embedding population dynamics models in inference

52
Embedding population dynamics models in inference S.T. Buckland, K.B. Newman, L. Thomas and J Harwood (University of St Andrews) Carmen Fernández (Oceanographic Institute, Vigo,

Upload: huyen

Post on 22-Jan-2016

27 views

Category:

Documents


0 download

DESCRIPTION

Embedding population dynamics models in inference. S.T. Buckland, K.B. Newman, L. Thomas and J Harwood (University of St Andrews) Carmen Fern á ndez (Oceanographic Institute, Vigo, Spain). - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Embedding population dynamics models in inference

Embedding population dynamics models in

inference

S.T. Buckland, K.B. Newman, L. Thomas

and J Harwood (University of St Andrews)

Carmen Fernández

(Oceanographic Institute, Vigo, Spain)

Page 2: Embedding population dynamics models in inference

AIMA generalized methodology for

defining and fitting matrix population models that

accommodates process variation (demographic and environmental stochasticity), observation error

and model uncertainty

Page 3: Embedding population dynamics models in inference

Hidden process models

Special case:

state-space models

(first-order Markov)

Page 4: Embedding population dynamics models in inference

States

We categorize animals by their state, and represent the population as numbers of animals by state.

Examples of factors that determine state:age; sex; size class; genotype;sub-population (metapopulations);species (e.g. predator-prey models,community models).

Page 5: Embedding population dynamics models in inference

StatesSuppose we have m states at the start of year t. Thennumbers of animals by state are:

tm

t

t

t

t

n

n

n

n

,

,3

,2

,1

n

NB: These numbersare unknown!

Page 6: Embedding population dynamics models in inference

Intermediate states

The process that updates nt to nt+1

can be split into ordered sub-processes.

1,,, ttbtatst nuuun

e.g. survival ageing births:

This makes model definition much simpler

Page 7: Embedding population dynamics models in inference

Survival sub-process

tm

t

t

mtms

ts

ts

n

n

n

u

u

u

,

,2

,1

2

1

,,

,2,

,1,

00

00

00

)E(

)E(

)E(

Given nt:

mjnu jtjtjs ,,1),(binomial~ ,,,

NB a model (involving hyperparameters) can be specified for

or can be modelled as a random effect

Page 8: Embedding population dynamics models in inference

Survival sub-process

Survival

    

1tn ,1 tsu ,1,

2tn ,2 tsu ,2,

mtmn , tmsu ,,

Page 9: Embedding population dynamics models in inference

Ageing sub-process

Given us,t:

NB process is deterministic

tms

tms

ts

ts

tma

ta

ta

u

u

u

u

u

u

u

,,

,1,

,2,

,1,

,,

,3,

,2,

1100

0010

0001

No first-year animals left!

Page 10: Embedding population dynamics models in inference

Ageing sub-process

Age incrementation

tsu ,1,

tsu ,2,

tau ,3,

tmau ,,

tau ,2,

tmsu ,1,

tmsu ,,

Page 11: Embedding population dynamics models in inference

Birth sub-processGiven ua,t:

NB a model may be specified for

m

jjjtjat ppun

210,,1,1 ),,,(lmultinomiae.g.

i

jiji

ij ipp ,1with

tma

ta

tam

tm

t

t

t

u

u

u

n

n

n

nE

,,

,3,

,2,32

1,

1,3

1,2

1,1

100

010

001

)(

New first-yearanimals

Page 12: Embedding population dynamics models in inference

Birth sub-process

Births

tau ,2,

tau ,3,

tmau ,,

2

3

m

tn ,1

tn ,2

tn ,3

tmn ,

Page 13: Embedding population dynamics models in inference

The BAS model

where

100

010

00132

m

B

1100

0010

0001

A

m

00

00

00

2

1

S

ttt BASnθnn ),|(E 1

φ

λθ

Page 14: Embedding population dynamics models in inference

The BAS model

Page 15: Embedding population dynamics models in inference

Leslie matrix

The product BAS is a Leslie projection matrix:

mm

mmmm

1

2

1

13221

00

000

000

BAS

Page 16: Embedding population dynamics models in inference

Other processes

Growth:

