fluid machine - fkm.utm.mysyahruls/resources/skmm2323/3-pump-and-turbin… · compressor. part one...

59
FLUID MACHINES FLUID MACHINE A fluid machine is a device either for converting the energy held by a fluid into mechanical energy or vice versa. Fluid machine may be divided into two groups; 1. Positive displacement group * Reciprocating pump, etc Part one : Introduction of Pump 1

Upload: duongnguyet

Post on 04-May-2018

254 views

Category:

Documents


13 download

TRANSCRIPT

Page 1: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

FLUID MACHINES

FLUID MACHINE A fluid machine is a device either for converting the energy held by a fluid into mechanical energy or vice versa. Fluid machine may be divided into two groups;

1. Positive displacement group * Reciprocating pump, etc

Part one : Introduction of Pump 1

Page 2: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

FLUID MACHINES

2. Rotodynamic group * Pelton wheel, etc

Depend on energy movement; fluid machine could be divided into three categories

1. Pump 2. Turbine 3. Jack

Part one : Introduction of Pump 2

Page 3: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

FLUID MACHINES

PUMP INTRODUCTION Rotodynamic pump is essentially a turbine ‘in reverse’; which mean that mechanical energy is transferred from the rotor to the fluid. It is classified according to the direction of the fluid path through them.

1. Radial / centrifugal flow

Part one : Introduction of Pump 3

Page 4: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

FLUID MACHINES

2. Axial flow 3. Mixed-flow type

In general usage, the word ‘PUMP’ is applied to a machine dealing with a liquid. A machine in which the working fluid is a gas is more usually termed as fan, blower or compressor.

Part one : Introduction of Pump 4

Page 5: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

FLUID MACHINES

HEAD OF PUMP

Part one : Introduction of Pump 5

Page 6: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

FLUID MACHINES

CENTRIFUGAL PUMP

This type of pumps is the converse of the

radial-flow (Francis) turbine. Whereas the flow

in the turbine in inwards, the flow in the pumps

is outwards.

The rotor (impeller) rotates inside a spiral

casing. The inlet pipe is axial, and fluid enters

the ‘eye’, that is the center of the impeller with

little, if any, whirl component of velocity.

Part two : Centrifugal Pump 1

Page 7: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

FLUID MACHINES

From there it flows outwards in the direction

of the blades, and having received energy from

the impeller, is discharged with increased

pressure and velocity into the casing.

It then has a considerable tangential (whirl)

component of velocity which is normally much

greater than that required in the discharge pipe.

The kinetic energy of the fluid leaving the

impeller is largely dissipated in shock losses

unless arrangements are made to reduce the

velocity gradually.

Part two : Centrifugal Pump 2

Page 8: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

FLUID MACHINES

Velocity triangle

Inlet ;

Tangential velocity of impeller

11 rU ω=

Absolute velocity vector at 1α to tangent

1V

Relative velocity to impeller blades

111 UVVr −=

Components velocity of 1V

: whirl velocity 1wV

: radial flow velocity 1fV

Inlet blade angle

Part two : Centrifugal Pump 3

Page 9: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

FLUID MACHINES

Outlet ;

Tangential velocity of impeller

22 rU ω=

Absolute velocity vector at 2α to tangent

2V

Relative velocity to impeller blades

222 UVVr −=

Components velocity of 2V

: whirl velocity 2wV

: radial flow velocity 2fV

Inlet blade angle

Part two : Centrifugal Pump 4

Page 10: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

FLUID MACHINES

Velocity triangle for centrifugal pump:

Part two : Centrifugal Pump 5

Page 11: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

FLUID MACHINES

Calculation is done base on “Euler’s Turbine

Equation”. The one-dimensional theory

simplifies the problem very considerably by

making the following assumptions:

1. The blades are infinitely thin and the

pressure difference across them is replaced

by imaginary body forces acting on the fluid

and producing torque.

