effect of physiological fluids

43
LECTURE 3 BIOMATERIALS 1 EFFECT OF PHYSIOLOGICAL FLUIDS Biocompatibility plays a very important role on deciding the life of biomaterials. A completely "biocompatible" material would not irritate the surrounding structures provoke an inflammatory response initiate allergic reactions cause cancer

Upload: walker

Post on 21-Jan-2016

30 views

Category:

Documents


0 download

DESCRIPTION

EFFECT OF PHYSIOLOGICAL FLUIDS. Biocompatibility plays a very important role on deciding the life of biomaterials. A completely "biocompatible" material would not irritate the surrounding structures provoke an inflammatory response initiate allergic reactions cause cancer. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 1

EFFECT OF PHYSIOLOGICAL FLUIDS

Biocompatibility plays a very important role on deciding the life of biomaterials.A completely "biocompatible" material would not

irritate the surrounding structures

provoke an inflammatory response

initiate allergic reactions

cause cancer

Page 2: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 2

EFFECT OF PHYSIOLOGICAL FLUIDS

A "biocompatible" material should also not have its properties degraded from an attack by the body's immune system.

The term biocompatible suggests that the material described displays good or harmonious behavior in contact with tissue and body fluids.

Water constitutes a major portion of the fluids and these react with the surface of the materials.

The interaction of water or in general other fluids affects the properties of materials.

Page 3: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 3

EFFECT OF PHYSIOLOGICAL FLUIDS

Water is the universal ether dissolving inorganic salts and large organic macromolecules such as proteins.

Water suspends living cells as in blood and is the principal constituent of all interstitial fluids.

It is believed that water is the first molecule to contact biomaterials in any clinical application.

Due to water, the hydrophobic effect ,hydrophilic effect and surface wetting effect occurs.

Page 4: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 4

EFFECT OF PHYSIOLOGICAL FLUIDS

• The hydrophobic effect is related to the insoloubility of hydrocarbons in water and is the fundamental of lipids.

• In other words, the hydrophobic effect is the property that nonpolar molecules like to self-associate in the presence of aqueous solution.

• The hydrophobic effect is the fundamental life giving phenomena attributed to water.

• Hydrocarbons are sparingly soluble in water because of the strong self association of water.

Page 5: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 5

EFFECT OF PHYSIOLOGICAL FLUIDS

The hydrophilic effect refers to a physical property of a molecule that can transiently bond with water (H2O) through hydrogen bonding.

This is thermodynamically favorable, and makes these molecules soluble not only in water, but also in other polar solvents.

The hydrophilic solutes exhibit Lewis acid or base strength comparable to or exceeding that of water, so that it is energetically favorable for water to donate electron density to or accept electron density from hydrophilic solutes instead of, or at least in competition with, other water molecules.

Page 6: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 6

EFFECT OF PHYSIOLOGICAL FLUIDS

Generally speaking the free energies of hydrophilic hydration are greater than that of hydrophobic hydration.

As in hydrophobic effect, size plays abig role in the salvation of hydrophilic ions.

Small inorganic ions are completely ionized and lead to separately hydrated ions.

Page 7: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 7

EFFECT OF PHYSIOLOGICAL FLUIDS

The interaction of water with the surfaces leads to surface wetting effect.

The surface on which water spreads is called hydrophilic and those on which water droplets form is called hydrophobic.

Thus hydrophobic surfaces are distinguished from hydrophilic by virtue of having no Lewis acid or base functional groups available for water interaction.

Page 8: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 8

EFFECT OF PHYSIOLOGICAL FLUIDS

Structure and solvent properties of water in contact with surfaces between these extremes must then exhibit some kind of properties associated with the graded wettability observed with contact angles.

If the surface region is composed of molecules that hydrate then the surface can adsorb water and swell or dissolve.

At the extreme of water- surface interactions,surface acid or base groups can abstract hydroxyls or protons from water leading to water ionization on the surface.

Page 9: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 9

EFFECT OF PHYSIOLOGICAL FLUIDS

• The surface energetics drives adsorption of water and then in subsequent steps, proteins and cells interact with the resulting hydrated surface.

• Self association of water through hydrogen bonding is the essential mechanism behind the water solvent properties.

