lidar r s p c cu-b lecture 34. aerosol lidar...

11
LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 2016 Lecture 34. Aerosol Lidar (3) HSRL + Daytime Filter + PMT q University of Wisconsin HSRL example q Comparison of aerosol lidar technique q Summary q Daytime filters (Faraday vs. FP etalon) q PMT operation (analog vs. photon counting) 1

Upload: others

Post on 30-May-2020

5 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: LIDAR R S P C CU-B Lecture 34. Aerosol Lidar (3)superlidar.colorado.edu/Classes/Lidar2016/Lidar... · Lecture 34. Aerosol Lidar (3) HSRL + Daytime Filter + PMT q University of Wisconsin

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 2016

Lecture 34. Aerosol Lidar (3) HSRL + Daytime Filter + PMT

q  University of Wisconsin HSRL example

q  Comparison of aerosol lidar techniqueq  Summary q  Daytime filters (Faraday vs. FP etalon)q  PMT operation (analog vs. photon counting)

1

Page 2: LIDAR R S P C CU-B Lecture 34. Aerosol Lidar (3)superlidar.colorado.edu/Classes/Lidar2016/Lidar... · Lecture 34. Aerosol Lidar (3) HSRL + Daytime Filter + PMT q University of Wisconsin

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 2016

HSRL with Atomic and Molecular Absorption (Blocking) Filter

Atomic or molecular absorption block the aerosol scattering

2

Page 3: LIDAR R S P C CU-B Lecture 34. Aerosol Lidar (3)superlidar.colorado.edu/Classes/Lidar2016/Lidar... · Lecture 34. Aerosol Lidar (3) HSRL + Daytime Filter + PMT q University of Wisconsin

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 2016

University of Wisconsin HSRL on HIAPER

Courtesy of Dr. Edwin E. Eloranta, University of Wisconsin 3

Page 4: LIDAR R S P C CU-B Lecture 34. Aerosol Lidar (3)superlidar.colorado.edu/Classes/Lidar2016/Lidar... · Lecture 34. Aerosol Lidar (3) HSRL + Daytime Filter + PMT q University of Wisconsin

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 2016

Fiber Pinhole Interferometer (PHI) to measure relative frequency offset

4 24th ILRC proceeding [Razenkov et al., ILRC, 2008]

For the same optical path difference (OPD) setup, the spatial position of interference pattern will change with the incident laser frequency, so providing a measurement of relative frequency shift.

Page 5: LIDAR R S P C CU-B Lecture 34. Aerosol Lidar (3)superlidar.colorado.edu/Classes/Lidar2016/Lidar... · Lecture 34. Aerosol Lidar (3) HSRL + Daytime Filter + PMT q University of Wisconsin

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 2016

Laser Freq Locking with Brillouin Scattering

5 24th ILRC proceeding [Razenkov et al., ILRC, 2008]

-31.6 GHZ offset by Brillouin backscattering

from a silica fiber

Page 6: LIDAR R S P C CU-B Lecture 34. Aerosol Lidar (3)superlidar.colorado.edu/Classes/Lidar2016/Lidar... · Lecture 34. Aerosol Lidar (3) HSRL + Daytime Filter + PMT q University of Wisconsin

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 2016

Narrowband Daytime Spectral Filter: Single vs. Double Fabry-Perot Etalons

6

Receiver Chain

PMT

Frequencyf0

Tran

smiss

ion

Page 7: LIDAR R S P C CU-B Lecture 34. Aerosol Lidar (3)superlidar.colorado.edu/Classes/Lidar2016/Lidar... · Lecture 34. Aerosol Lidar (3) HSRL + Daytime Filter + PMT q University of Wisconsin

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 2016

Daytime Spatial Filter: Small FOV vs. Beam Divergence

7

Small laser beam divergence à small receiver field of view (FOV)

-- A very effective way to reduce daytime background

Whether a small beam divergence thus small FOV can be used is mainly determined by two factors –1)  Will the atmosphere saturation be resulted? If yes, then we

cannot use small divergence and FOV.2)  Is the laser spatial mode good enough (TEM00 mode) to

achieve small beam divergence, enabling small FOV?

