hoerling pdsi drought revisedfinal jclim...! 6! 140! because! projected! increases! in!...

28
1 Is a Transition to SemiPermanent Drought Conditions Imminent in the U.S. 1 Great Plains? 2 3 4 5 Martin P. Hoerling 1 , Jon K. Eischeid 2 , XiaoWei Quan 2 , Henry F. Diaz 1 , Robert S. 6 Webb 1 , Randall M. Dole 1 , and David Easterling 3 7 8 9 10 1 NOAA Earth System Research Laboratory, Boulder, Colorado 11 12 2 University of Colorado, Cooperative Institute for Research in Environmental Sciences, 13 Boulder, Colorado 14 3 NOAA National Climatic Data Center, Asheville, North Carolina 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Submitted to J. Climate 30 31 Revised 32 33 October 11 2012 34 35 36 37 38 39 Corresponding author address: M. Hoerling, NOAA/Earth System Research 40 Laboratory, 325 Broadway, Boulder CO 80305. 41 Email: [email protected] 42 43 44 45 46

Upload: others

Post on 25-Jan-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Hoerling PDSI Drought RevisedFINAL JCLIM...! 6! 140! because! projected! increases! in! precipitation! are! offset! by! a! warming=induced 141! increase in evapotranspiration. Consistent!

  1  

Is  a  Transition  to  Semi-­Permanent  Drought  Conditions  Imminent  in  the  U.S.  1  Great  Plains?  2  

 3    4    5  

Martin  P.  Hoerling1,  Jon  K.  Eischeid2,  Xiao-­‐Wei  Quan2,  Henry  F.  Diaz1,  Robert  S.  6  Webb1,  Randall  M.  Dole1,  and  David  Easterling3  7  

 8    9    10  

1NOAA  Earth  System  Research  Laboratory,  Boulder,  Colorado  11    12  

2  University  of  Colorado,  Cooperative  Institute  for  Research  in  Environmental  Sciences,  13  Boulder,  Colorado  14  

3  NOAA  National  Climatic  Data  Center,  Asheville,  North  Carolina  15    16    17    18    19    20    21    22    23    24    25    26    27    28    29  

Submitted  to  J.  Climate  30    31  

Revised  32    33  

October  11    2012  34    35    36    37    38  

 39  Corresponding   author   address:   M.   Hoerling,   NOAA/Earth   System   Research  40  Laboratory,  325  Broadway,  Boulder  CO  80305.  41  E-­‐mail:  [email protected]  42    43    44    45    46  

Page 2: Hoerling PDSI Drought RevisedFINAL JCLIM...! 6! 140! because! projected! increases! in! precipitation! are! offset! by! a! warming=induced 141! increase in evapotranspiration. Consistent!

  2  

 47  ABSTRACT  48  

 49    50  

How  Great  Plains  climate  will  respond  under  global  warming  continues  to  be  51  

a   key   unresolved   question.   There   has   been,   for   instance,   considerable  52  

speculation   that   the  Great   Plains   is   embarking   upon   a   period   of   increasing  53  

drought   frequency   and   intensity   that   will   lead   to   a   semi-­‐permanent   Dust  54  

Bowl  in  coming  decades.  This  view  draws  on  a  single  line  of  inference  of  how  55  

climate  change  may  affect  surface  water  balance  based  on  sensitivity  of   the  56  

Palmer   Drought   Severity   Index   (PDSI).   A   different   view   foresees   a   more  57  

modest   climate   change   impact   on   Great   Plains   surface   moisture   balances.  58  

This   draws  on  direct   lines   of   analysis   using   land   surface  models   to   predict  59  

runoff  and  soil  moisture,  the  results  of  which  do  not  reveal  an  ominous  fate  60  

for   the   Great   Plains.     Our   study   presents   a   parallel   diagnosis   of   projected  61  

changes   in   drought   as   inferred   from   PDSI   and   soil   moisture   indicators   in  62  

order   to   understand   causes   for   such   a   disparity,   and   to   shed   light   on   the  63  

uncertainties.   PDSI   is   shown   to   be   an   excellent   proxy   indicator   for   Great  64  

Plains  soil  moisture  in  the  20th  Century;  however,  its  suitability  breaks  down  65  

in   the   21st   Century   with   the   PDSI   severely   overstating   surface   water  66  

imbalances   and   implied   agricultural   stresses.   Several   lines   of   evidence   and  67  

physical   considerations   indicate   that   simplifying   assumptions   regarding  68  

temperature   effects   on   water   balances   especially   concerning  69  

evapotranspiration   in   Palmer’s   formulation   compromise   its   suitability   as  70  

drought   indicator   in   a   warming   climate.   We   conclude   that   projections   of  71  

Page 3: Hoerling PDSI Drought RevisedFINAL JCLIM...! 6! 140! because! projected! increases! in! precipitation! are! offset! by! a! warming=induced 141! increase in evapotranspiration. Consistent!

  3  

acute  and  chronic  PDSI  decline  in  the  21st  Century  are  likely  an  exaggerated  72  

indicator  for  future  Great  Plains  drought  severity.  73  

 74  

 75  

 76  

 77  

 78  

 79  

 80  

 81  

 82  

 83  

 84  

 85  

 86  

 87  

 88  

 89  

 90  

 91  

 92  

 93  

 94  

Page 4: Hoerling PDSI Drought RevisedFINAL JCLIM...! 6! 140! because! projected! increases! in! precipitation! are! offset! by! a! warming=induced 141! increase in evapotranspiration. Consistent!

  4  

1.    Introduction  95  

 96  

The  future  trajectory  of  climate  change  in  the  U.S.  Great  Plains  (30°N-­‐50°N,  105°W-­‐97  

95°W)  and  in  particular  the  frequency  and  intensity  of  future  drought  is  a  matter  of  98  

continuing   interest   and   debate   given   its   past   history   of   severe   drought   episodes  99  

such   as   the   1930’s   “Dust   Bowl”.  While   some   have   raised   the   specter   of   a   shift   to  100  

semi-­‐permanent  1930’s  type  drought  conditions  on  the  Great  Plains  due  to  human-­‐101  

induced   global   warming,   the   Special   Report   of   the   Intergovernmental   Panel   on  102  

