lockheed martin challenge avionics systems irp presentation, spring 2009

61
Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Upload: shauna-page

Post on 01-Jan-2016

221 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Lockheed Martin ChallengeAvionics Systems IRP

Presentation, Spring 2009

Page 2: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Problem Statement– Problem Statement  

Current UAV technology is not capable of launching vertically using a rail launch system into the atmosphere.  As such, current UAV’s are not suitable for use for urban operations as they must be launched away from the urban setting due to obstacles.  This presents problems for certain missions that could be assisted by UAV technology.   

 

Page 3: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Need Statement– Need Statement

The Iowa State LM Challenge Team has been asked to design an unmanned autonomous aerial vehicle to take off from a vertical or near-vertical pneumatic launch system within the confines of an urban environment.  This vehicle will be used to fly low altitude reconnaissance missions and will be retrieved using a standard belly landing outside the target environment.

 

Page 4: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

System Block Diagram

Page 5: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Operating Environment

– Expected to perform in an urban setting, necessitating special considerations for Line of Sight and obstacles. 

– Aircraft is designed to use a vertical pneumatic launch system to avoid obstacles presented by urban areas. C

– Choice of optics was driven by a need to protect the sensitive electronics from damage upon launch, during flight, and upon landing.

Page 6: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Deliverables– Avionics package capable of autonomous navigation of aircraft using user-defined flightplan

– Camera system capable of 6” target resolution at 100’

– Operational range of 1 mile for video transmission

– Components integrated for a pneumatically-assisted vertically-launched aircraft

Page 7: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Schedule

Page 8: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Work Breakdown

First Semester Second Semester TotalAdam Jacobs 124 234 358Mike Plummer 126 225 351Ronald Teo 103 218 321Dan Stone 128 163 291Rob Gaul 95 145 240Totals 576 985 1561

Page 9: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Autopilot

Page 10: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Autopilot Requirements

– Be capable of autonomously navigating an aircraft using pre-programmed waypoint navigation

– Support communication with a ground station to display telemetry and position data

Page 11: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Technical Challenges

– Complexity and time constraints promoted purchase of a commercial autopilot system

– Immense G-loads during launch saturate sensors ( > 20 G )

– Maintaining vertical orientation throughout launch phase 

– Integrating into custom aircraft

Page 12: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Key Considerations

– Ground Station software– Sensors to aid in launch– Error handling– Size and weight– Power consumption– Available technical support– Customization capabilities– Ability to handle additional sensors– RC override

Page 13: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Market Survey

These three products satisfy the functional requirements of our system and were deemed as finalists for selection based on their relative merits along with our final selection

– Procerus Kestral– High power consumption

– Cloudcap Piccolo– Large, heavy, and power hungry

– O Navi Phoenix/AX– No ground station or onboard software included

Page 14: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Autopilot Selected ModelMicroPilot 2128

– Support for additional sensors increases our chances of safe and reliable launch and recovery

– MicroPilot has demonstrated excellent service and support 

– HORIZON software provides excellent ground station as well as easy configuration of autopilot

– RC override provides us with the option for manual launch.

Page 15: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Onboard Radio Modem

– 9Xtend-PKG OEM– Plug-and-play for basic operation with other 9Xtend modems– Very lightweight– Demonstrated compatibility with our autopilot

Page 16: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Video Subsystem

Page 17: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Requirements

– Shall provide real-time video to ground station– Shall operate in an urban environment– Shall be capable of resolving a 6 inch target from an altitude of 100 feet

– Shall be a fixed-position camera– Shall be designed to enable a modular payload system

Page 18: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

– CMOS Cameras– Small, lightweight– Low quality

– Industrial “Box” Cameras– High quality image, cheap– Heavy, large

– Pan-Tilt-Zoom Cameras– Flexible, high quality image– Heavy, large, expensive

Camera Alternatives

Page 19: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Camera Selection: KT&C model KPC-650

– Exceeds resolution requirements– Demonstrated ability to perform in UAV’s– Varifocal auto-iris lens used– NTSC video output– Relatively low-cost, easy to replace