Page 8: LIDAR R S P C CU-B Lecture 34. Aerosol Lidar (3)superlidar.colorado.edu/Classes/Lidar2016/Lidar... · Lecture 34. Aerosol Lidar (3) HSRL + Daytime Filter + PMT q University of Wisconsin

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 2016

HSRL Measurement Results

A book chapter “High Spectral Resolution Lidar”

by Dr. Edwin E. ElorantaUniversity of Wisconsin

8

Page 9: LIDAR R S P C CU-B Lecture 34. Aerosol Lidar (3)superlidar.colorado.edu/Classes/Lidar2016/Lidar... · Lecture 34. Aerosol Lidar (3) HSRL + Daytime Filter + PMT q University of Wisconsin

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 2016

Challenging Questions q  How about if we have multiple wavelengths of elastic scattering lidar channels, e.g., 1064, 532 and 355 nm simultaneously? Can we derive the aerosols’ extinction and backscatter coefficient better than single elastic scattering channel?

9

S(R,λ1) = P(R,λ1)R2 = E0ηL βaer (R,λ1)+βmol (R,λ1)[ ]exp −2 αaer (r,λ1)+αmol (r,λ1)[ ]dro

R∫#

$%&'(

S(R,λ2 ) = P(R,λ2 )R2 = E0ηL βaer (R,λ2 )+βmol (R,λ2 )[ ]exp −2 αaer (r,λ2 )+αmol (r,λ2 )[ ]dro

R∫#

$%&'(

S(R,λ3) = P(R,λ3)R2 = E0ηL βaer (R,λ3)+βmol (R,λ3)[ ]exp −2 αaer (r,λ3)+αmol (r,λ3)[ ]dro

R∫#

$%&'(

αaer2αaer1

=λ1λ2

!

"#

$

%&

aβaer2βaer1

=λ1λ2

!

"#

$

%&

b

References: Our textbook Chapter 3 on aerosol lidars;two short book chapters at our class website:

AerosolLidarChap.pdf and HSRL.pdf

Page 10: LIDAR R S P C CU-B Lecture 34. Aerosol Lidar (3)superlidar.colorado.edu/Classes/Lidar2016/Lidar... · Lecture 34. Aerosol Lidar (3) HSRL + Daytime Filter + PMT q University of Wisconsin

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 2016

Aerosol Lidar Technique Comparison

150 200 250 300 3500

20

40

60

80

100

120

MSIS90 Temperature

Temperature (K)

Alt

itud

e (k

m)

Troposphere

Stratosphere

Mesosphere

Thermosphere

Mesopause

Stratopause

Tropopause

Airglow & Meteoric LayersOH, O, Na, Fe, K, CaPMC

Ozone

AerosolsClouds

q  Aerosols in mesosphere (Mesospheric Clouds ~ 85 km): Rayleigh/Mie lidar, resonance fluorescence lidar (detuned) q  Aerosols in upper stratosphere (Polar Stratospheric Clouds 20-30 km): Rayleigh/Mie lidar, resonance fluorescence lidarq  Aerosols in lower stratosphere and troposphere: Rayleigh/Mie elastic-scattering lidar, Raman scattering lidar, High-Spectral-Resolution Lidar (HSRL)q  In all altitude range, polarization & multi-wavelength detections help reveal aerosol microphysical properties

PSC

10

Page 11: LIDAR R S P C CU-B Lecture 34. Aerosol Lidar (3)superlidar.colorado.edu/Classes/Lidar2016/Lidar... · Lecture 34. Aerosol Lidar (3) HSRL + Daytime Filter + PMT q University of Wisconsin

LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 2016

Summary q  Aerosol is an important topic in atmospheric science and environmental research. It can be measured/monitored by hot lidar technologies.q  Single-channel elastic-scattering lidar can beautifully detect PMC and PSC backscatter, and monitor the occurrence, height, vertical structure, etc. However, it is unreliable to derive aerosol extinction.q  Multi-channel lidars like Raman lidar and HSRL provide addition information by adding Raman channel or separating molecular scattering from aerosol scattering. Both can measure aerosol backscatter and extinction nicely. HSRL is more desirable when longer range detection is needed as Rayleigh scattering is much stronger than Raman scattering.q  Precise aerosol measurements require good spectrum measurements to distinguish aerosol from molecular signals. High spectral resolution lidar, especially the ones based on iodine or atomic absorption filters, promises very bright future.q  Multi-wavelength and polarization detection can help identify aerosol shape, size, distribution, and number density.q  Aerosol study is growing, and awaiting for more smart lidar ideas. 11