dopant diffusion revisited - university of california ...ee243/sp10/ee143/lectures/lec_10.pdf ·...

26
Professor N Cheung, U.C. Berkeley Lecture 10 EE143 S06 1 Dopant Diffusion Revisited Diffusion Mechanisms Dopant interactions with Point Defects of Si substrate - Dopant Diffusivity affected by Dopant Concentration - Dopant Diffusivity affected by Point Defect Concentration - Point Defect Concentration affected by Dopant Concentration - Point Defect Concentration affected by Processing Steps

Upload: others

Post on 18-Mar-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Dopant Diffusion Revisited - University of California ...ee243/sp10/EE143/lectures/Lec_10.pdf · diffusivity of dopants 1) Thermal -equilibrium values of Si neutralinterstitials and

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 S06

1

Dopant Diffusion Revisited

•Diffusion Mechanisms

•Dopant interactions with Point Defects of Si substrate

- Dopant Diffusivity affected by Dopant Concentration- Dopant Diffusivity affected by Point Defect Concentration- Point Defect Concentration affected by Dopant Concentration- Point Defect Concentration affected by Processing Steps

Page 2: Dopant Diffusion Revisited - University of California ...ee243/sp10/EE143/lectures/Lec_10.pdf · diffusivity of dopants 1) Thermal -equilibrium values of Si neutralinterstitials and

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 S06

2

2) Diffusivity of Si interstitials and Si vacancies >> diffusivity of dopants

1) Thermal-equilibrium values of Si neutral interstitials and vacancies at diffusion temperatures<< doping concentration of interest (1015 –1020 /cm3)

Si Native Point Defects

At 1000oC, CIo* ~ 1012 /cm3CVo* ~ 1013 /cm3

For reference only

Si vacancy Si interstitial

Page 3: Dopant Diffusion Revisited - University of California ...ee243/sp10/EE143/lectures/Lec_10.pdf · diffusivity of dopants 1) Thermal -equilibrium values of Si neutralinterstitials and

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 S06

3

(a) Interstitial Diffusion

Diffusion Mechanisms in Si (A) No Si Native Point Defect Required

10-6 cm2/secAu

Cu

Fast Diffusion

Example: Cu, Fe, Li, H

Page 4: Dopant Diffusion Revisited - University of California ...ee243/sp10/EE143/lectures/Lec_10.pdf · diffusivity of dopants 1) Thermal -equilibrium values of Si neutralinterstitials and

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 S06

4

(a) Substitutional Diffusion

Diffusion Mechanisms in Si

(B) Si Native Point Defects Required (Si vacancy and Si interstitials)

(b) Interstitialcy Diffusion

Example: Dopants in Si ( e.g. B, P,As,Sb)

Page 5: Dopant Diffusion Revisited - University of California ...ee243/sp10/EE143/lectures/Lec_10.pdf · diffusivity of dopants 1) Thermal -equilibrium values of Si neutralinterstitials and

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 S06

5

(c) Kick-Out Diffusion (d) Frank Turnbull Diffusion

(B) Si Native Point Defects Required (Si vacancy and Si interstitials)continued

10-12 cm2/sec

B,P

As

Slow Diffusion

Page 6: Dopant Diffusion Revisited - University of California ...ee243/sp10/EE143/lectures/Lec_10.pdf · diffusivity of dopants 1) Thermal -equilibrium values of Si neutralinterstitials and

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 S06

6

Diffusivity Comparison:Dopants, Si interstitial, and interstitial diffusers

108 times higher

For reference only

Page 7: Dopant Diffusion Revisited - University of California ...ee243/sp10/EE143/lectures/Lec_10.pdf · diffusivity of dopants 1) Thermal -equilibrium values of Si neutralinterstitials and

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 S06

7

High Concentration Diffusion Effects

Log C(x)

x

Low conc profile:Erfc or gaussian

Log C(x)

x

J large

J small

High conc. profile:D gets largerwhen C(x) is large

* C(x) looks “flatter”at high conc. regions

1) E-Field Enhanced Diffusion2) Charged point defects enhanced diffusion

Page 8: Dopant Diffusion Revisited - University of California ...ee243/sp10/EE143/lectures/Lec_10.pdf · diffusivity of dopants 1) Thermal -equilibrium values of Si neutralinterstitials and

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 S06

8

(1) Electric-field Enhancement

Example: Acceptor Diffusion

Na(x)

Na(x)=Na-(x)

p(x)

hole gradient

x

Hole diffusion tendency

E build-in

Complete acceptorionization at diffusion temperature

At thermal equilibrium, hole current =0Hole gradient creates build-inelectric field to counteract the hole diffusion tendency

Page 9: Dopant Diffusion Revisited - University of California ...ee243/sp10/EE143/lectures/Lec_10.pdf · diffusivity of dopants 1) Thermal -equilibrium values of Si neutralinterstitials and

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 S06

9

B-

+[p]holes tends to moveaway due to holeconcentration gradient

Ebuild-in

B- acceptorsexperiencean additionaldrift force

Enhanced Diffusion for B- acceptor atoms

Page 10: Dopant Diffusion Revisited - University of California ...ee243/sp10/EE143/lectures/Lec_10.pdf · diffusivity of dopants 1) Thermal -equilibrium values of Si neutralinterstitials and

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 S06

10

[ ]dx

pdq

kTdxdp

pqkT

E

mequilibriuthermalatdxdp

qDEpqJ ppp

ln

1.