2. The number of blades in infinitely large.

Thus, 0=

∂∂θv

3. No variation of velocity in the meridional

plane (z-axis). Thus,

In reality, ),,( zrfv θ=

Part two : Centrifugal Pump 6

Page 12: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

FLUID MACHINES

Torque = Rate of change of angular momentum

Angular momentum = (Mass) x (Tangential

velocity) x (Radius)

Specific energy, mPgEY&

== (unit : J/kg)

Euler’s Head ;

( )11221 uvuvg

H wwE ⋅−⋅= (unit : m)

Part two : Centrifugal Pump 7

Page 13: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

FLUID MACHINES

Relation of u2, vw2 and HE

( )111222 coscos1 αα uvuvg

HE −=

o901 =α Î 01 =wv and fvv =1

guvH w

E22 ⋅=

Part two : Centrifugal Pump 8

Page 14: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

FLUID MACHINES

relation of β2 and HE

from ;

221

22

tan1β

⋅+=⋅

= QCCguvH w

E

Euler’s head is depends on the value of 2β

Part two : Centrifugal Pump 9

Page 15: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

FLUID MACHINES

velocity triangle and the position of blades

Blade condition with has the highest

Euler’s head value.

o902 =β

Part two : Centrifugal Pump 10

Page 16: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

FLUID MACHINES

Relation of 2β and with Bernoulli

equation.

EH

Euler’s head :

gVHHHH w

PVPE 2

22+=+=

Reaction degree of pump =

⎥⎦

⎤⎢⎣

⎡⋅

+=+=22

222

tan1

21

21

βUV

gHV

HH f

E

w

P

E

Part two : Centrifugal Pump 11

Page 17: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

FLUID MACHINES

LOSSES IN PUMP

3 major types of losses

1. Losses of hydraulic power

a. Circulatory flow

b. Friction

c. Shocking in impeller

2. Loss of volume

3. Loss of mechanical energy

Part three : Losses and Efficiency of Pump 1

Page 18: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

FLUID MACHINES

a. Circulatory Flow

SF : Slip Factor

Eideal

actual

w

w

HHH

VVSF

===

2

2

Part three : Losses and Efficiency of Pump 2

Page 19: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

FLUID MACHINES

b. Friction losses

21 Qkhf ⋅=

: Friction losses fh

: Constant 1k

: Flow rate Q

c. Shock losses

( )22 osh QQkh −=

: Shock losses 2k

: Designed flow rate Q

: Actual flow rate oQ

Part three : Losses and Efficiency of Pump 3

Page 20: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

FLUID MACHINES

EFFICIENCY OF PUMP

Overall Efficiency :

i

mo P

gQH=

Mechanical Efficiency :

( )i

wwgmech P

UVUVQQg 11221)( −+

=

Manometric Efficiency :

1122 UVUVgH

ww

mmano −

=

Volumetric Efficiency :

QQQ

v +=

Part three : Losses and Efficiency of Pump 4

Page 21: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

FLUID MACHINES

Part four : Reaction Turbine – Francis Turbine 6

Page 22: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree
Page 23: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree
Page 24: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree
Page 25: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree
Page 26: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree
Page 27: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree
Page 28: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree
Page 29: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree
Page 30: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree
Page 31: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree
Page 32: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree
Page 33: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree
Page 34: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree
Page 35: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree
Page 36: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

FLUID MACHINES

TURBINE

Turbine is a prime mover to subtract energy

from fluid. Energy from water will be changed to

mechanical energy. Turbines are subdivided into

impulse and reaction machines.

In impulse turbines, the total head available

is first converted into the kinetic energy. The

fluid energy which is reduced on passing through

the runner in entirely kinetic, it follows that the

absolute velocity at outlet is smaller than the

absolute velocity at inlet (jet velocity). The fluid

pressure is atmospheric throughout and the

velocity is constant except for a slight reduction

due to friction.

