angle.

c) The graphs of y = sin2x + cos2x and y = 1 are the same.

d) Divide both sides ofsin2x + cos2x = 1 bysin2x to get 1 + cot2x = csc2x.Divide both sides ofsin2x + cos2x = 1 bycos2x to get tan2x + 1 = sec2x.

e) Verify that the L.S. = R.S. for each angle.

f) The graphs of y = 1 + cot2x and y = csc2x are the same.

-3

3

2ππ

-2

-1

2

1

-3

3

2ππ

-2

-1

2

1

The graphs of y = tan2x + 1 and y = sec2x are the same.

-3

3

2ππ

-2

-1

2

1

-1

1

2ππ

-3

3

2ππ

-2

-1

2

1

-3

3

2ππ

-2

-1

2

1

Not an Identity

Page 35: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Answer KeyExample 6:

a) b)

c) d)

-1

1

2ππ

-1

1

2ππ

Example 7:

a) b)

c) d)

-3

3

2ππ

-2

-1

2

1

-3

3

2ππ

-2

-1

2

1

-3

3

2ππ

-2

-1

2

1

-3

3

2ππ

-2

-1

2

1

0

2

2ππ

1

-1

1

2ππ

Example 8:

a) b)

c) d)

-3

3

2ππ

-2

-1

2

1

-3

3

2ππ

-2

-1

2

1

-3

3

2ππ

-2

-1

2

1

-3

3

2ππ

-2

-1

2

1

Page 36: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Answer KeyExample 9: See Video Example 10: See Video Example 11: See Video

Example 12:

a) See Video

b)

c)

d)

Example 13:

a) See Video

b)

c)

d)

Example 14:

a) See Video

b)

c)

d)

-1

1

2ππ

-3

3

2ππ

-2

-1

2

1

-3

3

2ππ

-2

-1

2

1

Example 15:

Example 16:

a) b)

c) d)

, ,

, ,

-3

3

2ππ

-2

-1

2

1

-3

3

2ππ

-2

-1

2

1

-6

6

2ππ

-4

-2

4

2

-1

1

2ππ

a) b)

c) d)

, ,

, ,

-3

3

2ππ

-2

-1

2

1

-10

10

2ππ

-1

1

2ππ

-2

2

2ππ

Note: All terms from the originalequation were collected on theleft side before graphing.

The graphs are identical.

The graphs are NOT identical.The R.S. has holes.

The graphs are identical.

Page 37: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Answer KeyExample 17:

a) b)

c) d)

, ,

, ,

-10

10

2ππ

-3

3

2ππ

-2

-1

2

1

1

2ππ

-1

-12

-9

-6

3

02ππ

-3

Note: All terms from the original equation were collected on the left side before graphing.

Note: All terms from the original equation were collected on the left side before graphing.

Example 18:

74

-3

-2

7

a) b) c)

Example 19: See Video

Page 38: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Answer KeyTrigonometry Lesson Seven: Trigonometric Identities II

Example 1:

Note: n ε I for all general solutions.

Example 2: Example 3:

a) b) c) d) See Video

Example 4: Example 5: See Video

Example 6:

a) i. ii. 0 iii. undefined

b) (answers may vary)

ii.

iii.

iv.

i.

c) (answers may vary)

ii.

iii.

iv.

i.

Examples 7 - 13: Proofs. See Video.

Example 14:

a)

b)

c)

d)

Example 15:

a)

b)

c)

d)

Example 16:

a)

b)

c)

d)

Example 17:

a)

b)

c)

d)

Example 18: 57°

Example 19: 92.9

Example 20:

a)

d

θ

132.2

-132.2

90° 180° 270° 360°

b)

c) θ = 24.6° and θ = 65.4°

Example 21:

a)

b)

c) i. ii. iii.

A

θ

4900

90°45°

At 0°, the cannonball hits the ground as soon as it leaves the cannon, so the horizontal distance is 0 m.

At 45°, the cannonball hits the ground at the maximum horizontal distance, 132.2 m.

At 90°, the cannonball goes straight up and down, landing on the cannon at a horizontal distance of 0 m

The maximum area occurs when θ = 45°. At this angle, the rectangle is the top half of a square.

0

-6

6

2ππ

y = f(θ) + g(θ)

ii. The waves experience constructive interference. iii. The new sound will be louder than either original sound.

