journal week 6

5
Week 6 This week we were able to go to the workshop and build a bridge in pairs. We tested the amount of force that could be applied to our bridges till they snapped. Back in our tutorial room, we made a model of the new construction area of Queens College. Activity: Structural Concepts’ (Part Two) Stud a vertical framing member used to create walls and partitions. Studs can be either wood or metal. Beneke, J. 2013. Stud. [online] Available at: http://garages.about.com/od/glossary/g/StudGlossary.htm [Accessed: 8 Sep 2013]. Akla and I were formed group four. Our materials were: 1200 x 3.2 x 90 mm Plywood (x1) 1200 x 42 x 18 mm Pinewood (x3) We cut one of the pine wood and spit it into 8 smaller blocks. After nailing the first few blocks, the bridge was not stable. It could slide from side to side. Only after we a nailed all the blocks into the two, was it stable. We did not need perfect measurements because the purpose was not to make the best bridge in aesthetics.

Upload: sarah

Post on 06-Mar-2016

218 views

Category:

Documents


0 download

DESCRIPTION

 

TRANSCRIPT

       

                                       

                 

Week  6    

This  week  we  were  able  to  go  to  the  workshop  and  build  a  bridge  in  pairs.  We  tested  the  amount  of  force  that  could  be  applied  to  our  bridges  till  they  snapped.    Back  in  our  tutorial  room,  we  made  a  model  of  the  new  construction  area  of  Queens  College.    

Activity:   Structural  Concepts’  (Part  Two)  

Stud    -­‐  a  vertical  framing  member  used  to  create  walls  and  partitions.  Studs  can  be  either  wood  or  metal.    

Beneke,  J.  2013.  Stud.  [online]  Available  at:  http://garages.about.com/od/glossary/g/StudGlossary.htm  [Accessed:  8  Sep  2013].  

Akla  and  I  were  formed  group  four.  Our  materials  were:  

-­‐ 1200  x  3.2  x  90  mm  Plywood  (x1)  -­‐ 1200  x  42  x  18  mm  Pinewood  (x3)  

We  cut  one  of  the  pine  wood  and  spit  it  into  8  smaller  blocks.    

After  nailing  the  first  few  blocks,  the  bridge  was  not  stable.  It  could  slide  from  side  to  side.  Only  after  we  a  nailed  all  the  blocks  into  the  two,  was  it  stable.      

We  did  not  need  perfect  measurements  because  the  purpose  was  not  to  make  the  best  bridge  in  aesthetics.        

       

               

           

                       

       

Nails  of  different  head  shapes  and  sizes  were  used.  This  was  used  unintentionally.  But  Hamish  had  said  that  flat  heads  are  better  than  smaller  headed  nails.    This  is  because  the  smaller  ones  can  slip  right  through  the  two  pinewoods.      

We  focused  more  on  the  middle  of  the  bridge,  putting  more  support.  Having  4  beams  across  the  middle  and  another  2  on  the  sides.    

Because  we  wanted  to  use  the  all  of  our  materials,  we  decided  to  place  attach  the  plywood  over  the  small  beams.  We  did  this  by  using  nails.    

We  decided  on  making  this  face  of  the  bridge  the  bottom,  because  it  was  said  that  plywood  works  well  with  tension,  therefore  it’d  be  best  to  put  it  on  the  bottom  of  the  force  applied.    

       

                                                           

Group  1:     -­‐ Plywood  x2   -­‐ Pinewood  x2  

Group  2:     -­‐ Plywood  x2   -­‐ Pinewood  x2  

The  maximum  applied  force  on  the  bridge  before  it  snapped,  was  350  kg.      

Shear  force  plays  a  lot  in  the  snap  of  the  bridge.      

Before  the  plywood  at  the  bottom  was  snapped,  it  was  still  holding.  This  is  because  the  force  that  the  plywood  at  the  bottom  underwent  was      tension,  and  plywood  works  well  with  tension  as  it  is  very  flexible.  

The  part  that  was  snapped  was  where  the  nails  were  hit  into,  making  that  area  weaker.  

 

Group  two  had  a  similar  designed  bridge  as  group  one.  This  is  why  we  tested  the  bridge  from  another  side.        

We  found  that  the  flatter  headed  nails  were  better,  because  they  do  not  go  straight  through  the  pinewood  like  the  smaller  nails  do.  

The  top  was  badly  crushed.    The  plywood  also  eventually  snapped  with  the  pinewood  that  was  under  all  the  force.    

The  bottom  pinewood  remained  unharmed  as  it  was  on  the  bottom,  but  the  plywood  kept  bending  away  from  the  bridge,  braking  away  from  the  nail.  

       

                                                             

Group  3:     -­‐ Plywood  x1   -­‐ Pinewood  x3  

Group  4:     -­‐ Plywood  x1   -­‐ Pinewood  x3  

This  group’s  bridge  survived  the  most  amount  of  force  that  was  applied.  It  reached  up  to  380  kg  of  force.  

The  screws  they  used  held  all  ends  well  with  the  plywood.      

When  the  screws  were  screwed  in,  it  sometimes  split  the  timber  apart  because  it  did  not  follow  the  direction  of  the  grain,  making  it  weaker      

There  was  some  bending  coming  from  the  plywood  showcasing  tis  flexibility.    

The  screws  worked  better  than  the  nails,  although  the  crack  was  found  at  the  area  where  the  nail  or  screw  was  put  in.        

Our  group’s  bridge  survived  at  the  force  of  230  kg.    

The  plywood  was  put  at  the  bottom  because  it  was  said  that  it  works  well  with  tension  instead  of  compression.      

It  was  found  that  when  the  force  was  applied  to  the  bridge,  the  bridge  broke  at  the  nail.  This  is  because  once  the  nail  is  hammered  into  the  timber,  it  makes  it  weaker.      

       

       

Queens  College  Model  

Using  tracing  paper,  we  went  over  the  floor  plans  of  Queens  College  of  the  area  that  is  being  built.    

 

   

The  walls  are  made  from  concrete,  which  is  why  we  used  this  coloured,  cardboard.    By  reading  off  the  plans  of  Queens  College,  we  found  the  height  of  the  walls,  keeping  the  scales  the  same.  

 

   The  courtyard  is  exposed  aggregate  concrete  

 

   

Stairs