Fungsi Linear

Download Fungsi Linear

Post on 09-Jul-2015

196 views

Category:

Documents

4 download

Embed Size (px)

TRANSCRIPT

<p>FUNGSI LINEARIMELDA</p> <p>imelda all right's reserved</p> <p>FUNGSI DEFENISI FUNGSI :Suatu bentuk hubungan matematis yang menyatakan hubungan ketergantungan (hubungan fungsional) antara satu variabel dengan variabel lainnya</p> <p>imelda all right's reserved</p> <p>dibaca Y adalah sama dengan fungsi dari X</p> <p>CONTOH : y = f (x),</p> <p> menyatakan hubungan antara 2 variabel yaitu</p> <p>variabel y &amp; x. Hubungan di antara variabel x dan y mengharuskan adanya satu nilai y yang unik untuk setiap nilai x, tetapi hal yang sebaliknya tidak diharuskan. Jadi lebih dari satu nilai x dapat dihubungkan dengan nilai y yang sama, tetapi sebaliknya beberapa nilai y tidak dapat dihubungkan dengan nilai x yang sama.</p> <p>imelda all right's reserved</p> <p>Gambar Fungsi:(a)y y y3 y2 y1 y (b) y y3</p> <p>(c)</p> <p>y2 y1x1 x2 x3 x x x1 x</p> <p>x1</p> <p>x2</p> <p>imelda all right's reserved</p> <p>UNSUR FUNGSI ADA 3:1. VARIABEL 2. KOEFISIEN 3. KONSTANTAVARIABEL &amp; KOEFISIEN : Selalu Ada Pada Setiap Bentuk Fungsi KONSTANTA : Belum Tentu Adaimelda all right's reserved</p> <p>VARIABEL (PEUBAH) Sesuatu yang besarnya dapat berubah, misalnya sesuatu yang dapat menerima nilai yang berbeda Menggambarkan atau mewakili suatu faktor tertentu Ditulis dengan huruf latin (Huruf Kecil): x, y, z, p, q, c, i Melambangkan sumbu dalam sistem koordinat</p> <p>imelda all right's reserved</p> <p>Contoh Variabel Variabel dalam matematika ekonomisering dilambangkan dengan huruf yang ada di depan nama variabel tersebut. P = Price (Harga) Q = Quantity (jumlah yang ditawarkan/diminta) C = Cost (Biaya) I = Investment (Investasi)imelda all right's reserved</p> <p>SIFAT VARIABELVARIABEL TERIKAT (DEPENDENT VARIABLE) : Nilai variabel tergantung atau ditentukan oleh variabel lain. Variabel Endogen : suatu variabel yang nilai penyelesaiannya diperoleh dari dalam model.VARIABEL BEBAS (INDEPENDENT VARIABLE): Nilai variabel tidak tergantung pada variabel lain. -&gt; Variabel Eksogen : suatu variabel yang yang nilainya diperoleh dari luar model dan nilai-nilai variabel yang diperoleh dari data yang ada. y : variabel terikat/dependent variable/variabel endogen x : variabel bebas/independent variable/variabel eksogen</p> <p>y = f (x)</p> <p>Ingat !!! Suatu variabel mungkin merupakan variabel endogen pada suatu model dan mungkin juga merupakan variabel eksogen pada model lainnya. Contoh : Pada analisa penentuan harga dan jumlah keseimbangan pasar suatu barang, harga adalah variabel endogen tapi dalam penentuan pengeluaran konsumen maka variabel p adalah variabel eksogen karena p merupakan data konsumen perorangan.