1000

0100

0000

0001

00001

1

12

2

21

1

m

mm

G

Page 17: Embedding population dynamics models in inference

The BGS model with m=2

Page 18: Embedding population dynamics models in inference

Lefkovitch matrix

The product BGS is a Lefkovitch projection matrix:

2

1

0

0

1

01

10

1

BGS

21

21)1(

Page 19: Embedding population dynamics models in inference

Sex assignment

tb

tb

tb

tx

tx

tx

tx

u

u

u

u

u

uE

uE

,3,

,2,

,1,

,4,

,3,

,2,

,1,

100

010

001

00

)(

)(

New-born

Adult female

Adult male

tbtx

tbtx

txtbtx

tbtx

uu

uu

uuu

uu

,3,,4,

,2,,3,

,1,,1,,2,

,1,,1, ),(binomial~

Page 20: Embedding population dynamics models in inference

Genotype assignment

Page 21: Embedding population dynamics models in inference

Movemente.g. two age groups in each of two locations

1221

1221

1221

1221

100

010

010

001

V

Page 22: Embedding population dynamics models in inference

Movement: BAVS model

Page 23: Embedding population dynamics models in inference

Observation equation

ttttE nOθny ),|(

e.g. metapopulation with two sub-populations, each split into adults and young,unbiased estimates of total abundance of each sub-population available:

t

t

t

t

t

tt

n

n

n

n

yE

yEE

,12

,02

,11

,01

,2

,1

1100

0011

)(

)()(y

Page 24: Embedding population dynamics models in inference

Fitting models to time series of data

• Kalman filter

Normal errors, linear models

or linearizations of non-linear models

• Markov chain Monte Carlo

• Sequential Monte Carlo methods

Page 25: Embedding population dynamics models in inference

Elements required for Bayesian inference

)(θg Prior for parameters

)|( 00 θng pdf (prior) for initial state

),,...,|( 01 θnnn tttg pdf for state at time t given earlier states

),|( θny tttf Observation pdf

Page 26: Embedding population dynamics models in inference

Bayesian inference

Joint prior for and the :

T

ttttggg

10100 ),,,|()|()( θnnnθnθ

θ tn

Likelihood:

T

ttttf

1

),|( θny

Posterior:

),,(

),|(),,,|()|()(),,|,,,(

1

10100

10T

T

ttttttt

TT f

fgggg

yy

θnyθnnnθnθyyθnn

Page 27: Embedding population dynamics models in inference

Types of inference

Filtering:

Smoothing:

One step ahead prediction:

),,|,( 1 ttg yyθn

),,|,( 1 Ttg yyθn

),,|,( 11 ttg yyθn

Page 28: Embedding population dynamics models in inference

Generalizing the framework

)|( Mθg Prior for parameters

),|( 00 Mθng pdf (prior) for initial state

),,,...,|( 01 Mθnnn tttg pdf for state at time t given earlier states

),,|( Mθny tttf Observation pdf

)(Mg Model prior

Page 29: Embedding population dynamics models in inference

Generalizing the framework

Replace

by

where

tttt nPθnn ),|(E 1

)(1 ttt nPn

)))((()( ,1,1, tttKtKtt nPPPnP

and is a possibly random operator)(, tkP

Page 30: Embedding population dynamics models in inference

Example: British grey sealsBritish grey seal breeding colonies

Page 31: Embedding population dynamics models in inference

British grey seals

• Hard to survey outside of breeding season: 80% of time at sea, 90% of this time underwater

• Aerial surveys of breeding colonies since 1960s used to estimate pup production

• (Other data: intensive studies, radio tracking, genetic, counts at haul-outs)