Page 20: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Camera Resolution

Image of a round 6 inch target (highlighted in red) from a distance of 100 feet

Page 21: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Video Transmitter– Must be robust in environments with RF interference

– Must not interfere with other aircraft systems

– Direct line-of-sight (LOS) often not possible in an urban environment, reducing transmission range

– FCC regulations limit RF transmissions for civilians (maximum of 1 Watt)

– A transmitter of 1 Watt requires a Technician Class radio license to operate

Page 22: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Video Transmitter: Compensating for Interference– Due to obstructions in an urban environment, weather conditions, and altitude, it can be difficult to maintain signal contact 

– Other EM sources present in the area further degrade and interfere with the signal

– Interference is offset by increased transmission power

– To complement transmitter power we utilize a directional antenna to increase reception range

Page 23: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Video Transmitter Selection: LawMate TM-241800

– Chosen for maximum allowable power and small size– Demonstrated ability to work in UAV’s– Accepts video data in composite NTSC format– Readily compatible with our camera

– Utilizes a 12V power source, simplifying onboard power requirements

Page 24: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Video Receiver

– Receiver is subject to less restrictive size, weight, and power limitations

– Must operate in the 2.4GHz band to receive video signal from selected video transmitter

– Easy output to the display was also a consideration

Page 25: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Video Receiver Selection: LawMate RX-2480B

– Chosen for portability and compatibility with our transmitter– Includes rechargeable battery – simplifies testing– Supports reception on 8 channels to avoid signal conflicts– Provides output in standard composite video format

Page 26: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

DC-DC Converter

– Major Onboard System Power Requirements

Component Current Rating Voltage Rating

Video Camera 180 mA 12 Vdc

Video Transmitter 500 mA 12 Vdc

Autopilot Core 160 mA @ 6.5 Vdc 4.2 – 27 Vdc

Radio Modem 730 mA 4.75 – 5 Vdc

Voltage Level Total Estimated Current

Total Estimated Power

12 Vdc 680 mA 8.16 W

5 Vdc 817 mA 4.085 W

Page 27: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

DC-DC Converter

– Murata Power Solutions TMP-5/5-12/1-Q12-C– Provides +5 and ±12 V outputs– Can supply up to 25 Watts– Small and lightweight compared to alternatives

Page 28: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Layout Technical Challenges

– Size and weight– Relative positions of components– Proximity of antennas, RC control, and transmitters

– Extreme stresses of launch phase– Modularity

Page 29: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Layout

Page 30: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Layout

Page 31: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Layout

Page 32: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Ground Station Radio Modem

– Xtend-PKG– Plug-and-play operation with our ground station– Demonstrated compatibility with our ground station software– Same vendor and model as onboard radio modem– Size and weight less of an issue at ground station

Page 33: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Ground Station and User Interface

– Requirements– Ability to communicate with and control autopilot– Ability to display real-time video feed– Mobile

Page 34: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Ground Station and User Interface

– Components– Driven by onboard component selection– Laptop Computer– Able to run HORIZON software package– Able to interface with Xtend-PKG radio modem

– Portable Television– Able to interface with LawMate RX-2480B video receiver– Able to accept input from video storage device

Page 35: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Ground Station and User Interface

– HORIZON Software Package– Satisfies communication, control and telemetry display requirements

– Designed by autopilot manufacturer for use with our chosen autopilot system, ensuring compatibility and reliability 

Page 36: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

HORIZON Software Package

Page 37: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Measured Performance

Avionics Endurance: -1400 mAh battery-Using NiMH for testing for safety concerns; LiPo would yield higher power capacity- Tested endurance = 45 minutes

Radio Modem Transmission Range: -Range tests have demonstrated reliable communication to a minimum of 0.44 miles within an urban environment.-Further range necessitates more powerful transmitter

Project Requirements: Endurance – 2 hours is a desired max, 1 hour minimum

Range – Desired to be >= 1 mile

Video Transmission Range: -Range tests confirm reliable reception to a minimum of 0.33 miles

Page 38: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Testing

Page 39: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Integration and Test Issues

