fbc challenges: current research at Åa-university...co-ordination (research, web-pages, meetings,...

31
FBC Challenges: Current Research at ÅA-University by Patrik Yrjas 71 st IEA-FBC, Seoul

Upload: others

Post on 02-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • FBC Challenges:

    Current Research at ÅA-University

    by

    Patrik Yrjas

    71st IEA-FBC, Seoul

  • Clustering Innovation Competence of

    Future Fuels in Power Production

    Project: CLIFF July 2014 - June 2017

    http://web.abo.fi/fak/tkf/cmc/Cliff/

    TAMPERE UNIVERSITY OF TECHNOLOGY

  • Work packages and tasks Task participants WP 0 Scientific co-ordination

    Co-ordination (research, web-pages, meetings, etc.) AAU

    WP 1 Fuels and Feedstock

    1.1 Fuel advanced analysis and conversion characteristics AAU, Aalto

    1.2 Elemental release TUT, AAU

    1.3 Bed agglomeration AAU

    1.4 Silicate based additives and corrosive vapors AAU

    1.5 Plant measurements AAU, Aalto, TUT

    WP 2 Theoretical and Modelling

    2.1 MACT Rule; TSM8 – BREF AAU

    2.2 Radiation heat transfer modelling LUT, VTT

    2.3 Models for Kraft recovery boilers AAU, VTT, Aalto

    2.4 Time dependent simulations of BFB furnace processes VTT, AAU

    2.5 Improved understanding of FB bed processes VTT, LUT

    2.6 Improve modelling of FB wall processes VTT

    2.7 Gaseous NO formation/reduction modelling AAU

    2.8 Fuel specific models AAU

    WP 3 Materials

    3.1 High temperature erosivity AAU

    3.2 Deposit adhesion and sootblowing AAU

    3.3 Corrosion – metals/coatings/refractories AAU

    3.4 Corrosion – temperature gradient AAU

    3.5 Corrosion – detailed mechanisms AAU, TUT

    3.6 Use of isotopes in high temperature research AAU, TopA

    WP 4 Information and international co-operation

    4.1 Highlights from conferences, seminars and workshops AAU, VTT, TUT, LUT, Aalto

    4.2 Invited speakers to project meetings AAU

    4.3 International co-operation AAU, VTT, TUT, LUT, Aalto

  • In this presentation

    Motivation – challenges

    Task 1.3: Bed agglomeration

    Task 1.4: Silicate based additives and

    corrosive vapors

    Task 3.3: Corrosion - isothermal tests

    Task 3.4: Corrosion - temperature gradient

    tests

  • 100

    90

    80

    70

    60

    50

    40

    30

    20

    10

    0

    80

    70

    60

    10

    20

    30

    40

    50

    90

    100 0

    0 10 20 30 40 50 60 70 80 90 100

    CaO+MgO

    K2O+Na2OSiO2

    Fossil

    Major ash-forming elements in different fuels

    ÅA fuel database 5

  • 100

    90

    80

    70

    60

    50

    40

    30

    20

    10

    100

    90

    50

    40

    30

    20

    10

    60

    70

    80

    0

    0

    0 10 20 30 40 50 60 70 80 90 100

    CaO+MgO

    K2O+Na2OSiO2

    Fossil

    Peat

    ÅA fuel database 6

    Major ash-forming elements in different fuels

  • 100

    90

    80

    70

    60

    50

    40

    30

    20

    10

    0

    80

    70

    60

    10

    20

    30

    40

    50

    90

    100 0

    0 10 20 30 40 50 60 70 80 90 100

    CaO+MgO

    K2O+Na2OSiO2

    Fossil

    Peat

    Wood

    Forest residue

    Bark

    Waste wood

    w

    o

    owood derived fuels

    ÅA fuel database 7

    Major ash-forming elements in different fuels

  • 100

    90

    80

    70

    60

    50

    40

    30

    20

    10

    0

    80

    70

    60

    10

    20

    30

    40

    50

    90

    100 0

    0 10 20 30 40 50 60 70 80 90 100

    CaO+MgO

    K2O+Na2OSiO2

    Fossil

    Peat

    Wood

    Forest residue

    Bark

    Waste wood

    w

    o

    owood derived fuels

    Agricultural residue

    ÅA fuel database 8

    Major ash-forming elements in different fuels

  • Ash chemistry of different fuel types

    Coal => silicate based ash chemistry, Na, S and Ca

    Biomass => Ca, K, Na, S, and Cl

    Agrofuels => Si, Ca, K, P, S and Cl

    Waste fuels => ..........Cl + Zn and Pb (+Br, F)

    Black liquor => Na, K, S and Cl

  • FBC issues

    New, more challenging fuels

    Multi-fuel combustion

    More power – superheater corrosion

    Standard laboratory ash vs. real boiler ash

    Advanced analysis of ash forming matter and

    prediction of ash behavior – fouling, slagging,

    de-fluidization

  • Task 1.3 Bed agglomeration The lab-scale fluidized bed reactor

  • 0

    100

    200

    300

    400

    500

    600

    700

    800

    845

    850

    855

    860

    4800 6000 7200 8400 9600 10800120001320014400

    Pre

    ss

    ure

    dro

    p [

    pa

    ]

    Te

    mp

    era

    ture

    [°C

    ]

    Time [s]