• As mentioned these interactions leads to the degradation of the biomaterials.

• It can be concluded that no theory explaining the biology of materials can be complete with out accounting for the water properties near surfaces.

Page 10: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 10

BIOLOGICAL RESPONSES

o The Biological environment is surprisingly harsh and can lead to rapid or gradual breakdown of many materials. Superficially, one might think that the neutral pH, low salt content, and modest temperature of the body would constitute a mild environment.o However, many specialized mechanisms are brought to bear on implants to break them down.o These are mechanisms that have evolved over millennia specifically to rid the living organism of invading foreign substances and they now attack our contemporary biomaterials.

Page 11: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 11

BIOLOGICAL RESPONSES

• The biological response can occur both in extravascular and intravascular system.

• The former deals with the changes outside the blood or lymph vessel and the latter deals with in the blood vessels.

• Let us consider that, along with the continuous or cyclic stress many biomaterials are exposed to, abrasion and flexure may also take place.

• This occurs in an aqueous, ionic environment that can be electrochemically, active to metals and plasticizing (softening) to polymers.

Page 12: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 12

BIOLOGICAL RESPONSES

Then, specific biological mechanisms are invoked.

Proteins adsorb to the material and can enhance the corrosion rate of metals.

Cells secrete powerful oxidizing agents and enzymes that are directed at digesting the material.

The potent degradative agents are concentrated between the cell and the material where they act undiluted by the surrounding aqueous.

Page 13: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 13

BIOLOGICAL RESPONSES

• To understand the biological degradation of implant materials, synergistic pathways should be considered.• Swelling and water uptake can similarly increase the number of site for reaction.• Degradation products can alter the local pH, stimulating further reaction.• Hydroxyl polymers can generate more hydrophilic species, leading to polymer swelling and entry of degrading species into the bulk of the polymer.• Cracks might also serve as sites initiating calcification.

Page 14: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 14

BIOLOGICAL RESPONSES

Biodegradation is a term that is used in many contexts.

It can be engineered to happen at a specific time after implantation, or it can be un unexpected long-term consequent of the severity of the biological Degradation is seen with metals, polymers, ceramics and composites.

Biodegradation as a subject is broad in scope and rightfully should command considerable attention for the bio materials scientist.

Page 15: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 15

BIOLOGICAL RESPONSES

Most biomaterials of potential clinical interest typically elicit the foreign body reaction (FBR) a special form of non specific inflammation.

The most prominent cells in the FBR are macrophages, which attempt to phagocytose the material degradation are often difficult.

The inflammatory cell products that are critical in killing microorganisms can damage tissue adjacent to foreign bodies.

Page 16: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 16

BIOLOGICAL RESPONSES

Tissue interactions can be modified by, changing the chemistry of the surface.

inducing roughness or porosity to enhance physical binding to the surrounding tissues.

incorporating a surface-active agent to chemically bond the tissue.

using a bioresorbable component to allow slow replacement by tissue to simulate natural healing properties .

Page 17: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 17

BIOLOGICAL RESPONSES

The nature of the reaction is largely dependent on the chemical and physical characteristic of the Implant.

For most inert biomaterials, the late tissue reaction is encapsulation by a rel atively thin fibrous tissue capsule (Composed of collagen and fibroblasts).

Page 18: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 18

CLASSIFICATION OF BIOMATERIALS

Biomaterials can be divided into three major classes of materials:

Polymers

Metals

Ceramics (including carbons, glass ceramics, and glasses).

Page 19: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 19

METALLIC IMPLANT MATERIALS

Metallic implants are used for two primary purposes.

Implants used as prostheses serve to replace a portion of the body such as joints, long bones and skull plates.

Fixation devices are used to stabilize broken bones and other tissues while the normal healing proceeds.

Page 20: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 20

METALLIC IMPLANT MATERIALS

Though many metallic implant materials are available commercially. The three main categories of metals which are used for orthopedic implants

Stainless steels

Cobalt-chromium alloys

Titanium alloys

will be discussed in detail.