Example : Pelton wheel

Part four : Reaction Turbine – Francis Turbine 1

Page 37: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

FLUID MACHINES

In the reaction turbines, the fluid passes

first through a ring of stationary guide vanes in

which only part of the available total head is

converted into kinetic energy. The guide vanes

discharge directly into the runner along the

whole of its periphery, so that the fluid entering

the runner has pressure energy as well as

kinetic energy. The pressure energy is converted

into kinetic energy in the runner. Therefore, the

relative velocity is not constant but increases

through the runner. There is, therefore, a

pressure difference across the runner.

Example : Francis turbine

Part four : Reaction Turbine – Francis Turbine 2

Page 38: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

FLUID MACHINES

FRANCIS TURBINE

Main parts :

1. spiral

2. guide vanes

3. runner / impeller

4. draft tube

Part four : Reaction Turbine – Francis Turbine 3

Page 39: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

FLUID MACHINES

Net head :

iii

input ZgV

gPHH ++==

2

2

ρ

Part four : Reaction Turbine – Francis Turbine 4

Page 40: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

FLUID MACHINES

Velocity triangle :

Part four : Reaction Turbine – Francis Turbine 5

Page 41: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

FLUID MACHINES

Part four : Reaction Turbine – Francis Turbine 6

Page 42: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

FLUID MACHINES

Euler’s head :

gUVH w

E11=

Hydraulic efficiency :

gHUVUV ww

h2211 −

Mechanical efficiency :

( )[ ]22111 UVUVgQ

P

wwg

omech −

η

Overall efficiency :

gQHPo

o ρη =

Part four : Reaction Turbine – Francis Turbine 7

Page 43: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

FLUID MACHINES

PELTON WHEEL Main parts :

1. jet nozzle 2. runner / impeller 3. bucket

Part four : Impulse Turbine – Pelton Wheel 1

Page 44: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

FLUID MACHINES

Velocity triangle :

at inlet :

111 UVVr −= and 11 VVw = at outlet :

12 rr VkV =

)180cos(122 −−= rw VkUV

Power : )]180cos(1)[( 1ρ −+−= kUVQUP

Part four : Impulse Turbine – Pelton Wheel 2

Page 45: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

FLUID MACHINES

EFFICIENCY OF PELTON WHEEL 1. hydraulic efficiency

21

1 )]180cos(1)[(2VkUVU

hη−+−

=

velocity at maximum hydraulic efficiency :

21VU =

Part four : Impulse Turbine – Pelton Wheel 3

Page 46: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

FLUID MACHINES

maximum hydraulic efficiency :

2)180cos(1η −+

=k

h

power at max hydraulic efficiency :

)]180cos(1[4

21

max ρ −+= kV

QP

Part four : Impulse Turbine – Pelton Wheel 4

Page 47: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

FLUID MACHINES

2. mechanical efficiency

)]180cos(1)[( 1ρη

−+−=

kUVQUP

mech

3. volumetric efficiency

QQa

v =η

4. overall efficiency

gQHP

o ρη =

Part four : Impulse Turbine – Pelton Wheel 5

Page 48: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

FLUID MACHINES

Hydraulic efficiency :

gHUVUV ww

h2211 −

Mechanical efficiency :

( )[ ]22111 UVUVgQ

P

wwg

omech −

η

Overall efficiency :

gQHPo

o ρη =

Part four : Impulse Turbine – Pelton Wheel 6

Page 49: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

DEGREE OF REACTION (ºR) / DARJAH TINDAKBALAS (ºR) Darjah tindakbalas ini menyatakan kejatuhan tekanan statik terhadap jumlah tenaga yang dipindahkan oleh penggerak. Pada turbin, tindakbalas hanyalah sebahagian sahaja tenaga tekanan yang ditukarkan kepada tenaga kinetik, dan tenaga yang selebihnya masih kekal dalam bentuk tenaga tekanan. Tenaga tekanan diubah menjadi tenaga kinetik semasa air melalui bilah. Persamaan Bernoulli diantara bahagian masuk dan bahagian keluar di bilah, boleh dinyatakan seperti berikut:

(m)penggerak oleh Kehilangan:(m)Euler Turus :

22

222

211

L

E

LE

HH

HHgV

gP

gV

gP

+++=+ρρ

(i)

Jika kehilangan oleh penggerak boleh diabaikan, maka HL = 0. Turus Euler (Euler head, HE) boleh dinyatakan seperti berikut:

gVV

gPP

HE 2

22

2121 −

+−

(ii)

di mana, gPP

ρ21 − = Kejatuhan tekanan statik merentasi penggerak

gVV

2

22

21 − = Kejatuhan turus halaju merentasi penggerak

Persamaan (ii) di atas jelas menunjukkan bahawa turus Euler yang dihasilkan oleh penggerak bergantung kepada tenaga tekanan dan tenaga kinetik.

Page 50: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

Darjah tindakbalas dinyatakan sebagai:

EHgPP

R ρ21

ndipindahka yang agaJumlah tenstatiktekanan Kejatuhan

==° (iii)

Jika tekanan di masukkan adalah sama dengan tekanan di keluaran, P1 = P2. Oleh itu, darjah tindakbalas menjadi sifar. Ini bermakna turbin tersebut ialah turbin dedenyut (impulse turbine – Pelton wheel). Daripada persamaan (ii), jika tiada kehilangan, bermakna V1 = V2. Oleh itu turus Euler akan menjadi:

gPP

HE ρ21 −= (iv)

Masukkan persamaan (iv) ke dalam persamaan (iii), didapati nilai darjah tindakbalas menjadi satu (100%). Ini bermakna turbin tersebut adalah turbin tindakbalas sepenuhnya (reaction turbine – Francis turbine). Daripada persamaan (ii),

gVV

HgPP

E 2

22

2121 −

−=−ρ

(v)

Masukkan persamaan (v) ke dalam persamaan (iii). Darjah tindakbalas boleh dinyatakan sebagai:

E

E

HgVV

HR 2

22

21 −

−=° (vi)

Page 51: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

Diketahui bahawa, ( )22111

wwE vuvug

H −=

Dengan 02 =wv

Maka, persamaan (vi) boleh diringkaskan menjadi

11

22

21

21

wvuVV

R−

−=°

Page 52: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

TUTORIAL FOR PUMP AND TURBINE QUESTION 1

(a) Dengan menggunakan lakaran yang jelas, dapatkan satu ungkapan untuk turus manometer Hm sebuah pam rotodinamik yang mengepam air merentasi satu perbezaan tekanan (ph-ps)/ρg dengan ph dan ps masing-masing adalah turus tekanan di paip hantar dan paip sedut.

(b) Sebuah pam empar dipacu oleh sebuah motor elektrik pada kelajuan 1450 pusing per minit, ppm. Diameter, lebar bilah dan sudut bilah pendesak di bahagian keluar masing-masing ialah 600mm, 400mm dan 30º. Diameter, lebar bilah dan sudut bilah dibahagian masuk ialah 300mm, 80mm dan 20º. Jangka tekanan yang dipasang searas pada paip hantar dan paip sedut masing-masing menunjukkan bacaan positif 13.5 bar dan negative 0.5 bar.