• ~6% per year overall increase in pup production

Page 32: Embedding population dynamics models in inference

Estimated pup production

Year

Pu

p c

ou

nt

1960 1970 1980 1990 2000

05

00

01

00

00

15

00

0

orkney

Year

Pu

p c

ou

nt

1960 1970 1980 1990 2000

05

00

01

00

00

15

00

0

outer hebrides

Year

Pu

p c

ou

nt

1960 1970 1980 1990 2000

05

00

01

00

00

15

00

0

inner hebrides

Year

Pu

p c

ou

nt

1960 1970 1980 1990 2000

05

00

01

00

00

15

00

0

north sea

Page 33: Embedding population dynamics models in inference

Questions

• What is the future population trajectory?

• What types of data will help address this question?

• Biological interest in birth, survival and movement rates

Page 34: Embedding population dynamics models in inference

Empirical predictions

Year

Pu

p c

ou

nt

1960 1970 1980 1990 2000 2010

50

00

15

00

0

orkney

Year

Pu

p c

ou

nt

1960 1970 1980 1990 2000 2010

20

00

60

00

10

00

01

40

00

outer hebrides

Year

Pu

p c

ou

nt

1960 1970 1980 1990 2000 2010

15

00

25

00

35

00

inner hebrides

Year

Pu

p c

ou

nt

1960 1970 1980 1990 2000 2010

10

00

30

00

50

00

north sea

Page 35: Embedding population dynamics models in inference

Population dynamics model

• Predictions constrained to be biologically realistic

• Fitting to data allows inferences about population parameters

• Can be used for decision support

• Framework for hypothesis testing (e.g. density dependence operating on different processes)

Page 36: Embedding population dynamics models in inference

• 7 age classes– pups (n0)

– age 1 – age 5 females (n1-n5)

– age 6+ females (n6+) = breeders

• 48 colonies – aggregated into 4 regions

Grey seal state model:states

Page 37: Embedding population dynamics models in inference

Grey seal state model: processes

• a “year” starts just after the breeding season

• 4 sub-processes– survival– age incrementation– movement of recruiting females– breeding

uus,a,cs,a,c

,t,t

nna,c,t-a,c,t-

11

uui,a,ci,a,c

,t,t

uum,a,m,a,

c,tc,t

nna,c,a,c,

tt

breedinbreedingg

movemmovementent

ageagesurvivalsurvival

Page 38: Embedding population dynamics models in inference

Grey seal state model: survival

• density-independent adult survival us,a,c,t ~ Binomial(na,c,t-1,φadult) a=1-6

• density-dependent pup survivalus,0,c,t ~ Binomial(n0,c,t-1, φ juv,c,t)where φ juv,c,t= φ juv.max/(1+βcn0,c,t-1)

Page 39: Embedding population dynamics models in inference

Grey seal state model:age incrementation and sexing

• ui,1,c,t ~Binomial (us,0,c,t , 0.5)

• ui,a+1,c,t = us,a,c,t a=1-4

• ui,6+,c,t = us,5,c,t + us,6+,c,t

Page 40: Embedding population dynamics models in inference

Grey seal state model:movement of recruiting females

• females only move just before breeding for the first time

• movement is fitness dependent– females move if expected survival of offspring is

higher elsewhere

• expected proportion moving proportional to– difference in juvenile survival rates– inverse of distance between colonies – inverse of site faithfulness

Page 41: Embedding population dynamics models in inference

Grey seal state model:movement

• (um,5,c→1,t, ... , um,5,c→4,t) ~ Multinomial(ui,5,c,t, ρc→1,t, ... , ρc→4,t)

• ρc→i,t =θc→i,t / Σj θc→j,t

• θc→i,t =

– γsf when c=i

– γdd max([φjuv,i,t-φjuv,c,t],0)/exp(γdistdc,i) when c≠i

Page 42: Embedding population dynamics models in inference

Grey seal state model:breeding

• density-independent

• ub,0,c,t ~ Binomial(um,6+,c,t , α)