– Integration– Autopilot configuration to aircraft, configuration of sensors, integrating RC control with autopilot

–  Test– FCC & FAA regulations– Time frame, lack of trained pilot on avionics team– Safety and legal issues prevent testing in target environment

Page 40: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Autopilot Testing

– Autopilot–  Successful test of endurance–  Successful test of communication system–  Successful test of operation and sensor functionality–  Configured Yaw and Pitch PID loops

Page 41: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Autopilot Testing

Page 42: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Autopilot Testing

Continual, increasing downward pitch.  Maximum travel of pitch: 83 degrees

Increasing downward pitch with correction.  Maximum travel of pitch: 20 degrees

Overcompensation leading to upward pitch.  Maximum travel of pitch: 24 degrees

Page 43: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Video Subsystem Testing

– Video System–  Successful test of endurance–  Successful test of range–  Successful test of quality–  Successful flight test of video system

Page 44: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Acceleration Data Logger– Problem Statement  

The launch team requires an accelerometer capable of recording acceleration data to test and analyze operation of the launch system.  A customized system capable of withstanding and measuring high acceleration is needed. The system also needs to be able to fit into a confined cylindrical tube.

 

Page 45: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

System Testing– Test Done– Successfully tested hardware– Successfully validated accelerometer readings

– Test Issues– SPI communication between BS2 and accelerometer is not  exact

Page 46: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Future Accelerometer Development

– Remanufacture PCB to support additional hardware

Page 47: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

What comes next?– Further testing and configuration of autopilot– Finish calibrating PID loops

– Rework wiring and layout to save weight and space– Develop flight plans for specific missions and test for reliability

Page 48: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Demonstrations

Page 49: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Questions?

Page 50: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Specifications Appendix

Page 51: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Physical Characteristics MicroPilot

Weight 28 g

Dimensions (L x W x H) 100 mm x 40 mm x 15 mm

Power Requirements 140 mA @ 6.5 Volts

Supply Voltage 4.2 – 26 V

Separate supplies for main and servo power Yes

Functional Capabilities

Includes Ground Station software Yes

Max # of Waypoints 1000

In-flight waypoint modification possible Yes

GPS Update Rate 1 Hz

Number of servos 24

Sensors

Airspeed Yes, up to 500 kph

Altimeter Yes, up to 12000 MSL

3-axis Rate Gyro/Accelerometers (IMU) Yes

Accelerometer Saturation Point 2 G

GPS Yes

Data Collection

Allows user-defined telemetry Yes – max 100

Customization

User-definable error handlers Yes – loss of GPS Signal, loss of RC Signal, loss of Datalink, low battery

User-definable PID loops Yes – max 16

Autopilot can be loaded with custom program Yes – with XTENDER SDK (separate)

Page 52: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Physical Characteristics Procerus Kestral

Weight 16.65 g

Dimensions (L x W x H) 52.65 mm x 34.92 mm x ? mm

Power Requirements 500 mA

Supply Voltage 3.3V and 5V

Separate supplies for main and servo power Yes

Functional Capabilities

Includes Ground Station software Yes

Max # of Waypoints 100

In-flight waypoint modification possible Yes

GPS Update Rate 1 Hz

Number of servos 12

Sensors

Airspeed Yes, up to 130 m/s

Altimeter Yes, up to 11200 MSL

3-axis Rate Gyro/Accelerometers (IMU) Yes

Accelerometer Saturation Point 10 G

GPS Yes

Data Collection

Allows user-defined telemetry Unspecified

Customization

User-definable error handlers Yes, Loss of Datalink, Loss of GPS, Low Battery, Imminent Collision, Loss of RC Signal

User-definable PID loops Unspecified

Autopilot can be loaded with custom program Yes, Developer’s Kit available for $5000 for one year license

Page 53: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Physical Characteristics Cloudcap Piccolo

Weight 109 grams

Dimensions (L x W x H) 130.1 mm x 59.4 mm x 19.1 mm

Power Requirements 5 Watts ( ~ 400 mA @ 12V )