</p> <p>imelda all right's reserved</p> <p>KOEFISIEN &amp; KONSTANTA KONSTANTA : Bilangan atau angka yang (kadang-kadang) turut membentuk suatu fungsi tetapi berdiri sendiri sebagai bilangan &amp; tidak terkait pada suatu variabel tertentu KONSTANTA : KUANTITAS YANG NILAIINYA TIDAK BERUBAH DALAM SUATU MASALAH TERTENTU. Jika suatu konstanta digabung dengan sebuah variabel, maka angka itu sering disebut dengan koefisien. KOEFISIEN : Bilangan atau angka yang terkait pada &amp; terletak di depan suatu variabel dalam</p> <p>sebuah fungsi</p> <p>KONSTANTA BILANGAN (NUMERICAL CONSTANT) : MEMPUNYAI NILAI YANG SAMA DALAM SEMUA SOAL. KONSTANTA SIMBOLIK (SYMBOLIC CONSTANT ATAU PARAMETER) : MEMPUNYAI NILAI YANG SAMA DALAM SOAL TERTENTU TETAPI DAPAT MEMPUNYAI NILAI YANG LAIN DALAM SOAL YANG BERBEDA. (misalnya: aP sebagai pengganti 0,7P) Konstanta Parameter biasanya dinyatakan dengan simbol a, b, c atau dalam abjad Yunani</p> <p>NOTASI FUNGSI UMUM: y = f (x) Contoh : y = 5 + 0,7 x atau f (x) = 5 + 0,7 x</p> <p>imelda all right's reserved</p> <p>3 Macam Persamaan Variabel dapat berdiri sendiri, tetapi mempunyai arti jika berhubungan satu dengan yang lain melalui persamaan dan ketidaksamaan. 3 Macam Persamaan Definitional Equation : membentuk identitas di antara dua pernyataan yang mempunyai arti yang persis sama. Persamaan ini disebut dengan persamaan identik. Contoh : GNP = C + I + G + (X-M) Behavioral Equation : menunjukkan perubahan perilaku suatu variabel sebagai akibat dari perubahan variabel lainnya, yang ada hubungannya. Contoh : Perubahan perilaku perusahaan, misalnya perubahan biaya total dari suatu perusahaan sebagai akibat dari perubahan jumlah produksi (TC = 100 + 25 Q) Equilibrium Equation : menggambarkan prasyarat untuk pencapaian keseimbangan (equilibrium). Contoh : Model keseimbangan pasar ; Qd = Qs Model keseimbangan pendapatan nasional ; S = I</p> <p>imelda all right's reserved</p> <p>Fungsi Umum VS Fungsi Khusus Fungsi Umum (General Function) :Menyebutkan semua variabel bebas yang mempengaruhi variabel terikat, akan tetapi tidak memberi penjelasan apapun mengenai bagaimana variabel bebas tersebut mempengaruhi variabel terikat Contoh : y = f (x), Qd = f (p, Y, pj, T) Fungsi Khusus (Specific Function) : Mencatat argumen-argumen &amp; bagaimana variabel bebas mempengaruhi variabel terikat Contoh : Qd = 250 5 p + 0,03 Y + pj + 0,02 T</p> <p>imelda all right's reserved</p> <p>JENIS FUNGSI Fungsi Linear(Fungsi berderajat 1) Pangkat tertinggi dari variabelnya = 1 Contoh : y = a + bx</p> <p> Fungsi Non LinearPangkat tertinggi &gt; 1 Fungsi Kuadrat : y = a + bx + cx2 Fungsi Kubik y = a + bx + cx2 + dx3</p> <p>imelda all right's reserved</p> <p>JENIS FUNGSI BERDASARKAN LETAK RUAS VARIABELNYA FUNGSI EKSPLISITFungsi yang variabel bebas &amp; variabel terikatnya terletak di ruas yang berbeda sehingga dapat dengan jelas dibedakan. y = f (x) y = a 0 + a1 x y = a0 + a1 x + a2x2 y = a0 + a1 x + a2x2 +a3x3imelda all right's reserved</p> <p> FUNGSI IMPLISITFungsi yang variabel bebas &amp; variabel terikatnya terletak di ruas yang sama sehingga tidak mudah dapat dibedakan. 0 = f (x,y) 0 = a0 + a1 x - y 0 = a0 + a1 x + a2x2 - y 0 = a0 + a1 x + a2x2 +a3x3-y</p> <p>PENGGAMBARAN FUNGSI LINEAR Hasil berupa garis lurus Cara : menghitung koordinat titik-titik yangmemenuhi persamaannya kemudian memindahkan pasangan-pasangan titik ke sistem koordinat (sumbu silang) Sumbu horisontal (absis) : x Sumbu vertikal (ordinat) : y y=3+2x ; y = 2x x=0 1 2 3 4 x=0 1 2 3 4 y = 3 5 7 9 11 y=0 2 4 6 8imelda all right's reserved</p> <p>PENGGAMBARAN FUNGSI LINEAR y=a+bx y = 3 + 2x y = 8 2xa = konstanta = penggal (intercept) garis pada sumbu vertikal y = titik dimana grafik memotong sumbu vertikal y = terjadi jika variabel bebas x sama dengan nol. (Nilai y pada x = 0).