“future directions” for wireless technology &

24
“Future Directions” for Wireless Technology www.winlab.rutgers.edu & www.orbit-lab.org

Upload: abel-hawkins

Post on 28-Dec-2015

220 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: “Future Directions” for Wireless Technology  &

“Future Directions” for Wireless Technology

www.winlab.rutgers.edu &

www.orbit-lab.org

Page 2: “Future Directions” for Wireless Technology  &

Some History – Failure of 3G

Reality Bites: and they still don’t get it …

Page 3: “Future Directions” for Wireless Technology  &

Some History – Success of 802.11

Page 4: “Future Directions” for Wireless Technology  &

802.11 Problem: Alphabet soup

Page 5: “Future Directions” for Wireless Technology  &

802.11 Standards

Page 6: “Future Directions” for Wireless Technology  &

And how do you get in?

• Create more “standards”– RFID ~ 10-1000 b/sec

– ZigBee (802.15.4) ~ 250 Kb/s

– Bluetooth ~ 1 Mb/sec

– Wi-Max (802.16)

– 802.11n

– 3G (they are still trying)

– 4G?

• Big problem: how to verify claims?

Page 7: “Future Directions” for Wireless Technology  &

Orbit Project Rationale

• Wireless testbeds motivated by:– cost & time needed to develop experimental prototypes

– need for reproducible protocol evaluations

– large-scale system studies (...emergent behavior)

– growing importance of cross-layer protocol studies

– creation of communities for wireless network research

• ORBIT: open-access multi-user facility for experimental wireless networking research primarily in unlicensed bands– ~24/7 service facility with remote access

– open interfaces for flexible layer 2,3 & cross-layer protocols

– extensive measurements at PHY, MAC and Net layers

– support for wide range of radio system scenarios

Page 8: “Future Directions” for Wireless Technology  &

Orbit• ORBIT consists of radio grid emulator + field trial network• Emulator used for detailed protocol evaluations in reproducible

complex radio environments• Field trial network for further real-world evaluation & application

trials

Page 9: “Future Directions” for Wireless Technology  &

Orbit co-PI’s

• WINLAB, Rutgers University – Dipankar Raychaudhuri– Max Ott– Ivan Seskar – Wade Trappe – Manish Parashar – Yanyong Zhang

• Columbia University– Henning Schulzrinne

• Princeton University– Hisashi Kobayashi

• IBM Research – Arup Acharya

• Lucent Bell Labs– Sanjoy Paul

• Thomson– Kumar Ramaswamy

Page 10: “Future Directions” for Wireless Technology  &

Urban

300 meters

500 meters

Suburban

20 meters

ORBIT Testbed

20 meters

HallwayOffice

30 meters

Radio Mapping Algorithm

Page 11: “Future Directions” for Wireless Technology  &

The Grid: Architecture

80 ft ( 20 nodes )

70

ft

m (

20

no

de

s )

Control switch

Data switch Application Servers

(User applications/ Delay nodes/

Mobility Controllers / Mobile Nodes)

Internet VPN Gateway / Firewall

Back-end servers

Front-endServers

Gigabit backboneVPN Gateway to

Wide-Area Testbed

SA1 SA2 SAP IS1 IS2 ISQ

RF/Spectrum Measurements Interference Sources

Page 12: “Future Directions” for Wireless Technology  &

The Grid: Hardware

512 MBRAM

Gigabit Ethernet(control)

GigabitEthernet

(data)

Atheros miniPCI 802.11a/b/g

22.1Mhz

1 Ghz

pwr/resetvolt/temp

20 GBDISK

Serial Console

110 VAC

RJ11 NodeIdBox+5v standby

PowerSupply

CPUVIA

C3 1Ghz

Atheros miniPCI 802.11a/b/g

BluetoothUSB

CPURabbit Semi

RCM3700

10 BaseTEthernet

(CM)

Page 13: “Future Directions” for Wireless Technology  &

RF Interference grid

• Number of transmitter antennas providing spatial distribution of interference sources (BW = 40 MHz, f0=250 KHz – 6 GHz)

• Ideally @ each antenna linear combination of 2-8 sources (cost issue)

• Variety of interference types (W-CDMA, cdma2000, 1xEV-DO/DV, TD-SCDMA, cdmaOne, GSM/EDGE, GPRS/EGPRS, Bluetooth, GPS, enhanced multitone, NPR, AWGN, or up to 8 sec of arbitrary waveform generation)

AgilentESG

…AgilentESG

AgilentESG

+

Page 14: “Future Directions” for Wireless Technology  &

ORBIT Field trial (Phase 2)

• Requires ruggedized outdoor ready equipment (suggesting of the shelf technologies)

• Standard nodes used in dual role of mobile AP/mobile nodes deployed on busses

• Where possible connected to wired infrastructure; otherwise use of second radio interface for mesh type networking/wide area access

Page 15: “Future Directions” for Wireless Technology  &

Experiment Support Architecture

System

Control

Measure

Dep

loy

& C

onfi

gure

Experimenter

Results

Definition

Page 16: “Future Directions” for Wireless Technology  &

Defining an Experiment

Experiment

Static

- Mapping nodes to prototype

- Binding free properties

Dynamic

P1

Pi

Topology Application

Properties

Measurements

Test code

Prototype

App 1

Sys

Mapping Strategy

Page 17: “Future Directions” for Wireless Technology  &

Formulation of Link SNR Mapping

STEP 1

Modeling Link SNR of Real Environments

Prototype network (AP, Ad Hoc, etc.)