Supply Voltage 4.8 – 24 Volts

Separate supplies for main and servo power No

Functional Capabilities

Includes Ground Station software Yes, basic

Max # of Waypoints 100

In-flight waypoint modification possible Yes

GPS Update Rate 4 Hz

Number of servos 6

Sensors

Airspeed Yes

Altimeter Yes

3-axis Rate Gyro/Accelerometers (IMU) Yes

Accelerometer Saturation Point 2 G, 10G with external sensor package

GPS Yes

Data Collection

Allows user-defined telemetry Unspecified

Customization

User-definable error handlers Yes

User-definable PID loops Unspecified

Autopilot can be loaded with custom program Yes

Page 54: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Physical Characteristics O Navi Phoenix AX

Weight 45 grams

Dimensions (L x W x H) 88.14 mm x 40.13 mm x 19 mm

Power Requirements 84 mA @ 12V

Supply Voltage 7.2-24 Volts

Separate supplies for main and servo power No

Functional Capabilities

Includes Ground Station software No

Max # of Waypoints Unspecified

In-flight waypoint modification possible Unspecified

GPS Update Rate 1 Hz

Number of servos 6

Sensors

Airspeed No

Altimeter Yes

3-axis Rate Gyro/Accelerometers (IMU) Yes

Accelerometer Saturation Point 10 G

GPS Yes

Data Collection

Allows user-defined telemetry Unspecified

Customization

User-definable error handlers Unspecified

User-definable PID loops Unspecified

Autopilot can be loaded with custom program Yes, REQUIRED

Page 55: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Camera Selection: KT&C model KPC-650

• Specifications– Power: 180mA @ 12VDC– Effective pixels (NTSC): 768(H) x 494 (V)– Weight: 137 grams– Size: 31mm(W) x 31mm(H) x 55mm(L)

Page 56: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Video Transmitter Selection:LawMate TM-241800

• Specifications– Power: 500mA at 12VDC– Output: 1W RF power– Weight: 30 grams– Size: 26 x 50 x 13mm

Page 57: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Video Receiver Selection: LawMate RX-2480B

• Specifications– Power: 800mA at 5V– Battery life: ~3.5 hrs.– Weight: 135 grams– 110 x 70 x 20mm

Page 58: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

DC-DC Converter

• Selection– Murata Power Solutions – TMP-5/5-12/1-Q12-C• +5Vdc @ 5A• +12Vdc @ 1A• 3.04 x 2.04 x 0.55 in, 170 grams

Page 59: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Onboard Radio Modem

• Initial Research– Xtend-PKG• 900MHz• Power Supply 7-28V• Max Current 900mA• Outdoor LOS Range 14 mi.• 2.75 x 5.5 x 1.13 in, 200 grams

– Physical size too large for our fuselage– Can be used for ground station

Page 60: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

Onboard Radio Modem

• Selection– 9Xtend-PKG OEM• 900 MHz• Power Supply 4.75-5.5Vdc• Max Current 730 mA• Outdoor LOS Range 14 mi.• 1.44 x 2.38 x 0.02 in, 18 grams

Page 61: Lockheed Martin Challenge Avionics Systems IRP Presentation, Spring 2009

REPORT DISCLAIMER NOTICEDISCLAIMER: This document was developed as a part of the requirements of a multidisciplinary engineering course at Iowa State University, Ames, Iowa. This document does not constitute a

professional engineering design or a professional land surveying document. Although the information is intended to be accurate, the associated students, faculty, and Iowa State University make no claims,

promises, or guarantees about the accuracy, completeness, quality, or adequacy of the information. The user of this document shall ensure that any such use does not violate any laws with regard to

professional licensing and certification requirements. This use includes any work resulting from this student-prepared document that is required to be under the responsible charge of a licensed engineer or surveyor. This document is copyrighted by the students who produced this document and the associated

faculty advisors. No part may be reproduced without the written permission of the course coordinator.

Images within this presentation were obtained via the courtesy of their respective owners, listed below:

Lockheed Martin CorporationMicroPilot

Genwac/WatecRangeVideo

Murata Power SystemsDigi Intl.