</p> <p>Untuk: Y = bx atau a=0, contoh : y = 2 x, maka garis (grafik) tidak mempunyai penggal pada sumbu vertikal = garis bermula dari titik (0,0).b = koefisien = arah = lereng garis = kemiringan (slope) garis mengukur perubahan nilai variabel pada sumbu vertikal dibagi dengan nilai variabel pada sumbu horisontal = ^y/^x. b = mencerminkan besarnya tambahan nilai y untuk setiap tambahan satu nilai x b &gt; 0 : garis bergerak dari kiri bawah ke kanan atas b &lt; imelda all right's 0 : garis bergerak dari kiri atas ke kanan bawahreserved</p> <p> y = a -&gt; b = 0 Garis lurus sejajar </p> <p>sumbu horisontal x Besar kecilnya nilai x tidak mempengaruhi nilai yy</p> <p> x=c Garis lurus sejajar </p> <p>sumbu vertikal y Besar kecilnya nilai y tidak mempengaruhi nilai xy</p> <p>imelda all right's reserved</p> <p>x</p> <p>c</p> <p>x</p> <p>PEMBENTUKAN PERSAMAAN LINEARDwi-koordinat ; diketahui 2 titik A (x1,y1)&amp; B (x2, y2) y y1 = x x1 y2 y1 x2 x1 Contoh : A (2,3) dan B (6,5) Koordinat-lereng diketahui lereng b dan titik koordinat (x1,y1) y y1 = b (x x1) Contoh : b = 0,5 dan A (2,3) Penggal-lereng diketahui intersep dan koefisien: y = a + bx Contoh : a= 3 dan b = 0,4 Dwi-penggal diketahui penggal vertikal dan penggal horisontal y=a a x c a = penggal vertikal dan b = penggal horisontal imelda all right's Contoh : a = 2 dan c = -4reserved</p> <p>LERENG LERENG adalah hasil bagi selisih antara dua ordinat (y2 y1) terhadap Selisih Antara Dua Absis (x2 x1). Cara Dwi Koordinat : y y 1 = x x1 y2 y1 x2 x1 y y1 = y2 y 1 (x x1) (x2 x1) Cara Koordinat Lereng : y y1 = b (x x1) b = y2 y1 x2 x1imelda all right's reserved</p> <p>HUBUNGAN DUA GARIS LURUS BERIMPITy1= ny2 ; a1 = na2 ; b1 = nb2 SEJAJAR a1 a2 ; b1 = b2 BERPOTONGAN b 1 b2 TEGAK LURUS b 1 = -1/b2imelda all right's reserved</p> <p>Berimpit y1= ny2 ; a1 = na2 ; b1 = nb2 y</p> <p>Sejajar :a1 a2 ; b1 = b2 y</p> <p>0 y</p> <p>x</p> <p>0y</p> <p>x</p> <p>0imelda all right's reserved</p> <p>x Berpotongan b1 b2</p> <p>0</p> <p>x Tegak Lurus : b 1 = -1/b2</p> <p>PENCARIAN AKAR-AKAR PERSAMAAN LINEAR SUBSITUSI ELIMINASI</p> <p> DETERMINANimelda all right's reserved</p> <p>SUBSITUSI Dua persamaan dengan 2 bilangan anudapat diselesaikan dengan cara menyelesaikan terlebih dahulu sebuah persamaan untuk salah satu bilangan anu, kemudian mensubsitusikannya ke dalam persamaan lain. Contoh : 2x + 3y = 21 dan x + 4y = 23imelda all right's reserved</p> <p>ELIMINASI Dua persamaan dengan 2 bilangan anudapat diselesaikan dengan cara menghilangkan untuk sementara (mengeliminasi) salah satu dari bilangan anu yang ada, sehingga dapat dihitung nilai dari bilangan anu yang lain. Contoh : 2x + 3y = 21 dan x + 4y = 23imelda all right's reserved</p> <p>DETERMINAN</p> <p>imelda all right's reserved</p> <p>LATIHAN: PRACTICES MAKE PERFECT Diketahui