Page 21: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 21

METALLIC IMPLANT MATERIALS

The Metallic implant materials that are used should have the following characteristic features:

• Must be corrosion resistant

• Mechanical properties must be appropriate for desired application

• Areas subjected to cyclic loading must have good fatigue properties

Page 22: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 22

STAINLESS STEEL

Stainless steel is the predominant implant alloy.This is mainly due to its ease of fabrication any desirable variety of mechanical properties and corrosion behavior.But, of the three most commonly used metallic implants namely

•Stainless steel

•Cobalt chromium alloys

•Titanium alloys,Stainless steel is least corrosion resistant.

Page 23: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 23

STAINLESS STEEL

The various developments which took place in the development of steel in metallic implants are discussed below.• Stainless steel (18Cr-8 Ni) was first introduced in surgery in 1926

• In 1943, type 302 stainless steel had been recommended to U.S. Army and Navy for bone fixation.Later 18-8sMo stainless steel (316), which contains molybdenum to improve corrosion resistance, was introduced.

• In the 1950s, 316L stainless steel was developed by reduction of maximum carbon content from 0.08% to 0.03% for better corrosion resistance.

Page 24: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 24

Type % C %Cr % Ni %Mn % other elements

301 0.15 16-18 6-8 2.0 1.0Si

304 0.07 17-19 8-11 2.0 1-Si

316, 18-8sMo

0.07 16-18 10-14 2.0 2-3 Mo, 1.0 Si

316L 0.03 16-18 10-14 2.0 2.3 Mo, 0.75Si

430F 0.08 16-18 1.0-1.5 1.5 1.0 Si, 0-6 Mo

CONSTITUENTS OF STEEL

Page 25: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 25

STAINLESS STEEL

The chromium content of stainless steels should be least 11.0% to enable them to resist corrosion.

Chromium is a reactive element. Chromium oxide on the surface of steel provides excellent

corrosion resistance. The AISI Group III austenitic steel especially type 316 and

316L cannot be hardened by heat treatment but can be hardened by cold working.

This group of stainless steel is non-magnetic and possesses better corrosion resistance than any of the others.

Page 26: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 26

STAINLESS STEEL

The inclusion of molybdenum in types 316 and 316L enhances resistance to pitting corrosion.

Lowering the carbon content of type 316L stainless steels makes them more corrosion resistant to physiological saline in human body.

Therefore 316L is recommended rather than 316 for implant fabrication.

Page 27: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 27

STAINLESS STEEL

The Stainless steels used in implants are generally of two types:

•Wrought •Forged

Wrought alloy possesses a uniform microstructure with fine grains.

In the annealed condition it possesses low mechanical strength.Cold working can strengthen the alloy.

Stainless steels can be hot forged to shape rather easily because of their high ductility.

They can also be cold forged to shape to obtain required strength.

Page 28: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 28

Devices Alloy Type

Jewitt hip nails and plates 316 L

Intramedullary pins 316 L

Mandibular staple bone plates 316L

Heart valves 316

Stapedial Prosthesis 316

Mayfield clips (neurosurgery) 316

Schwartz clips (neurosurgery) 420

Cardiac pacemaker electrodes 304

APPLICATIONS OF SS STEEL

Page 29: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 29

STAINLESS STEEL

Electroplating has been shown to be generally superior to a mechanical finish for increasing corrosion resistance which can also be produced by other surface treatments such as passivation with HNO3.

The reason why stainless steel implants failed , indicates a variety of deficiency factors like

•deficiency of molybdenum

•the use of sensitized steel

Page 30: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 30

COBALT CHROMIUM ALLOYS

The two basic elements of Co-based alloys form a solid solution of upto 65 wt % of CO and 35 wt % of Cr

To this Molybdenum is added to produce finer grains which results in higher strength after casting or forging

Cobalt is a transition metal of atomic number 27 situated between iron and nickel in the first long period of the periodic table.

The chemical properties of cobalt are intermediate between those of iron and nickel.

Page 31: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 31

COBALT CHROMIUM ALLOYS

The various milestones in the development of cobalt chromium alloys are discussed below.

• Haynes developed a series of cobalt-chromium and cobalt- chromium-tungsten alloys having good corrosion resistance.

• During early 1930s an alloy called vitallium with a composition 30% chromium, 7% tungsten and 0.5% carbon in cobalt was found.