0

-6

6

2ππ

y = f(θ) + g(θ)

ii. The waves experience destructive interference.iii. The new sound will be quieter than either original sound.

All of the terms subtract out leaving y = 0, A flat line indicating no wave activity.

Example 22:

a) i. b) i.

c)

Example 23: See Video. Example 24: See Video.

a) b) c) d) e) f)

a) b) c)

a) b) c)

Page 39: Math 30-1: Answer Keymath30.ca/.../workbook_Key/Math30-1_Answer_Key.pdf · Answer Key Polynomial, Radical, and Rational Functions Lesson Three: Polynomial Factoring Example 1: a)

www.math30.ca

Answer KeyPermutations and Combinations Lesson One: Permutations

Example 1:a) Six words can be formed. b) 3 × 2 × 1 = 6 c) 3P3 d) See Video e) 3P1 + 3P2 + 3P3Example 2: a) 24 b) 1 c) 1 d) (-2)! Does not exist.e) 20 f) 4 g) n2 – n h) n2 + nExample 3: a) 120 b) 24 c) 720 d) 13!Example 4: a) 3 b) 415800 c) 12600 d) 20 e) 60 f) 10Example 5: a) 8 b) 16 c) 1296 d) 32 × 106 e) 676 000Example 6: a) 120 b) 48 c) 480 d) 108Example 7: a) 24 b) 18 c) 12 d) 18 e) 3 f) 6Example 8: a) 103 680 b) 240 c) 120 d) 144Example 9: a) 72 b) 420 c) 1440Example 10: a) 156 b) 1440 c) 20 d) 144 e) 72Example 11: a) 24 b) 1320 c) 5P2 d) 3P2 or 3P3Example 12: a) n = 6 b) n = 2 c) n = 5 d) n = 1Example 13: a) n = 8 b) r = 3 c) n = 2 d) n = 5

Permutations and Combinations Lesson Two: Combinations

Example 1:a) The order of the colors is not important.b) 6 c) 4C2 d) See Video e) 4C3 + 4C4Example 2: a) 10 b) 126 c) 2598960 d) 36; 84Example 3: a) 13860 b) 720 c) 580008 d) 60Example 4: a) 330 b) 70 c) 1680 d) 19600 e) 13244Example 5: a) 3600 b) 180 c) 75600Example 6: a) 66 b) 84 c) 70 d) 9Example 7: a) 15 b) 20Example 8: a) 81 b) 2594400 c) 2533180 d) 405 e) 31Example 9: a) 21 b) 1 c) 6 d) 6C2 e) 5C1Example 10: a) n = 7 b) 4C2 c) n = 5 d) n = 6Example 11: a) n = 4 b) All n-values c) n = 4 d) n = 4Example 12: a) 6760000 b) 40 c) 1645020 d) 144e) See Video f) 84 g) 504 h) 32Example 13: a) 16!/(2!)8 b) 10 c) 1800 d) 56e) 120 f) 5040 g) 241098 h) 15Example 14: a) 10080 b) 5 c) 8 d) 9e) 92 f) 360 g) 241920 h) 6600Example 15: a) 210 b) 720 c) 5148 d) 131560e) 1024 f) 5 g) 14400 h) 123552Example 16: a) 20 b) See Video c) 100 d) 1152e) n = 8 f) 56 g) See Video h) 36

Permutations and Combinations Lesson Three: The Binomial Theorem

Example 1:a) The eighth row of Pascal's Triangle is: 1, 7, 21, 35, 35, 21, 7, 1.b) See Video. Note that rows and term positions use a zero-based index.c) There is symmetry in each row. For example, the second position of the sixth row is equal to the second-last position of the same row.

Example 2:a) 8C0; 12C10b) 21C2 = 210c) k = 3 and 8, so the fourth and ninth positions have a value of 165.d) 1024

Example 3:a) 20b) 120c) 66d) 54

Example 4:a) The binomial theorem states that a binomial power of the form (x + y)n can be expanded into a series of terms with the form nCkx

n-kyk, where n is the exponent of the binomial (and also the zero-based row of Pascal's Triangle), and k is the zero-based term position.

b)

c)

Example 5:

a)

b)

c)

Example 6:

a)

b)

c)

Example 7:

a)

b)

c)

Example 8:

a)

b)

c)

d)

3

Example 9:

a)

b)

c)

Example 10:

a)

b)

c)