dua pasang persamaan:1) Qd = a + bP Qs = c + dP 2) S = -50 + 0,3 Y I = 250 0,2 i Tentukan : a. konstanta baik bilangan maupun parametrik b. Variabel bebas dan terikat c. koefisienimelda all right's reserved</p> <p>Nyatakan masing-masing pernyataan berikut dalam notasi fungsi umum dan khusus: Total cost (TC) sebagai fungsi jumlah tenaga kerja (L) yang diperkerjakan dan jumlah modal (K) yang digunakan, apabila harga tenaga kerja Rp 3,- dan harga modal Rp 5, Total revenue (TR) sebagai fungsi output (Q), jika Pq = 5 Biaya gaji harian (w) untuk tenaga kerja (L) sebagai fungsi L. Jika PL = 42,50 sehari.imelda all right's reserved</p> <p>Fungsi Permintaan</p> <p>imelda all right's reserved</p> <p>Fungsi Penawaran</p> <p>imelda all right's reserved</p> <p>Keseimbangan Pasar</p> <p>imelda all right's reserved</p> <p>Keseimbangan Pasar: Pajak Spesifik</p> <p>imelda all right's reserved</p> <p>Keseimbangan Pasar: Pajak Proporsional</p> <p>imelda all right's reserved</p> <p>Keseimbangan Pasar: Subsidi</p> <p>imelda all right's reserved</p> <p>Keseimbangan Pasar Dua Macam Produk </p> <p> Dua produk dimungkinkan mempunyai hubungan penggunaan sehingga permintaan atasproduk tersebut dipengaruhi oleh harga barang itu sendiri dan harga barang lain. qx = f (px, py) qdx = a0 a1Px + a2Py qdy = b0 + b1Px + b2Py qsx = f (px, py) qsx = -m0 + m1Px + m2Py qsy = -m0 + m1Px + m2Py</p> <p> Hubungan subsitusi (saling menggantikan) : teh dan kopi -&gt; hubungan + Hubungan Komplementer (saling melengkapi) : kopi dan gula -&gt; hubungan Contoh :</p> <p>Diketahui fungsi permintaan dan penawaran dari dua macam produk yang mempunyai hubungan penggunaan sebagai berikut: qdx = 5 2Px + a2Py qdy = 6 + Px - Py qsx = -5 + 4Px - Py qsy = -4 - Px + 3Py</p> <p>imelda all right's reserved</p> <p>Biaya Total (Total Cost) Biaya total yang dikeluarkan oleh sebuah perusahaan dalamoperasional bisnisnya terdiri atas biaya tetap (fixed cost = FC) dan biaya variabel (variable cost = VC) Biaya tetap : tidak tergantung pada jumlah barang yang dihasilkan, sehingga biaya ini tidak berubah (konstan) walaupun berapa banyak pun barang yang dihasilkandalam suatu skala tertentu. Biaya tetap berupa konstanta, kurva berbentuk garis lurus sejajar dengan sumbu horisontal q (jumlah yang dihasilkan). Biaya variabel : tergantung pada jumlah barang yang dihasilkan (semakin banyak jumlah barang yang dihasilkan maka semakin besar biayanya). Biaya variabel merupakan fungsi dari jumlah barang yang dihasilkan, kurva berbentuk garis lurus berlereng positif dan bermula dari titik nol.</p> <p>imelda all right's reserved</p> <p>Fungsi Biaya Total</p> <p> FC = k VC = f (Q) = vQ TC = C = FC + VC = k + vQCC = k + vQ VC = vQ</p> <p>FC = k</p> <p>imelda all right's reserved</p> <p>0</p> <p>Q</p> <p>Biaya Rata-rata (Avarege Cost = AC) AFC = FC / Q AVC = VC / Q AC = TC / Q</p> <p>imelda all right's reserved</p> <p>Penerimaan Total (Total Revenue) Penerimaan total merupakan fungsi dari jumlahproduk yang dijual TR = R = f (Q) R=Q.P Q = R / P (Jumlah barang yang terjual) Penerimaan Rata-rata (AR)AR = R / Q maka AR = R / Q = R / Q = P AR = Pimelda