• Many of the alloys used in dentistry and surgery, based on the Co-Cr system contain additional elements such as carbon, molybdenum, nickel, tungsten

Page 32: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 32

COBALT CHROMIUM ALLOYS

• Chromium has a body centered cubic (bcc) crystal structure and cannot therefore have a stability of the phase of cobalt.

• The solubility of the former in the latter increases rapidly as the temperature is raised.

• Metallic cobalt started to find some industrial use at the beginning of this century but its pure form is not particularly ductile or corrosion resistant.

• The various milestones in the development of cobalt chromium alloys are discussed below.

Page 33: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 33

COBALT CHROMIUM ALLOYS

Cobalt based alloys are used in one of three forms

•Cast, •Wrought

•Forged

Page 34: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 34

COBALT CHROMIUM ALLOYS

Cast alloy: The orthopedic implants Co-Cr alloy are made by investment casting.In an investment casting process,the various steps which are involved are • a wax model of the implant is made and ceramic shell is built around the wax model• When wax is melted away, the ceramic mold has the shape of the implant• The ceramic shell is not fired is obtained the required the mold strength• Molten metal alloy is then poured in to the shell, cooling, the shell is removed to obtain metal implant.

Page 35: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 35

COBALT CHROMIUM ALLOYS

Wrought alloy: The wrought alloy possess a uniform microstructure with fine grains. Wrought Co-Cr –Mo alloy can be further strengthened by cold work.

Forged Alloy: The Co-Cr forged alloy is produced from a hot forging process. The Forging of Co-Cr –Mo alloy requires sophisticated press and complicated tooling. These factors make it more expensive to fabricate a device from a Co-Cr-Mo forging than from a casting.

Page 36: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 36

COBALT CHROMIUM ALLOYS

Page 37: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 37

TITANIUM BASED ALLOYS

The advantage of using titanium based alloys as implant materials are

low density

good mechano-chemical properties

The major disadvantage being the relatively high cost and reactivity.

Page 38: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 38

TITANIUM BASED ALLOYS

Titanium is a light metal having a density of 4.505g/cm3 at 250C .

Since aluminum is a lighter element and vanadium barely heavier than titanium, the density of Ti-6% Al-4% V alloy is very similar to pure titanium.

The melting point of titanium is about 16650C although variable data are reported in the literature due to the effect of impurities.

Page 39: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 39

TITANIUM BASED ALLOYS

Titanium exists in two allotropic forms,• the low temperature -form has a close-packed hexagonal crystal structure with a c/a ratio of 1.587 at room temperature

• Above 882.50C -titanium having a body centered cubic structure which is stable

The presence of vanadium in a titanium-aluminium alloy tends to form - two phase system at room temperature.

Ti-6 Al-4V alloy is generally used in one of three conditions wrought, forged or cast.

Page 40: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 40

TITANIUM BASED ALLOYS

Wrought alloy• It is available in standard shapes and sizes and is annealed at 7300C for 1-4 hours, furnace cooled to 6000C and air- cooled to room temperature.

Forged alloy• The typical hot-forging temperature is between 900°C and 930°C.Hot forging produces a fine grained -structure with a depression of varying phase. A final annealing treatment is often given to the alloy to obtain a stable microstructure without significantly altering the properties of the alloy.

Page 41: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 41

TITANIUM BASED ALLOYS

Cast alloy To provide a metallurgical stable homogenous structure castings are annealed at approximately 8400C .

Cast Ti-6 Al-4V alloy has slightly lower values for mechanical properties than the wrought alloy.

Titanium and its alloys are widely used because they show• exceptional strength to weight ratio• good mechanical properties.

The lower modulus is of significance in orthopedic devices since it implies greater flexibility.

Page 42: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 42

TITANIUM BASED ALLOYS

To improve tribiological properties of Titanium there are four general types of treatments made.

Firstly, the oxide layer may be enhanced by a suitable oxidizing treatment such as anodizing Secondly, the surface can be hardened by the diffusion of interstitial atoms into surface layers Thirdly, the flame spraying of metals or metal oxides on to the surface may be employed Finally, other metals may be electroplated onto the surface

Page 43: EFFECT OF PHYSIOLOGICAL FLUIDS

LECTURE 3 BIOMATERIALS 43

TITANIUM BASED ALLOYS

BONE SCREWS USED FOR IMPLANTATION