Climate   Change   regarding   extreme   events   (IPCC   2012)   expresses   only   low  103  

confidence   in  a  projected  change   in  drought  over   the  U.S.  Great  Plains  as  a  whole,  104  

and  medium  confidence  for  some  increased  dryness  across  the  southern  portion  of  105  

the  domain.    106  

 107  

Why  such  substantial  differences  in  expectations  for  drought  in  the  Great  Plains,  and  108  

why   the  overall   low   level  of   confidence   in  drought  projections   for   this   region  as  a  109  

whole?   A   possible   explanation   is   an   inconsistency   in   trends   for   surface   water  110  

balances  among  analyses  that  use  different  drought  indices.  One  approach  has  been  111  

to   examine   the   sensitivity   of   the   Palmer   Drought   Severity   Index   (PDSI;   Palmer  112  

1965)  to  projected  changes  in  monthly  temperature  and  precipitation  (e.g.,  Rind  et  113  

al.   1990;   Jones   et   al.   1996;   Burke   et   al.   2006;   Burke   and   Brown   2008;   Dai   2011,  114  

2012;  Burke  2011;  Wehner  et  al.  2011).  Results  from  these  studies,  though  derived  115  

from  widely  different  generations  of  climate  models,  share  the  common  feature  that  116  

Page 5: Hoerling PDSI Drought RevisedFINAL JCLIM...! 6! 140! because! projected! increases! in! precipitation! are! offset! by! a! warming=induced 141! increase in evapotranspiration. Consistent!

  5  

PDSI   quickly   approaches   severe   drought   values   with   increasing   greenhouse   gas  117  

forcing.    118  

 119  

Rind   et   al.   (1990)   suggested   that   increasing   drought   over   the   U.S.  would   become  120  

apparent   in   the  1990s,  while  Dai   (2011)   argues   that   the  U.S.  might   see  persistent  121  

droughts   in   the  next  20-­‐50  years.  The  spatial  pattern  of  U.S.  drought   increase  was  122  

found  to  be  highly  reproducible  among  the  19  models  contributing  to  CMIP3,  largely  123  

because   the   response   of   PDSI   to   future   temperature   increase   is   very   robust   (Dai  124  

2011,   2012;  Wehner   et   al.   2011).  Wehner   et   al.   demonstrate   that   climate  models  125  

having   the   largest   projected   temperature   increase   yield   the   largest   increase   in  126  

drought  severity  due  to  the  strong  dependency  of  evapotranspiration  on  surface  air  127  

temperature  in  PDSI.  Although  this  temperature  sensitivity  depends  qualitatively  on  128  

the   formula   used   to   compute   potential   evapotranspiration   (e.g.   Chen   et   al.   2005;  129  

Burke  et  al.  2006),  Wehner  et  al.  (2011)  surmise  that  the  rapid  and  severe  decline  of  130  

PDSI  under  the  influence  of  future  warming  should  be  indicative  of  decreases  in  soil  131  

moisture,   regardless   of   how   mean   precipitation   may   change.   However,   their  132  

supposition  has  not  been  confirmed  by  analyses  of  projected  soil  moisture  changes  133  

simulated  directly  by  climate  model  land  surface  schemes.    134  

 135  

Alternatively,  annual  mean  soil  moisture  in  CMIP3  models  is  projected  to  decline  in  136  

some   areas   by   the   end   of   the   21st   century,   though   not   significantly   so   over   the  137  

northern  Great  Plains  (Sheffield  and  Wood,  2008;  Orlowsky  and  Seneviratne  2011).  138  

In   some  regions,   such  as   the  northern  Great  Plains,   soil  moisture  does  not   change  139  

Page 6: Hoerling PDSI Drought RevisedFINAL JCLIM...! 6! 140! because! projected! increases! in! precipitation! are! offset! by! a! warming=induced 141! increase in evapotranspiration. Consistent!

  6  

because   projected   increases   in   precipitation   are   offset   by   a   warming-­‐induced  140  

increase   in   evapotranspiration.   Consistent   with   these   changes,   surface   runoff  141  

projections  do  not  exhibit  appreciable  change  (2041–60  compared  to  1901–70)  for  142  

the  Missouri  and  upper  Mississippi  River  drainage  basins  in  CMIP3  models  (Milly  et  143  

al.  2005).  For  the  Great  Plains  as  a  whole,  Sheffield  and  Wood’s  (2008)  diagnosis  of  144  

simulated  soil  moisture  reveals  no  statistically  significant  change  in  the  frequency  of  145  

short-­‐term  drought  (4-­‐6  month  duration)  for  any  emissions  scenario  (B1,  A1B,  A2)  146  

through  2100,  and  the  earliest  year  for  detecting  a  statistically  significant  change  in  147  

the   frequency   of   long-­‐term   (>12   months)   drought   is   about   2050.   More   recently,  148  

Winter   and   Eltahir   (2012)   analyzed   regional   climate   model   projections   for   the  149  

Midwest  U.S.  (an  area  slightly  east  of  the  Great  Plains  region  considered  herein)  and  150  

found   no   reductions   in   future   summer   soil   moisture,   with   increased  151  

evapotranspiration  balanced  by  increased  precipitation.  Thus,  questions  remain  on  152  

how   Great   Plains   drought   will   respond   to   global   warming.   To   better   understand  153  

uncertainty   sources,   we   present   a   side-­‐by-­‐side   analysis   of   projected   changes   in  154  

drought  using  both  a  PDSI  and  soil  moisture  metric.    155  

 156  

2.    Data  and  Methods  157  

a.  Climate  model  simulations  158  

We  use  historical  simulations  and  climate  projections  based  on  the  fourth  version  of  159  

the  Community  Climate  System  Model   (CCSM4;  Gent  et  al.  2011).  CCSM4   is  one  of  160  

numerous  models  that  comprise  the  Coupled  Model  Intercomparison  Project-­‐Phase  161  

5   experiments   (CMIP5).   We   analyze   monthly   output   from   an   ensemble   of   three  162  

Page 7: Hoerling PDSI Drought RevisedFINAL JCLIM...! 6! 140! because! projected! increases! in! precipitation! are! offset! by! a! warming=induced 141! increase in evapotranspiration. Consistent!