Dengan menganggap diameter paip sedut dan paip hantar adalah sama besar, tentukan :

i. Turus manometer Hm ii. Kecekapan manometric ηmano iii. Kuasa yang perlu dibekalkan oleh motor jika kecekapan mekanikal

ialah 98%. QUESTION 2

(a) Terangkan apa yang dimaksudkan :

i. Turus manometric pam ii. Turus Euler pam iii. Kecekapan manometric pam iv. Kecekapan keseluruhan pam

(b) Pam empar dengan diameter pendesak di bahagian masukan adalah 30cm dan dikeluaran 60cm. Tebal pendesak ialah 12cm. Tebal bilah menempati 10% daripada luasan aliran dikeluaran. Bilah melengkung ke belakang dengan sudut bilah dimasukan ialah 30º dan dikeluaran ialah 40º diukur terhadap tangent. Kadar aliran air yang dipam adalah 0.5m3/s. Dengan menganggap bahawa air masuk ke pendesak tanpa berpusar dan halaju aliran adalah malar, kirakan :

i. Kelajuan pam dalam putaran per minit, ppm. ii. Kuasa keluaran Po jika kecekapan manometric adalah 85%. iii. Beza tekanan merentasi pendesak dalam unit bar.

Page 53: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

QUESTION 3

(a) Biasanya saiz paip sedutan pam empar lebih besar daripada saiz paip hantaran. Jelaskan dengan ringkas tentang kenyataan ini.

(b) Apakah kelebihan pam empar berbanding dengan pam aliran paksi.

(c) Pendesak sebuah pam empar berdiameter 200mm pada bahagian masuk dan 400mm pada bahagian keluar. Lebar pendesak pada bahagian masuk ialah 15mm dan pada bahagian keluar ialah 8mm. Bilah melengkung ke belakang dengan sudut 38º terhadap tangent. Jika pam beroperasi pada kelajuan 1500 ppm dengan kadar alir 15 liter setiap saat, tentukan perubahan tekanan di dalam pendesak. Abaikan semua kesusutan tenaga.

QUESTION 4

(a) Sketch forward, radial and backward centrifugal pump impeller blades complete with their outlet velocity triangles. Which blade is the most suitable for pumping liquid and why?

(b) Centrifugal pump supplies water at the rate of 400 litres per second and the pressure difference across the pump is 200kN/m2. Diameter and width of the impeller at outlet are 40cm and 10cm respectively. Blade thickness occupied 10% of the circumference. Impeller inlet diameter is half of the outlet diameter. Assume losses in casing and impeller are negligible, zero whirl at inlet and diameter of suction and delivery pipes are equal. If the blades are radial, find :

i. The pump power input in horse power if overall efficiency is 80%. ii. The impeller speed in rpm. iii. Inlet blade angle if flow velocity is constant.

Page 54: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

TUTORIAL FOR FRANCIS TURBINE QUESTION 1

1. Terangkan dua perbezaan utama diantara turbin dedenyut (impulse) dan turbin tindakbalas (reaction)

2. Sebuah turbin Francis paksi tegak (radial) beroperasi dengan kadar aliran air ialah 15500 liter per, dengan kelajuan 428 ppm (rpm). Halaju air pada bahagian masuk bekas sesiput ialah 9.0 m/s dan turus tekanan pada bahagian ini pula ialah 260 m air. Garis penengah bahagian masuk bekas sesiput terletak 3.35 m di atas aras air pada larian ekor (draft tube). Diameter bahagian masuk pelari (runner) ialah 2.4 m dan lebarnya 0.3 m. Jika kecekapan keseluruhan 90%, tentukan;

i. Kuasa turbin ii. Sudut bilah pandu iii. Sudut pelari pada bahagian masuk

QUESTION 2

1. Turbin Francis mempunyai halaju tentu tanpa dimensi dalam julat 0.064 (pelari halaju rendah) ke 0.318 (pelari halaju tinggi). Bagi pelari di kedua-dua hujung julat ini, lukiskan segitiga halaju di bahagian masukkan pelari dengan lengkap. Jelaskan semua tatatanda dan symbol yang digunakan dalam lakaran anda.