all right's reserved</p> <p>Analisis Pulang Pokok (Break Even Point Analysis) = Titik Impas BEP = Tingkat jumlah produk (Q) dimanapenerimaan total dari hasil penjualan hanya cukup untuk menutupi biaya produksi yang dikeluarkan perusahaan. Profit : TR &gt; TC ; &gt; 0 C, R Rugi : TR &lt; TC ; &lt; 0BEP</p> <p>R C VC FC</p> <p>imelda all right's reserved</p> <p>Q</p> <p>BEP Profit = TR TC TR = TCPQ = FC + VC PQ = FC + vQ PQ vQ = FC Q (P v) = FC Q = FC / (P-v) atau QBEP = QE = FC / (P-v)imelda all right's reserved</p> <p>Contoh: Dalam acara Bubar, SFC sepakat untuk melayani 100 anggota suporterSFC pada menu seharga Rp 15 per orang dan setiap tamu tambahan pada harga Rp 20 per orang. a) Nyatakan biaya C dari perjamuan Bubar sebagai suatu fungsi dari tamu (suporter) G. b) Identifikasi variabel tak bebas dan variabel bebas. c) Gambarkan fungsi tersebut dalam grafik. Suatu perusahaan menghasilkan produk dengan biaya variabel per unit Rp 4.000,- dan harga jualnya per unit Rp 12.000,-. Biaya tetap sebesar Rp 2.000.000,-. Tentukanlah jumlah per unit produk yang harus perusahaan jual agar mencapai pulang pokok? Biaya total yang dikeluarkan perusahaan ditunjukkan oleh persamaan TC = 15.000 + 25Q dan penerimaan total TR = 100Q. Pada tingkat produksi berapa unit perusahaan ini berada dalam kondisi pulang pokok ? Hitung berapa keuntungan/kerugian perusahaan? Apa yang terjadi jika perusahaan berproduksi sebanyak 100 dan 300 unit?</p> <p>imelda all right's reserved</p> <p>Fungsi Anggaran Teori Konsumen Batas maksimumkemampuan seorang konsumen membeli dua macam output atau lebih berkenaan dengan jumlah pendapatannya dan harga masing-masing output Gambar fungsi anggaran disebut Budget Line M = x. Px + y . Py</p> <p> Teori Produsen Batas maksimum</p> <p>kemampuan seorang produsen dalam menggunakan dua macam input (atau lebih) berkenaan dengan jumlah dana yang dimiliki dan harga masing-masing input Gambar fungsi anggaran disebut isocost M = x. Px + y . Py</p> <p>imelda all right's reserved</p> <p>Contoh: Bentuklah persamaan anggaran seorangkonsumen untuk topi dan jaket. Jika uang yang dimilikinya sebesar Rp 500.000,-, sedangkan harga topi dan jaket masing-masing Rp 10.000,dan Rp 50.000,- per unit. Jika semua uangnya dianggarkan dibelanjakan untuk jaket, berapa jaket yang dapat dibeli? Berapa unit topi dapat dibeli jika ia hanya membeli jaket sebanyak 6 unit?</p> <p>imelda all right's reserved</p> <p>Fungsi Konsumsi : menjelaskan hubungan konsumsi dan pendapatan nasional </p> <p> Ekonomi makro -&gt; Pendapatan masyarakat sebuah negara secara keseluruhan</p> <p>(pendapatan nasional = Y) dialokasikan ke dua kategori pengeluaran yaitu konsumsi (C) dan tabungan (S): Y=C+S Fungsi Konsumsi (C) : C = Co + c Y C = f (Y) -&gt; Konsumsi berhubungan dengan pendapatan yang dapat dibelanjakan {(C = f Yd)} Co = Autonomous Consumptions = Konsumsi nasional pada saat pendapatan nasional sebesar nol. Pada konsumsi individu, maka C = Co+ c Yd. a = sejumlah konsumsi mutlak (absolut) tertentu untuk mempertahankan hidup walaupun tidak mempunyai pendapatan uang. Secara grafik Co= penggal kurva (inter...</p>