  7  

CCSM4   simulations   forced   with   variations   in   greenhouse   gases,   aerosols,   time-­‐163  

varying  solar  irradiance,  and  the  radiative  effects  of  volcanic  activity  for  1850–2005  164  

(Taylor  et  al.  2012).  Projections  of  climate  conditions  for  2006–2100  are  based  upon  165  

the  Representative  Concentration  Pathway  8.5  for  individual  greenhouse  gases  and  166  

aerosols  (Moss  et  al.  2010).  167  

 168  

The   Community   Land   Model   Version   4   (CLM4)   used   in   CCSM4   represents   a  169  

significant  advance  over  prior  versions  (Lawrence  et  al.  2011;  Lawrence  et  al.  2012).      170  

Advances   include   improved  canopy   treatment,  a  plant   functional   type  dependency  171  

on   soil   moisture   stress   function,   improved   surface   hydrology   and   runoff,   and  172  

improved   representation   of   evapotranspiration   that   provides   more   realistic  173  

treatment   of   plant   transpiration,   evaporation   from   soils,   and   canopy   evaporation.      174  

The   land   model   includes   a   prognostic   carbon-­‐nitrogen   cycle   with   time   varying  175  

vegetation   phenology.   Soil   water   is   predicted   from   a   multi-­‐layer   model   in   which  176  

time   variability   in   soil   moisture   is   a   function   of   infiltration,   runoff,   gradient  177  

diffusion,   gravity,   canopy   transpiration   through   root   extraction,   and   interactions  178  

with  ground  water  (Oleson  et  al.  2010).  Over  the  U.S.  Great  Plains  region,   the   land  179  

model  resolves  10  soil  layers  to  ~3m,  with  five  additional  bedrock  layers  to  a  depth  180  

of  ~35m.    181  

 182  

b.    Drought  indices  183  

The  monthly  Palmer  Drought  Severity  Index  (PDSI,  Palmer  1965)  is  calculated  from  184  

the   CCSM4   archive   of   monthly   temperature   and   precipitation.   The   potential  185  

Page 8: Hoerling PDSI Drought RevisedFINAL JCLIM...! 6! 140! because! projected! increases! in! precipitation! are! offset! by! a! warming=induced 141! increase in evapotranspiration. Consistent!

  8  

evapotranspiration  (PET)  is  calculated  using  the  Thornthwaite  (1948)  formulation,  186  

which  depends  upon  only  temperature  and  latitude.  Similar  approaches  were  used  187  

in   the   recent   studies   of   Dai   (2011,   2012)   and  Wehner   et   al.   (2011).   Burke   et   al.  188  

(2006)   and   Dai   (2011,   2012)   also   calculated   PET   using   the   Penman-­‐Monteith  189  

equation   (Shuttleworth   1993),  which  while   providing   a  more   realistic   estimate   of  190  

the   meteorological   control   on   PET,   continues   to   be   strongly   temperature   driven  191  

(Fennessey   and   Kirshen,   1994).   A   recognized   limitation   of   PDSI   as   an   index   for  192  

drought   over   semi-­‐arid   regions   including   portions   of   the   Great   Plains   is   its   non-­‐193  

Gaussian   distribution  with   a   tendency   to   yield  more   severe   negative   PDSI   values.      194  

We  used   the  statistical  normalization  method  of  Wells  et  al.   (2004)   to  re-­‐calibrate  195  

the  PDSI  which  has  the  effect  of  altering  the  statistical  distribution  of  extreme  wet  196  

and  dry  occurrences   in   some  areas   so  as   to  be  more  consistent  with   the  expected  197  

frequency  of  rare  events,  to  allow  for  more  accurate  comparisons  of  the  index  across  198  

regions,  and  to  facilitate  intercomparison  with  other  standardized  drought  indices.  199  

Here,   the   parameters   for   calculating   the   PDSI   values   and   the   subsequent  200  

calibrations  are  determined  from  the  monthly  model  output  of  1901–2000  for  each  201  

of  the  three  simulations  separately,  and  the  calibrated  PDSI  values  are  obtained  for  202  

the  entire  1850-­‐2100  period  for  each  run  using  the  respective  set  of  parameters.  203  

 204  

The   second  drought   index   is   derived   from   the  CCSM4  monthly   column   integrated  205  

soil  moisture   for  3  model   layers  having  a   total   of  ~10   cm  depth,  normalized,   also  206  

using   the   standard   deviation   of   its   annual   mean   during   1901-­‐2000.   Sensitivity  207  

Page 9: Hoerling PDSI Drought RevisedFINAL JCLIM...! 6! 140! because! projected! increases! in! precipitation! are! offset! by! a! warming=induced 141! increase in evapotranspiration. Consistent!

  9  

analyses  indicated  that  our  results  do  not  differ  materially  when  using  a  shallower  1  208  

cm  or  deeper  1  m  soil  layer.      209  

 210  

3.    Results  211  

Individual   PDSI   traces   averaged  over   the  Great  Plains   (30°N–50°N,   105°W–95°W)  212  

for  the  period  1850–2100  for  each  of  three  model  integrations  (gray  curves)  and  the  213  

3-­‐run   ensemble   average   (yellow   curve)   are   shown   in   Figure   1.   Two   significant  214  

features  of  these  time  series  are:  i)  a  progressive  reduction  in  PDSI  commencing  in  215  

the  late  20th  Century  and  accelerating  in  the  21st  Century  occurring  in  all  simulations  216  

due   to   increasing  GHG   forcing,   and   ii)   a   randomly  occurring  decadal-­‐long  drought  217  

event   during   the   late   19th   Century   in   one   simulation   due   to   internal   model  218  

variability.  219  

The   randomly   occurring   severe   drought   in   the   late   19th   Century   simulation   has  220  

many  of  the  meteorological  characteristics  of  severe  drought  over  the  Great  Plains  221  

during   the   1930s.   Figure   2   (left   panels)   shows   the   spatial   patterns   of   decadally  222  

averaged  climate  and  land  surface  conditions,  a  period  during  which  the  simulated  223  

PDSI  (1865-­‐1875)  was  consistently  indicating  drought.  Negative  index  values  of  the  224  

PDSI   span   the   Great   Plains   region   from   North   Dakota   to   Texas   (top   panel,   left),  225  

similar  to  the  observed  1930s  pattern  (e.g.  Hoerling  et  al.  2009).  The  pattern  of  soil  226  

moisture   deficits   (second   panel,   left)   largely   mimics   the   indications   for   drought  227  

provided  by  PDSI.  Further,  the  spatial  pattern  and  intensity  of  drought  given  by  both  228  

Page 10: Hoerling PDSI Drought RevisedFINAL JCLIM...! 6! 140! because! projected! increases! in! precipitation! are! offset! by! a! warming=induced 141! increase in evapotranspiration. Consistent!