Page 43: Embedding population dynamics models in inference

Grey seal state model: matrix formulation

• E(nt|nt-1, Θ) ≈ B Mt A St nt-1

Page 44: Embedding population dynamics models in inference

Grey seal state model:matrix formulation

• E(nt|nt-1, Θ) ≈ Pt nt-1

Page 45: Embedding population dynamics models in inference

Grey seal observation model

• pup production estimates normally distributed, with variance proportional to expectation:

y0,c,t ~ Normal(n0,c,t , ψ2n0,c,t)

Page 46: Embedding population dynamics models in inference

Grey seal model: parameters

• survival parameters: φa, φjuv.max, β1 ,..., βc

• breeding parameter: α

• movement parameters: γdd, γdist, γsf

• observation variance parameter: ψ

• total 7 + c (c is number of regions, 4 here)

Page 47: Embedding population dynamics models in inference

Grey seal model: prior distributions

Page 48: Embedding population dynamics models in inference

0.93 0.95 0.97

01

02

03

04

0

phi.adult 0.966

0.6 0.7 0.8 0.9

01

23

45

phi.juv.max 0.734

0.92 0.96

01

02

03

0

alpha 0.973

0.06 0.07 0.08 0.09

01

03

05

0

psi 0.07

2 4 6 8 10 14

0.0

0.1

00

.20

0.3

0

gamma.dd 3.32

0.5 1.5 2.5

0.0

0.4

0.8

gamma.dist 0.792

0.2 0.6 1.0 1.4

0.0

1.0

2.0

gamma.sf 0.355

0.0006 0.0010 0.0014

05

00

15

00

beta.ns 0.000906

0.0008 0.0014 0.0020

05

00

10

00

15

00

beta.ih 0.00127

0.0002 0.0004

02

00

04

00

06

00

0

beta.oh 0.000304

0.00010 0.00020 0.00030

04

00

08

00

0beta.ork 0.000183

Posterior parameter estimates

Page 49: Embedding population dynamics models in inference

Smoothed pup estimates

Year

Pup

s

1985 1990 1995 2000

1500

3500

North Sea

Year

Pup

s

1985 1990 1995 2000

1500

3000

Inner Hebrides

Year

Pup

s

1985 1990 1995 2000

8000

1200

0

Outer Hebrides

Year

Pup

s

1985 1990 1995 2000

6000

1600

0

Orkneys

Page 50: Embedding population dynamics models in inference

Predicted adults

Year

Adu

lts

2004 2008 2012

9000

1300

0North Sea

Year

Adu

lts

2004 2008 2012

7000

1000

0

Inner Hebrides

Year

Adu

lts

2004 2008 2012

2500

040

000

Outer Hebrides

Year

Adu

lts

2004 2008 2012

4000

060

000

Orkneys

Page 51: Embedding population dynamics models in inference

Seal model• Other state process models

– More realistic movement models– Density-dependent fecundity– Other forms for density dependence

• Fit model at the colony level• Include observation model for pup counts• Investigate effect of including additional data

– data on vital rates (survival, fecundity)– data on movement (genetic, radio tagging)– less frequent pup counts?– index of condition

• Simpler state models

Page 52: Embedding population dynamics models in inference

References

Buckland, S.T., Newman, K.B., Thomas, L. and Koesters, N.B. 2004. State-space models for the dynamics of wild animal populations. Ecological Modelling 171, 157-175.

Thomas, L., Buckland, S.T., Newman, K.B. and Harwood, J. 2005. A unified framework for modelling wildlife population dynamics. Australian and New Zealand Journal of Statistics 47, 19-34.

Newman, K.B., Buckland, S.T., Lindley, S.T., Thomas, L. and Fernández, C. 2006. Hidden process models for animal population dynamics. Ecological Applications 16, 74-86.

Buckland, S.T., Newman, K.B., Fernández, C., Thomas, L. and Harwood, J. Embedding population dynamics models in inference. Submitted to Statistical Science.