2. Sebuah turbin Francis aliran ke dalam (backward) beroperasi di bawah turus 45 m. Diameter di masukan pelari ialah 90 cm dan di keluaran ialah 60 cm. Pelari ini mempunyai lebar yang malar sebesar 12 cm. Sudut bilah di keluaran ialah 15º (diukur daripada garisan tangent ke bulatan pelari). Halaju aliran adalah malar pada nilai 3.5 m/s dan air keluar meninggalkan pelari tanpa pusaran. Jika kecekapan hidraulik ialah 90%, kirakan;

i. Kelajuan turbin ii. Kadar alir iii. Sudut bilah pandu iv. Sudut bilah pelari di masukkan v. Kuasa yang terhasil

Page 55: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

QUESTION 3

1. Dari analisis hidrodinamik, kecekapan hidraulik sebuah turbin tindakbalas boleh diungkapkan seperti berikut;

B

Lh H

hΣ−=1η

dengan dan masing-masing semua kesusutan turus di dalam turbin dan turus bersih. Jika minimum, jelas sekali

LhΣ BH

LhΣ hη adalah maksimum. Dapatkan satu ungkapan bagi Vw2 (halaju pusaran di bahagian keluar) yang memaksimumkan nilai kecekapan hidraulik, jika jumlah kesusutan turus di dalam turbin boleh dinyatakan seperti berikut;

gV

kgV

kh rL 22

22

2

22

1 +=Σ

dengan dan masing-masing ialah halaju relative dan halaju mutlak di bahagian keluar rotor dan k

2rV 2V1 dan k2 adalah pemalar.

2. Pada sebuah turbin tindakbalas, turus kesusutan pada rotor ialah 5% dari turus kinetic halaju relative keluar rotor, dan kesusutan pada draf tiub ialah 20% dari turus kinetik halaju mutlak keluar rotor. Halaju aliran serentas turbin adalah malar, iaitu 7.5 m/s. Halaju keliling di bahagian keluar rotor ialah U2=15 m/s. Lakarkan rajah segitiga halaju masalah ini. Seterusnya pada kecekapan maksimum dan turus bersih sebanyak 90 m, tentukan;

i. Halaju pusaran di keluaran ii. Sd\udut bilah pandu di keluaran iii. Sudut bilah di keluaran iv. Nilai kecekapan hidraulik turbin berkenaan.

Page 56: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

QUESTION 4

1. Describe briefly the difference between impulse and reaction turbine. What do you understand by “Degree of Reaction” for turbines.

2. A francis turbine is required to give 180 kW output power under a head H of 20 m. overall efficiency is 80% and the hydraulic efficiency is 85%. The turbine speed is 600 rpm. If a flow velocity is constant at gHV f 23.0= and peripheral

velocity at inlet gHU 28.01 = and the water discharge without whirl, determine;

i. The diameter of the runner at inlet ii. The guide vane angle iii. The runner blade angle at inlet iv. The width of the runner at inlet assuming blade thickness occupied

15% of the circumference.

Page 57: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

TUTORIAL FOR PELTON WHEEL QUESTION 1

1. Tunjukkan dengan jelas beserta gambarajah bahawa kecekapan hidraulik roda pelton dapat dinyatakan sebagai berikut;

2

)180cos(1)(2

j

jh V

kUVUη

−+−=

dengan Vj adalah halaju jet, k adalah nisbah halaju relative, U adalah halaju tangent roda dan θ adalah sudut balikan sauk. Seterusnya tunjukkan bahawa kecekapan hidraulik maksimum diberikan sebagai;

2

)180cos(1

jmaksimumh V

kη −+=−

2. Sebuah turbin roda pelton mempunyai tekanan di muncung 950 kPa dengan pekali halaju muncung adalah Cv=0.95. Diameter roda adalah 3 m dan jumpah jet adalah empat. Turbin ini dikehendaki menghasilkan kuasa keluar sebesar 6 MW. Sudut balikan sauk adalah 165º dan halaju relative yang keluar berkurang 10% berbanding yang masuk (Vr2/Vr1 = 0.9). Jika kecekapan keseluruhan adalah 85% dan kecekapan hidraulik 93%, kirakan;

i. Nisbah halaju tangent bilah terhadap halaju jet (U/Vj). Jika ada dua jawapan, pilih yang munasabah dan nyatakan sebabnya. ii. Kelajuan putaran roda (rpm) iii. Jumlah kadar alir iv. Diameter jet v. Kecekapan hidraulik maksimum yang boleh dicapai oleh roda ini.