  10  

indicators  appear   largely  determined  by   the  simulated  precipitation  deficits   (third  229  

panel,   left).   Widespread   reductions   in   rainfall   with   average   annual   deficits   of   1  230  

standardized  departure  span  much  of  the  Great  Plains,  similar  to  the  magnitude  of  231  

precipitation  deficits  observed  during  the  decade  of  the  Dust  Bowl  (e.g.  Schubert  et  232  

al.  2004;  Hoerling  et  al.  2009).  Figure  2  (lower  left)  also  indicates  that  the  drought  233  

region   experienced   elevated   surface   temperatures,   though   generally   less   than  234  

+0.5°C.   While   such   warmth   is   consistent   with   an   overall   inverse   relationship  235  

between   rainfall   and   temperature   in   CCSM4   (not   shown)   analogous   to   that  236  

occurring   in  observations  (e.g.  Madden  and  Williams  1978),  neither   the  pattern  of  237  

PDSI  nor  soil  moisture  indicators  of  this  simulated  drought  event  were  determined  238  

strongly  by  the   temperature  conditions.  Overall,   this  randomly  occurring  moisture  239  

deficiency   over   the   Great   Plains   is   well   described   by   PDSI   using   only   monthly  240  

temperature  and  precipitation.  241  

 242  

In  contrast,  under  projected  future  climate  change,  modeled  soil  moisture  and  PDSI  243  

respond   very   differently.   Spatial   maps   of   conditions   by   mid-­‐21st   century   (Fig.   2,  244  

right   panels)   reveal   a   North   American-­‐wide   pattern   of   much   reduced   PDSI   (top  245  

panel)  implying  that  drought  conditions  exceed  both  the  scale  and  intensity  of  that  246  

occurring   during   the  Dust  Bowl   era.   The  PDSI   pattern   deviates   radically   from   the  247  

spatial   pattern  of  projected   soil  moisture  departures   (second  panel).  Whereas   the  248  

soil  moisture  departures   are  more   coherent  with   the   simulated  pattern  of   rainfall  249  

change  (third  panel),  the  PDSI  values  are  more  coherent  with  the  simulated  pattern  250  

Page 11: Hoerling PDSI Drought RevisedFINAL JCLIM...! 6! 140! because! projected! increases! in! precipitation! are! offset! by! a! warming=induced 141! increase in evapotranspiration. Consistent!

  11  

of  temperature  change  (bottom  panel).      251  

 252  

In   addition,   the   simulated   time   series   of   Great   Plains   meteorological   and   land  253  

surface  conditions  (Fig.  3)  reveal  that  soil  moisture  exhibits  a  decline  during  the  21st  254  

century,  but  the  magnitude  of  land  surface  drying  is  less  than  a  standard  deviation  255  

of   typical   interannual   variability.   By   contrast,   PDSI   declines   on   order   of   5   to   10  256  

times   its   standard   deviation   by   the   latter   decades   of   the   21st   century.   The  257  

comparatively  modest  amount  of  Great  Plains  soil  moisture  depletion   in  CCSM4   is  258  

consistent  with  the  multi-­‐model  results  based  on  the  land  surface  models  of  CMIP3  259  

(e.g.   Sheffield   and   Wood   2008).   This   relatively   small   signal   of   soil   moisture  260  

reduction   is   consistent   with   the   limited   detectability   for   a   change   in   drought  261  

frequency  over  the  Great  Plains  until  the  latter  portions  of  the  21st  Century  as  noted  262  

in   other   studies   and   assessments   (Sheffield   and   Wood,   2008;   Orlowsky   and  263  

Seneviratne   2011;   IPCC  2012).    Nonetheless,   such   soil  moisture   deficits   sustained  264  

over  a  long  period  could  have  appreciable  consequences.  265  

 266  

A   physically   based   understanding   for   these   dramatic   differences   in   drought  267  

projections   is   provided   by   comparing   Palmer   and   CCSM4   projected  268  

evapotranspiration   (ET)   changes.   The   ET   in   Palmer’s   formulation   (Fig.   3,   yellow  269  

curve)  initially  increases  rapidly  with  the  projected  warming,  with  the  moisture  loss  270  

determined   largely  by   the   increase   in  PET-­‐driven  demand,   the   latter  being  a  close  271  

proxy   for   the  magnitude   of   projected   temperature   rise   (compare   red   and   orange  272  

Page 12: Hoerling PDSI Drought RevisedFINAL JCLIM...! 6! 140! because! projected! increases! in! precipitation! are! offset! by! a! warming=induced 141! increase in evapotranspiration. Consistent!

  12  

curves   in  Fig.  3).  Since  ET’s  upper  bound  is  dictated  by  precipitation  and  available  273  

soil  moisture,  a  decline  in  the  rate  of  ET  rise  in  Palmer’s  model  ensues  in  the  latter  274  

half   of   the  21st   century  as   the  bucket  model’s   soil  moisture  becomes   substantially  275  

depleted.  At  this  point  in  Palmer’s  projections,  PDSI  falls  to  unprecedented  negative  276  

values.  By  contrast,  ET  in  CCSM4  (Fig.  3,  purple  curve)  does  not  increase  nearly  as  277  

much  as  ET  in  Palmer's  model.  The  overall  modest  positive  ET  departure  in  CCSM4  278  

projections   is   consistent  with   its   projected  modest   soil  moisture   decline,  whereas  279  

higher   frequency   variability   of   ET   in   CCSM4   is   mostly   driven   by   fluctuations   in  280  

precipitation.    281  

 282  

Finally,   the   simulations   indicate   that   co-­‐variability   of   annual   departures   in   Great  283  

Plains   PDSI   and   soil   moisture   drastically   changes   in   the   warming   21st   Century  284  

climate.   Figure  4   compares   the   relationship  during   the  20th   Century   (blue   circles)  285  

with  that  during  the  21st  Century  (red  circles)  based  on  diagnosis  of  all  three  CCSM4  286  

simulations.  PDSI  explains  about  40%  of  the  inter-­‐annual  variations  in  soil  moisture  287  

during  the  20th  Century,  but  explains  only  about  20%  of  the  variance  during  the  21st  288  

Century.  A  -­‐1  PDSI  value  (an  indication  for  mild  drought)  corresponds  to  about  a  -­‐1  289  

standardized  departure  of  soil  moisture  during  the  20th  Century;  however,  a  -­‐6  PDSI  290  

value   (which   is   far   beyond   the   range   of   the  most   extreme   PDSI   value   during   the  291  

calibration  period)  also  corresponds  to  a  -­‐1  standardized  departure  of  soil  moisture  292  

during  the  21th  Century.  The  magnitude  of  the  PDSI  during  the  projection  period  of  a  293  

warming   climate   thus   ceases   to   be   a   reliable   indicator   of   land   surface   water  294  

Page 13: Hoerling PDSI Drought RevisedFINAL JCLIM...! 6! 140! because! projected! increases! in! precipitation! are! offset! by! a! warming=induced 141! increase in evapotranspiration. Consistent!