Spatial distribution of terminals

Empirical/Analytical path loss model

Setting dedicated noise-like sources

Setting locations of grid nodes

Setting transmission powers of nodes

Fidelity of Grid SINR to Link SNR

STEP 2

Configuring Grid SINR

Page 18: “Future Directions” for Wireless Technology  &

OML: Measurement Framework

XDR Encoded data over multicast channel .

Collection server

SQL DB

OML transport layer

OML XDR decoder

OML SQL module

User application

OML interface to user application

OML transport layer

OML data filter , id = xx

OML data filter , id = yy pluggable filters

Experiment node

Berkeley Queues

Page 19: “Future Directions” for Wireless Technology  &

Experiment Definition

Experiment.name = "tutorial-1"Experiment.project = "Orbit::Tutorial"Experiment.startMode = Experiment::REBOOT

## Define nodes used in experiment#node([2, 3], :sender) {|n| n.prototype("http://apps.orbit-lab.org/sender", { :if => Node::W0_IF, :packetSize => Experiment.parameter("packetSize"), :rate => Experiment.parameter("rate") })}node([3, 4]) {|n| n.prototype("http://apps.orbit-lab.org/receiver", {:if => Node::W0_IF})}

## Configure environment#node("/*/*").net.w0 {|n| n.essid = "HelloWorld" n.mode = "ad-hoc" n.channel = 1 n.xmitPower = 1 ;# What is 1? n.bitrate = "11Mbps" # Force single rate n.ip = "%10.0.%x.%y"}

# Start experimentwhenReady {|e, n| p.packetSize = 1024 p.rate = 250 e.sleep 5.0 e.done}

Page 20: “Future Directions” for Wireless Technology  &

Prototype Definition

p = Prototype.create("http://apps.orbit-lab.org/sender")p.name = "Sender"p.description = "Nodes which send a stream of packets"p.addParameter(:if, "Name of interface to use", Node::W0_IF)p.addParameter(:packetSize, "Payload length of outgoing packets", 1000)p.addParameter(:rate, "Rate to send", 1000)p.addParameter(:channel, "Channel to send on", 1)p.addParameter(:useSocket, "If true use socket, otherwise use libmac for transport", true)

genny = p.addApplication(:gennySender, "http://apps.orbit-lab.org/gennySender#gennySender")genny.bindProperty(:interface_name, :if)genny.bindProperty(:rate)genny.bindProperty(:payload_length, :packetSize)genny.bindProperty(:use_socket, :useSocket)

genny.addMeasurement(:group3, Filter::SAMPLE, {Filter::SAMPLE_SIZE => 100}, [ ["offered_load", Filter::MEAN] ])

<prototype id='http://apps.orbit-lab.org/sender'> <name>Sender</name> <url>http://apps.orbit-lab.org/sender</url> <description>Nodes which send a stream of packets</description> <parameters> <parameter name='packetSize' id='packetSize'> <description>Payload length of outgoing packets</description> <default>1000</default> </parameter> … </parameters> <applications> <application refid='http://apps.orbit-lab.org/gennySender#gennySender'> <properties> <property idref='interface_name'><binding idref='if'/></property> … </properties> <measurements> <measurement id='group3'> <properties> <property idref='uri:oml:filter:trigger'> … </properties> <metric refid='offered_load'> <filter idref='uri:oml:filter:mean'/> …

Page 21: “Future Directions” for Wireless Technology  &

Analyzing Experiments

function nsf(dbServer, dbUser, dbPW, database);

% Part where we retrieve data from the database;mysql('open',dbServer, dbUser, dbPW);mysql('use', database);output = struct('time',[],'thr_all',[],'node',[]);[output.time, output.thr_all, output.node] = mysql('select timestamp, throughput, node_id from group2');[thru1_4, time1_4, thru3_1, time3_1] = sort_mysql(output);

% Finally, the plotting partsubplot(2,1,1); plot(time1_4, thru1_4, '-*');title('Throughput On Obstructed Link');xlabel('Time (sec)'); ylabel('Throuhput (bps)'); grid on;subplot(2,1,2); plot(time3_1, thru3_1, '-*');title('Throughput On Monitor Node'); xlabel('Time (sec)');

ylabel('Throuhput (bps)'); grid on;

Page 22: “Future Directions” for Wireless Technology  &

Progress

• Installed Production Nodes• Scaled to 64 Nodes• Added Bluetooth• Semi-automated calibration (+/- 10db)• Web site is up • Supporting “Click”• Started with external experimenter (Columbia)• Started exploring mobility & NS-2 integration• V2 of node handler & OML in beta• 5 Papers accepted

Page 23: “Future Directions” for Wireless Technology  &

Future

• Extend Beta testers to industry EWPs• Move into new building (ribbon cutting done)• Explore new radios (already have Zigbee, Mote,

GNU radio)

• Install to 400

• Interested? Join mailing list www.orbit-lab.org/community/mailingLists

Page 24: “Future Directions” for Wireless Technology  &

www.orbit-lab.org