Page 58: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

QUESTION 2

1. Bermula dengan takrif pekali turus KH dan pekali kuasa KP, terbitkan rumus bagi laju tentu tanpa dimensi untuk turbin hidraulik. Jelaskan maksud semua tatatanda dan symbol yang digunakan serta nyatakan unit SI untuk setiap parameter yang terlibat bagi menghasilkan laju tentu tanpa dimensi.

2. Sebuah roda pelton dwi-jet diperlukan untuk menjana 5510 kW kuasa pada laju tentu tanpa dimensi 0.0165. Air dibekalkan menerusi paip empis air sepanjang 1000 m daripada aras takungan yang berada 350 m di atas kedudukan nozel. Pekali halaju nozel, Cv=0.97, nisbah laju 46.0= , kecekapan keseluruhan 85% dan pekali darcy, f=0.024. Jika kehilangan geseran di dalam paip empis air berjumlah 5% daripada turus kasar, tentukan;

i. Kelajuan turbin (rpm) ii. Diameter nozel iii. Jejari minimum bulatan sauk iv. Diameter paip empis air

QUESTION 3

1. Terangkan prinsip operasi turbin roda pelton. Nyatakan 3 komponen utam turbin roda pelton dan peranan setiap komponen ini.

2. Sebuah roda pelton dengan 2 jet air, dibekalkan dengan tenaga hidraulik melalui

talian paip sepanjang 2 km dari sebuah takungan air. Aras air dalam takungan terletak 380 m di atas pusat jet. Turbin berputar dengan kelajuan 500 rpm dan mengeluarkan 5 MW. Jika kesusutan turus geseran di dalam paip 8% daripada turus turbin dan factor geseran f=0.006, Cv=0.95, nisbah halaju bilah dengan halaju jet ialah 0.48, factor geseran untuk paip ialah 0.92 dan kecekapan keseluruhan turbin 88%, tentukan;

i. Diameter paip ii. Diameter roda pelton

Page 59: FLUID MACHINE - fkm.utm.mysyahruls/resources/SKMM2323/3-Pump-and-turbin… · compressor. Part one : Introduction of Pump 4. ... Part two : Centrifugal Pump 1. ... Reaction degree

QUESTION 4

1. Dari analisis hidrodinamik terhadap sebuah roda pelton boleh ditunjukkan bahawa

kecekapan hidraulik ada fungsi daripada nisbah jVU

= serta sudut pesongan

)180( −= , iaitu untuk keadaan unggul.

)cos1)(1(2η +−=h

i. Tunjukkan hη adalah maksimum pada 5.0= ii. Dalam keadaan operasi sebenarnya, hη maksimum terjadi untuk,

48.046.0 . Berikan tiga sebab. iii. Sekiranya Vr2=kVR1, kecekapan maksimum masih juga terjadi pada

5.0= . Berikan alas an mengapa hal ini terjadi.

2. Sebuah turbin pelton dengan 2 jet menghasilkan 2 MW kuasa pada putaran 400 rpm. Diameter roda ialah 1.5 m. Turus kasar diukur pada muncung nozel ke permukaan air di empangan ialah 200 m. Kecekapan penghantaran kuasa melalui paip penstock dan nozel ialah 90%. Halaju relative yang keluar dari sauk telah berkurangan sebanyak 10%. Bilah memesongkan jet air pada sudut 165º.

i. Lakarkan rajah segitiga halaju roda pelton ini ii. Tentukan turus bersih, HB iii. Tentukan turus Euler, HE iv. Tentukan kecekapan hidraulik v. Tentukan diameter jet