  13  

deficiencies  and  implied  drought  severity,  at  least  within  the  simulations  of  CCSM4.    295  

 296  

4.    Conclusions  and  Discussion  297  

Assessments   of   how   climate   change   may   affect   the   frequency   and   severity   of  298  

drought   need   to   consider   various   drought   indicators   (e.g.,   IPCC   2012).   Two   such  299  

indicators,  PDSI  and  the  soil  moisture  anomalies  each  present  very  different  views  300  

of   how   surface   water   balances   may   evolve   over   the   Great   Plains   under   global  301  

warming.   To   understand   these   differences,   we   analyzed   both   drought   indicators  302  

using   CCSM4   simulations.   Our   analysis   reproduces   disparate   outlooks   for   Great  303  

Plains  drought—projections  using  the  PDSI  suggest  that  the  Great  Plains  will  be  in  a  304  

semi-­‐permanent  state  of  severe  Dust  Bowl-­‐like  drought  in  coming  decades,  whereas  305  

soil  moisture  projections  reveal  modest  drying  and  comparatively  low  detectability  306  

for  changes  in  Great  Plains  drought  frequency.  Our  analyses  illustrate  that  the  PDSI  307  

exaggerates   future   drought   severity   over   the   Great   Plains   due   to   unrealistic  308  

sensitivity  to  the  projected  warming  of  surface  temperatures.  309  

 310  

Scale  analysis  by  Hu  and  Wilson  (2000)  shows  the  PDSI  is  about  equally  affected  by  311  

temperature   and   precipitation   anomalies   having   similar   magnitude,   but   that   the  312  

temperature  sensitivity  during   the  20th  Century   is  generally  masked  by   the  strong  313  

negative   correlation   between   temperature   and   rainfall   variability.   A   GHG-­‐forcing  314  

change   in  surface  temperature  without  a  corresponding  change   in  rainfall   leads  to  315  

Page 14: Hoerling PDSI Drought RevisedFINAL JCLIM...! 6! 140! because! projected! increases! in! precipitation! are! offset! by! a! warming=induced 141! increase in evapotranspiration. Consistent!

  14  

projected  values  of  PDSI   that  are  effectively  proxies   for   the  projected   increases   in  316  

temperature,   but   are   not   suitable   indicators   for   soil   moisture.   The   simple  317  

parameterization   of   potential   evapotranspiration  using   a  Thornthwaite   formula   is  318  

not  appreciably  remedied  using  a  more  sophisticated  Penman-­‐Montieth  formulation  319  

(e.g.  Dai  2011,  2012).  Estimates  of  evapotranspiration  based  solely  on  temperature  320  

have  been  regarded  as  problematic  (e.g.  Lockwood  1999;  Burke  et  al.  2006;  Burke  321  

2011).   Palmer’s   formula   for   how   PET   relates   to   a   specific   location’s   radiation  322  

climate,   as   inferred   from   temperature   alone,   becomes   violated   in   the   presence   of  323  

appreciable   warming   and   leads   to   unrealistic   extreme   drought   indications  324  

(Lockwood   1999).   Additionally,   the   sensitivity   of   the   PET   calculation   is   strongly  325  

affected  by  the  choice  of  the  calibration  period  (Karl  1986).  326  

 327  

The   PDSI   was   developed   to   define   drought   using   a   minimum   number   of   widely  328  

observed  variables  and  provides  a  good  snapshot  of  observed  drought  conditions  in  329  

a   variety   of   climates.   However   Dai’s   (2011)   review   of   factors   affecting   drought  330  

raised  several  limitations  of  PDSI  under  global  warming.  Dai  noted  that  the  Palmer  331  

formula  overestimates  potential  evapotranspiration  under  a  warming  climate,  and,  332  

“the  fact  that  they  [the  PDSI  index]  may  not  work  for  the  21st  century  climate  itself  is  333  

a  troubling  sign”.  While  past  performance  has  been  useful  in  appreciating  the  value  334  

of  the  PDSI,  it  is  no  guarantee  for  future  success,  especially  when  applied  to  the  non-­‐335  

stationary  climate  system  currently  unfolding.    336  

 337  

Page 15: Hoerling PDSI Drought RevisedFINAL JCLIM...! 6! 140! because! projected! increases! in! precipitation! are! offset! by! a! warming=induced 141! increase in evapotranspiration. Consistent!

  15  

Our   result   for   severe   drought   indication   over   the   Great   Plains   based   on   PDSI   is  338  

entirely  consistent  with  a  host  of  prior  PDSI-­‐based  drought  projections  but  derived  339  

from  an  earlier   generation  of   climate  models   (e.g.,  Dai  2011,  Wehner   et   al.   2011).  340  

The   similar   results   are   due   to   the   robustness   in   projected   surface   warming  341  

combined   with   the   strong   dependency   of   PDSI   on   temperature,   rather   than   the  342  

soundness  of  Palmer’s   formulation  of   the  complex  surface  water  balance.  Palmer’s  343  

drought  index  avoids  the  complicating  biological  factors  and  the  complex  processes  344  

of   soil-­‐vegetation–atmosphere   transfer,   which   are   essential   in   representing   how  345  

land   surface   moisture   balances   evolve   in   a   warming   climate.   With   the   advent   of  346  

model-­‐based  reanalyses,  and  the  need  to  examine  the  GHG-­‐forced  climate  response  347  

of  drought,  it  is  clear  that  drought  indices  need  to  be  developed  that  incorporate  all  348  

relevant   variables   at   the   proper   time   resolution   to   consistently   define   drought  349  

conditions  across  the  full  range  of  climates.  350  

 351  

An  extensive  comparison  of  the  Thornthwaite  method  with  pan-­‐based  estimates  of  352  

evapotranspiration   in   China   (Chen   et   al.   2005)   illustrates   severe   deficiencies   that  353  

are   only   somewhat   alleviated   by   properly   calibrated   Penman-­‐Monteith   (PM)  354  

estimates.  However,  we  stress  the  fact  that  while  the  use  of  the  PM  formulation  to  355  

estimate  PET  reduces  the  bias  associated  with  the  strong  temperature  dependence  356  

in   Palmer’s   formulation   (see   e.g.,   Burke   et   al.   2006),   the   impact   of   other  357  

simplifications  remain.    For  instance,  the  PM  formulation  lacks  a  land  surface  model  358  

with  plant  phenology  from  which  transpiration  is  physically  derived,  and  still  uses    359  

Page 16: Hoerling PDSI Drought RevisedFINAL JCLIM...! 6! 140! because! projected! increases! in! precipitation! are! offset! by! a! warming=induced 141! increase in evapotranspiration. Consistent!