    KCl at 850°C

    T1

    T2

    Δp

    Defluidization after 12 g (0.5 g/10 min) or 3.1 weight-% of bed weight

  • 300

    400

    500

    600

    700

    800

    890

    895

    900

    905

    910

    0 600 1200 1800 2400 3000 3600 4200

    Pre

    ss

    ure

    dro

    p [

    pa

    ]

    Te

    mp

    era

    ture

    [°C

    ]

    Time [s]

    K2CO3 at 900°C

    T1

    T2

    Δp

    Defluidization after 3 g (0.5 g/10 min) or 0.8 weight-% of bed weight

  • KCl 850°C 870°C

    • No observed reaction with the

    sand particles

    • KCl acts as glue

    Pure KCl, no

    reaction layer

    SEM/EDX images of bed particles

  • K2CO3 750° C

    • Reacts with the sand particles forming potassium silicates

    900° C

    SEM/EDX images of bed particles

  • Other tests done so far

    Phosphate salts “Agglomeration mechanisms in a laboratory bubbling fluidized bed due

    to addition of different phosphate compounds”, C. Sevonius, P. Yrjas, D.

    Lindberg, M. Hupa, 22nd FBC, Finland 2015.

    Algea and wood mixtures “Agglomeration tendencies of algae and wood mixtures in fluidized

    bedincineration“, C. Sevonius, P. Yrjas, P. Piotrowska, M. Hupa, D.

    Boström, Conference on Impacts of Fuel Quality on Power Production,

    USA 2014.

    NaCl and Na2CO3 to be submitted

    Peat (at 900°C)

  • Absorption of gaseous KCl

    with kaolin/coal ash => lower

    corrosion potential Al2O3∙2SiO2(s) + 2KCl(g) + H2O(g) =>

    K2O∙Al2O3∙2SiO2(s) + 2HCl(g)

    Use of S-additives may cause

    a more rapid deactivation

    SCR-catalysts 2KCl + SO2 + 1/2O2 + H2O =>

    K2SO4 + 2HCl

    Task 1.4: Silicate based additives and

    corrosive vapors

  • Sample holder

    Hole for the feeding pipe

    Air holes

    KCl crucible holder

    Lower tube

    Test setup

  • Start of experimentTimer stopped when sample was

  • Example results

    * About 300 g/kg is the max. assuming stoichiometry according to:

    1. Al2Si2O5(OH)2 Al2O3*2SiO2 + 2H2O (at about 550oC)

    2. Al2O3*SiO2 + 2KCl + H2O K2O*Al2O3*2SiO2 + 2HCl

  • Task 3.3 Corrosion Isothermal corrosion test method at ÅA

  • Data treatment

    Salt

    Steel

    Paste Oxide layer

    Oxide layer

    Steel

    Epoxy

    Oxide layer

    Steel

    Steel

    Salt particles

    Salt particles

    max.

    min.

    average

    etc.

  • Corrosion results, 168 h, (Na, K)2SO4

    +(Na,K)Cl

    (Skrifvars et al. 2008)

    0

    20

    40

    60

    80

    100

    120

    140

    Co

    rro

    sio

    n la

    ye

    r th

    ick

    ne

    ss

    , m

    m 1.3% Cl T0=522°C

    0

    20

    40

    60

    80

    100

    120

    140

    Co

    rro

    sio

    n la

    ye

    r th

    ick

    ne

    ss

    , m

    m 0.3% Cl T0=526°C

    0

    20

    40

    60

    80

    100

    120

    140

    Co

    rro

    sio

    n la

    ye

    r th

    ick

    ne

    ss

    , m

    m 0% Cl T0 = 835°C

    0

    20

    40

    60

    80

    100 W

    eig

    h-%

    Rest

    Nb

    Mn

    Mo

    Ni

    Cr

    Fe

  • “Demolition wood salts”

    x- the oxide layer thickness under the detection limit 24

    80

    33

    5

    240

    356

    7

    38

    5 4

    108

    70

    9

    0

    50

    100

    150

    200

    250

    300

    350

    400

    250 350 450 350 450 550 550 550

    Mean

    oxid

    e la

    yer

    th

    ick

    nes

    s µ

    m

    Temperature ºC

    10CrMo

    AISI347

    x x x x

    ZnCl2

    Tmelt= 283°C

    PbCl2

    Tmelt= 501°C

    ZnO

    Tmelt= 1975 °C

    PbO

    Tmelt= 886 °C

    X X

    X X

    X = KCl, Tmelt= 770 °C Ref. Dorota Bankiewicz et al., 2012

  • SEM/EDX studies

    10CrMo Fe Cr O K Cl

  • Task 3.4 Corrosion - temperature

    gradient effect on salt and corrosion

    Steep temperature

    gradient over

    superheater and

    deposit (surface =>

    gas)

    Laboratory

    simulations

  • Measured temperatures

    Ring

    Salt

    Temperatures:

    Sample ring ~ 390°C

    Salt ~ 475°C,

    Above the salt ~ 760°C

    Furnace ~ 900°C

  • Sintered-

    partly molten

    Non-sintered

    T0 = 537°C

    T0 = 626°C

    NaCl

    Eutectic

    salt mix

    Na2SO4

  • Camera experimental set up

  • Sanicro 63 with KCl @ 548oC, air ambient,

    first 90 min (1 frame/2 min)

    One test run

  • Thank you