  16  

simple   accounting   assumptions  of   how  ET  balances   either  precipitation  or  PET   in  360  

Palmer’s    water  balance  calculations.  361  

 362  

In  the  context  of  our  study,   it   is   important  to  consider  the  implications  that  a  non-­‐363  

stationary,   warming   climate   has   for   misinterpreting   drought   severity   based   on  364  

model  projections  of  PDSI.  The  limitations  are:  1)  the  absolute  value  of  PDSI  should  365  

be  viewed  as  an  unreliable  measure  of  drought  severity  in  a  warming  climate  (and  366  

for  these  same  reasons  in  an  extreme  heat  wave  event  like  over  the  Great  Plains  in  367  

2012),   and   2)   inferences   of   possible   amplifying   effects   of   temperature   alone  368  

(separate   from  precipitation   effects)   on  drought   severity   derived   from  analysis   of  369  

Palmer’s   model   should   likewise   be   viewed   as   unreliable.   For   real-­‐time   drought  370  

monitoring   the   first   limitation   could   be   mitigated   by   annually   updating   the  371  

calibration  of   the  Palmer  equations  and   their   coefficients  using   the   latest  data.  By  372  

updating  to  include  the  data  through  2011–12,  one  can  derive  a  more  representative  373  

estimate   of   the   "climatological   water   balance",   given   the   known   appreciable  374  

variability  and  emergent  trends;  however,  the  problem  in  using  PDSI  for  assessing  375  

future  drought  conditions  in  climate  model  projections  remains.    376  

 377  

So  is  a  transition  to  semi-­‐permanent  drought  imminent  for  the  Great  Plains?  While  378  

our   results   cannot   rule   out   the   possibility   of   a   Dust   Bowl   like-­‐period   in   the   near  379  

future,   the   physical   processes   for   such   an   occurrence   are   likely   to   be   related   to  380  

prolonged   deficiencies   in   Great   Plains   precipitation,   rather   than   to   the   local  381  

temperature   effect   of   projected   surface   warming   alone.382  

Page 17: Hoerling PDSI Drought RevisedFINAL JCLIM...! 6! 140! because! projected! increases! in! precipitation! are! offset! by! a! warming=induced 141! increase in evapotranspiration. Consistent!

  17  

 383  

References  384  

 385  

Burke,  E.  J.,  2011:  Understanding  the  sensitivity  of  different  drought  metrics  386  

to  the  drivers  of  drought  under  increased  atmospheric  CO2.  J.  Hydromet.,  12,  387  

1378–1394.  388  

 389  

Burke,  E.  J.,  and  S.  J.  Brown,  2008:  Evaluating  uncertainties  in  the  projection  390  

of  future  drought.  J.  Hydrometeor.,  9,  292–299.  391  

 392  

Burke,  E.  J.,  S.  J.  Brown,  and  N.  Christidis,  2006:  Modeling  the  recent  evolution  393  

of  global  drought  and  projections  for  the  21st  century  with  the  Hadley  Centre  394  

climate  model.  J.  Hydromet.,  7,  1113–1125.    395  

 396  

Chen,   D.,   G.   Gao,   C.-­‐Y.   Xu,   J.   Guo,   and   G.   Ren,   2005:   Comparison   of   the  397  

Thornthwaite   method   and   pan   data   with   the   standard   Penman-­‐Monteith  398  

estimates   of   reference   evapotranspiration   in   China.   Climate   Research,   28,  399  

123–132.  400  

 401    402  

Dai,   A.,   2011:   Drought   under   global   warming:   A   review.   Wiley  403  

Interdisciplinary  Reviews:  Climate  Change,  DOI:  10.1002/wcc.81.    404  

 405  

Page 18: Hoerling PDSI Drought RevisedFINAL JCLIM...! 6! 140! because! projected! increases! in! precipitation! are! offset! by! a! warming=induced 141! increase in evapotranspiration. Consistent!

  18  

Dai,  A.,  2012:  Increasing  drought  under  global  warming  in  observations  and  406  

models.  Nature  Climate  Change,  DOI:  10.1038/NCLIMATE1633.  407  

 408  

Fennessey,  N.M.  and  P.  H.  Kirshen,  1994.  Evaporation  and  evapotranspiration  409  

under   climate   change   in   New   England.  ASCE   J.  Water  Resour.  Plann.  Mgmt.,  410  

120,  48–69.  411  

 412  

Gent,  Peter  R.,  and  Coauthors,  2011:  The  Community  Climate  System  Model  413  

Version  4.  J.  Climate,  24,  4973–4991.    414  

 415  

Hoerling,  M.,  X.  Quan,  and  J.  Eischeid  (2009),  Distinct  causes  for  two  principal  416  

U.S.   droughts   of   the   20th   century,   Geophys.   Res.   Lett.,   36,   L19708,  417  

doi:10.1029/2009GL039860.  418  

 419  

Hu,   Q.,   and   G.   D.   Willson,   2000:   Effects   of   temperature   anomalies   on   the  420  

Palmer  Drought  Severity  Index  in  The  Central  United  States.  Intl.  J.  Climatol.,  421  

20,  1899–1911.  422  

 423  IPCC,  2012:  Managing  the  Risks  of  Extreme  Events  and  Disasters  to  Advance  424  

Climate  Change  Adaptation.  A  Special  Report  of  Working  Groups  I  and  II  of  425  

the  Intergovernmental  Panel  on  Climate  Change  [Field,  C.B.,  V.  Barros,  T.F.  426  

Stocker,  D.  Qin,  D.J.  Dokken,  K.L.  Ebi,  M.D.  Mastrandrea,  K.J.  Mach,  G.-­‐K.  427  

Plattner,  S.K.  Allen,  M.  Tignor,  and  P.M.  Midgley  (eds.)].  Cambridge  University  428  

Press,  Cambridge,  UK,  and  New  York,  NY,  USA,  582  pp.  429  

Page 19: Hoerling PDSI Drought RevisedFINAL JCLIM...! 6! 140! because! projected! increases! in! precipitation! are! offset! by! a! warming=induced 141! increase in evapotranspiration. Consistent!

  19  

Jones,   P.,   M.   Hulme,   K.   Briffa,   and   C.   Jones,   1996:   Summer   moisture  430  

availability   over   Europe   in   the   Hadley   Centre   general   circulation   model    431  

based  on  the  Palmer  Drought  Severity  Index.  Int.  J.  Climatol.,  16,  155–172.    432  

 433  

Karl.  T.,  1986:  The  sensitivity  of  the  Palmer  Drought  Severity  Index  and    434  

Palmer's  Z-­‐Index  to  their  calibration  coefficients  including  potential    435  

evapotranspiration.  J.  Climate  Appl.  Meteor.,  25,  77–86.  436  

 437  

Lawrence,   D.,   and   Coauthors,   2011:   Parameterization   improvements   and  438  

functional   and   structural   advances   in   version   4   of   the   Community   Land  439  

Model.    J.  Adv.  Model.  Earth  Syst.,  3,  doi:10.1029/2011MS000045.  440  

 441  

Lawrence,  D.,  and  Coauthors,  2012:  The  CCSM4  Land  Simulation,  1850-­‐2005:    442  

Assessment  of  surface  climate  and  new  capabilities.    J.  Climate,  25,  2240–  443  

2260.  444  

 445  

Lockwood,   J.   G.,   1999:   Is   potential   evapotranspiration   and   its   relationship  446  

with  actual  evapotranspiration  sensitive  to  elevated  atmospheric  CO2  levels?  447  

Climatic  Change,  41,  193–212.  448  

 449  

Madden,  R.,  and  J.  Williams,  1978:  The  correlation  between  temperature  and  450  

precipitation  in  the  United  States  and  Europe.    Mon.  Wea.  Rev.,  106,  142–147.    451  

Page 20: Hoerling PDSI Drought RevisedFINAL JCLIM...! 6! 140! because! projected! increases! in! precipitation! are! offset! by! a! warming=induced 141! increase in evapotranspiration. Consistent!

  20  

 452  

Milly,   P.,   K.   Dunne,   and   A.   Vecchia,   2005:   Global   pattern   of   trends   in  453  

streamflow  and  water  availability  in  a  changing  climate.  Nature,  438,  347–50.  454  

 455  

Moss,  R.  H.,  J.  A.  Edmonds,  K.  A.  Hibbard,  M.  R.  Manning,  S.  K.  Rose,  D.  P.  van  456  

Vuuren,  T.  R.  Carter,  S.  Emori,  M.  Kainuma,  T.  Kram,  G.  Meehl,  J.  F.  B.  Mitchell,  457  

N.  Nakicenovic,  K.  Riahi,  S.  J.  Smith,  R.  J.  Stouffer,  A.  M.  Thomson,  J.  P.  Weyant,  458  

T.   J.   Wilbanks,   2010:   The   next   generation   of   scenarios   for   climate   change  459  

research  and  assessment.  Nature,  463,  747–756.  460  

 461  

Oleson   and   Coauthors,   2010:   Technical   Description   of   version   4.0   of   the  462  

Community  Land  Model  (CLM).  NCAR  Technical  Note  TN-­‐478+STR,  238  pp.    463  

 464  

Orlowsky,   B.,   and   S.   Seneviratne,   2011:   Global   changes   in   extreme   events:  465  

regional  and  seasonal  dimensions.    Clim.  Change.    DOI:  10.1007/s10584-­‐011-­‐466  

0122-­‐9.    467  

 468  

Palmer,  W.  C.,  1965:  Meteorological  drought.  Research  Paper  45,  U.S.  Dept.  of  469  

Commerce,  58  pp.  470  

 471  

Rind,  D.,  R.  Goldberg,  J.  Hansen,  C.  Rosenzweig,  and  R.  Ruedy,  1990:  Potential  472  

evapotranspiration  and  the  likelihood  of  future  drought.  J.  Geophys.  Res.,  95,  473  

Page 21: Hoerling PDSI Drought RevisedFINAL JCLIM...! 6! 140! because! projected! increases! in! precipitation! are! offset! by! a! warming=induced 141! increase in evapotranspiration. Consistent!

  21  

9983-­‐10,004.    474  

 475  

Schubert,  S.,  M.  Suarez,  P.  Pegion,  R.  Koster,  and  J.  Bacmeister,  2004:  On  the  476  

cause   of   the   1930s   dust   bowl.   Science,   303,   1855–1859   DOI:  477  

10.1126/science.1095048  478  

 479    480  

Sheffield,   J.,   and   E.   Wood,   2008:   Projected   changes   in   drought   occurrence  481  

under   future   global   warming   from   multi-­‐model,   multi-­‐scenario,   IPCC   AR4  482  

simulations.    Clim.  Dyn.,  31,  79-­‐105.    483  

 484  

Shuttleworth,  W.,  1993:  Evaporation.  Handbook  of  Hydrology.  D.  R.  Maidment,  485  

Ed.,  McGraw-­‐Hill,  4.1–4.53.    486  

 487  

Taylor,   K.   E.,   R.   J.   Stouffer,   and   G.   A.   Meehl,   2012:   The   CMIP5   Experiment  488  

Design.   Bull.   Amer.   Meteorol.   Soc.,   in   review.   (A   summary   of   the   CMIP5  489  

Experimental   Design   is   available   at   http://cmip-­‐pcmdi.llnl.gov/cmip5/  490  

docs/Taylor_CMIP5_design.pdf).  491  

 492  

Thornthwaite,  C.,  1948:    An  approach  toward  a  rational  classification  of    493  

climate.    Geogr.  Rev.,  38,  55-­‐94.    494  

 495  

Page 22: Hoerling PDSI Drought RevisedFINAL JCLIM...! 6! 140! because! projected! increases! in! precipitation! are! offset! by! a! warming=induced 141! increase in evapotranspiration. Consistent!

  22  

Wehner,  M.,  D.  Easterling,  J.  Lawrimore,  R.  Heim,  R.  Vose,  and  B.  Santer,  2011:  496  

  Projections  of  future  drought  in  the  continental  Unites  States  and  Mexico.    497  

 J.    Hydromet.,  12,  1359-­‐1377.  498  

 499  

Wells,  N.,  S.  Goddard,  and  M.  Hayes,  2004:    A  Self-­‐Calibrating  Palmer  Drought    500  

Severity  Index.    J.  Climate,  17,  2335-­‐2351.    501  

 502  

Winter,   J.M.,   and  E.A.B.  Eltahir,  2012:  Modeling   the  hydroclimatology  of   the  503  

midwestern   United   States.   Part   2:   Future   climate.   Clim.   Dyn.,   38,   595-­‐611,  504  

doi:10.1007/s00382-­‐011-­‐1183-­‐1.  505  

 506  

 507  

 508  

 509  

 510  

 511  

 512  

 513  

 514  

 515  

 516  

 517  

 518  

Page 23: Hoerling PDSI Drought RevisedFINAL JCLIM...! 6! 140! because! projected! increases! in! precipitation! are! offset! by! a! warming=induced 141! increase in evapotranspiration. Consistent!

  23  

Figure  Captions  519  

 520  

Figure   1.   Annual   time   series   of   PDSI   averaged   over   the   Great   Plains   (30°N–50°N,  521  

105°W–95°W)   for   1851–2100   (the   calibration   period   is   1901–2000).   Individual  522  

traces   correspond   to   each   of   the   three   CCSM4   model   integrations   (gray   curves)  523  

while  the  3-­‐run  ensemble  average  is  shown  by  the  yellow  curve.  The  time  series  are  524  

smooth  with  a  9  point  Gaussian  filter.  525  

 526  

Figure   2.   Spatial   patterns   of   decadally   averaged   land   surface   conditions   for   PDSI  527  

(top   row),   10cm   soil   moisture   (second   row),   precipitation   (third   row),   and  528  

temperature  (bottom  row)  for  1865–1875  (left  panel)  and  2045–2055  (right  panel)  529  

for   the   CCSM4  model   integrations.   Anomalies   are   computed   from   the   1901–2000  530  

reference  period.  The  1865–1875  results  are  based  on  a  single  model  run,  and  the  531  

results   for  2045–2055  are  based  on  the  3-­‐run  ensemble  average.  Box   in   lower   left  532  

panel   denotes   the  Great  Plains  domain  over  which   spatial   averages   are   computed  533  

for  time  series  analysis  in  Figs.  1  and  3,  and  scatter  plot  relationships  in  Fig.  4.  534  

 535  

Figure  3.    Standardized  annual  time  series  of  Great  Plains  surface  temperature  (red  536  

curve),  evapotranspiration  (purple),  precipitation  (green),  soil  moisture  (blue),  and  537  

PDSI   (yellow)   as   simulated   in   the   ensemble   of   CCSM4   forced   integrations.   Also  538  

shown   are   the   Palmer-­‐model   derived   annual   time   series   of   evapotranspiration  539  

(yellow)   and   potential   evapotranspiration   (orange).   The   reference   period   for   the  540  

Page 24: Hoerling PDSI Drought RevisedFINAL JCLIM...! 6! 140! because! projected! increases! in! precipitation! are! offset! by! a! warming=induced 141! increase in evapotranspiration. Consistent!

  24  

standardization   is   1901–2000   and   each   of   the   curves   is   smoothed  with   a   9   point  541  

Gaussian  filter.  542  

 543  

Figure  4.    Comparison  of  the  relationship  between  annual  10-­‐cm  soil  moisture  and  544  

PDSI  for  the  1901–2000  period  (blue  circles,  R=+0.61)  with  that  of  the  2001–2100  545  

period  (R=+0.48)  based  on  the  diagnosis  of  all  three  CCSM4  simulations.  546  

 547  

 548    549    550    551    552    553    554    555    556    557    558    559    560    561    562    563    564    565    566    567    568    569  

Page 25: Hoerling PDSI Drought RevisedFINAL JCLIM...! 6! 140! because! projected! increases! in! precipitation! are! offset! by! a! warming=induced 141! increase in evapotranspiration. Consistent!

  25  

 570    571  Figure   1.   Annual   time   series   of  PDSI   averaged  over   the  Great  Plains   (30°N–50°N,  572  105°W–95°W)   for   1850–2100   (the   calibration   period   is   1901-­‐2000).   Individual  573  traces   correspond   to   each   of   the   three   CCSM4   model   integrations   (gray   curves)  574  while  the  3-­‐run  ensemble  average  is  shown  by  the  yellow  curve.  The  time  series  are  575  smooth  with  a  9  point  Gaussian  filter.  576    577  

Page 26: Hoerling PDSI Drought RevisedFINAL JCLIM...! 6! 140! because! projected! increases! in! precipitation! are! offset! by! a! warming=induced 141! increase in evapotranspiration. Consistent!

  26  

 578    579  Figure   2.   Spatial   patterns   of   decadally   averaged   land   surface   conditions   for   PDSI  580  (top   row),   10-­‐cm   soil   moisture   (second   row),   precipitation   (third   row),   and  581  temperature  (bottom  row)  for  1865–1875  (left  panel)  and  2045–2055  (right  panel)  582  for   the   CCSM4  model   integrations.   Anomalies   are   computed   from   the   1901–2000  583  reference  period.  The  1865–1875  results  are  based  on  a  single  model  run,  and  the  584  results   for  2045–2055  are  based  on  the  3-­‐run  ensemble  average.  Box   in   lower   left  585  panel   denotes   the  Great  Plains  domain  over  which   spatial   averages   are   computed  586  for  time  series  analysis  in  Figs.  1  and  3,  and  scatter  plot  relationships  in  Fig.  4.      587    588    589  

Page 27: Hoerling PDSI Drought RevisedFINAL JCLIM...! 6! 140! because! projected! increases! in! precipitation! are! offset! by! a! warming=induced 141! increase in evapotranspiration. Consistent!

  27  

 590    591  Figure  3.  Standardized  annual  time  series  of  Great  Plains  surface  temperature  (red  592  curve),  evapotranspiration  (purple),  precipitation  (green),  soil  moisture  (blue),  and  593  PDSI   (yellow)   as   simulated   in   the   ensemble   of   CCSM4   forced   integrations.   Also  594  shown   are   the   Palmer-­‐model-­‐derived   annual   time   series   of   evapotranspiration  595  (yellow)   and   potential   evapotranspiration   (orange).   The   reference   period   for   the  596  standardization   is   1901–2000   and   each   of   the   curves   is   smoothed  with   a   9   point  597  Gaussian  filter.  598    599  

Page 28: Hoerling PDSI Drought RevisedFINAL JCLIM...! 6! 140! because! projected! increases! in! precipitation! are! offset! by! a! warming=induced 141! increase in evapotranspiration. Consistent!

  28  

 600    601  Figure  4.    Comparison  of  the  relationship  between  annual  10cm  soil  moisture  and  602  PDSI   for   the  1901-­‐2000  period  (blue  circles,  R=+0.61)  with   that  of   the  2001-­‐2100  603  period  (R=+0.48)  based  on  the  diagnosis  of  all  three  CCSM4  simulations.  604