0

⋅=

⋅⋅=⇒

=⋅−⋅⋅⋅= µ

Calculation of build-in Electric Field E

Page 11: Dopant Diffusion Revisited - University of California ...ee243/sp10/EE143/lectures/Lec_10.pdf · diffusivity of dopants 1) Thermal -equilibrium values of Si neutralinterstitials and

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 S06

11

Since

Total acceptor atom flux

A =µ

NEDF AAA ⋅⋅--= µdNA/dx

= (diffusion + drift) components

DA/[kT/q] from Einstein’s Relationship

Na-(x)

E

x

Calculation of total diffusion flux F

Page 12: Dopant Diffusion Revisited - University of California ...ee243/sp10/EE143/lectures/Lec_10.pdf · diffusivity of dopants 1) Thermal -equilibrium values of Si neutralinterstitials and

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 S06

12

[ ]

[ ]22

22

2

4

1ln2

4)2(&)1(

)2(

)1(

ln

iA

A

iAA

i

A

AA

A

nNdxdN

dxpd

nNNp

ActionMassofLawnpn

NeutralitychargeNnpFrom

Ndx

pddx

dNDF

+⋅=∴

++=∴

=

+=

⋅+⋅−=

Page 13: Dopant Diffusion Revisited - University of California ...ee243/sp10/EE143/lectures/Lec_10.pdf · diffusivity of dopants 1) Thermal -equilibrium values of Si neutralinterstitials and

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 S06

13

2

1

41

11

2

2

→<<→>>

+

+⋅⋅−=

hNn

hNnIf

Nndx

dNDF

Ai

Ai

factorh

A

i

AA

44 344 21

high dopant conc.

low dopant conc.

Value of h depends on concentration NA

Page 14: Dopant Diffusion Revisited - University of California ...ee243/sp10/EE143/lectures/Lec_10.pdf · diffusivity of dopants 1) Thermal -equilibrium values of Si neutralinterstitials and

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 S06

14

Temp range for dopant diffusion

Intrinsic Carrier Concentration ni

If n or p > ni(Tdiffusion), we will expect to observe high concentration diffusion effects.

Page 15: Dopant Diffusion Revisited - University of California ...ee243/sp10/EE143/lectures/Lec_10.pdf · diffusivity of dopants 1) Thermal -equilibrium values of Si neutralinterstitials and

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 S06

15

E-Field Effect ExampleHow the uniform substrate concentration is perturbed by E-field of diffusion specie

Asdiffusion

Uniform B conc in substrate

caused by Asconc gradient

B-

Page 16: Dopant Diffusion Revisited - University of California ...ee243/sp10/EE143/lectures/Lec_10.pdf · diffusivity of dopants 1) Thermal -equilibrium values of Si neutralinterstitials and

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 S06

16

(2) Diffusion Enhanced by Charged Point Defects (e.g. Vacancies)

Vo = neutralV+ = + vacancyV- = - vacancyV= = - - vacancy

…..

Si vacancy

Page 17: Dopant Diffusion Revisited - University of California ...ee243/sp10/EE143/lectures/Lec_10.pdf · diffusivity of dopants 1) Thermal -equilibrium values of Si neutralinterstitials and

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 S06

17

Possible Point Defect Configurations

For reference only

Page 18: Dopant Diffusion Revisited - University of California ...ee243/sp10/EE143/lectures/Lec_10.pdf · diffusivity of dopants 1) Thermal -equilibrium values of Si neutralinterstitials and

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 S06

18

• Neutral interstitial and vacancy point defects present at thermal equilibrium

• Charged Point Defects enhanced by heavy doping; total point defect concentrations enhanced by ~10x

I+, Io, I-

V+, Vo, V-, V=

•Point defects Injected by interfaces during oxidation(total point concentrations enhanced by ~10x)

• Implantation collisions (total point defect concentration enhanced by ~ 1000X)

How processing steps affect point defect concentrations

At 1000oC, CIo* ~ 1012 /cm3

CVo* ~ 1013 /cm3

Page 19: Dopant Diffusion Revisited - University of California ...ee243/sp10/EE143/lectures/Lec_10.pdf · diffusivity of dopants 1) Thermal -equilibrium values of Si neutralinterstitials and

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 S06

19

K c = [Vo] nr

[V -r ]=

[Vo] n ir

[V i -r ]

[V -r]

[V i -r ]= [

nni

] r

where n = electron concentration , [ ] denotes the concentrations ,subscript i denotes condition for intrinsic Si

1) Negatively charged vacanciesVo + r • electrons ↔ V -r (r = 1,2,3…)

2) Positively charged vacanciesVo + r • holes ↔ V +r (r =1,2,3…)

[V +r]

[V i +r]= [

pni

] r = [nin ] r

p =hole concentration

Law of Mass Action

For the reaction : a•A + b • B ↔ c • C

[A] a [B]b

[C]c= Kc

[ ] denotes concentrationKc = equilibriumConstant at Temp T

Derivation of charged vacancy concentration

same Kc for undoped Si

Page 20: Dopant Diffusion Revisited - University of California ...ee243/sp10/EE143/lectures/Lec_10.pdf · diffusivity of dopants 1) Thermal -equilibrium values of Si neutralinterstitials and

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 S06

20

...2

+

⋅+

⋅+

⋅+= =−+

ii

ii

ii

o

nn

Dnn

Dnp

DD

Why each diffusivity written with ni as normalization factor ?

Dtotal

Consider the +charge vacancy first , D+ ∝ [V+].From Law of Mass Action: [V+] ∝ p Therefore , D+ ∝ p and can be written as D+ = K• p where K is a proportionality constant

Let us multiply K by ni and call it Di+, then D+ = Di

+• (p / ni )The physical meaning of Di

+ is diffusivity D+ for undoped siliconbecause p = ni for undoped silicon

Similarly, Di- and Di

= are diffusivity values for undoped Si due to –charge and = charge vacancies

Charged Vacancy Enhanced Diffusion

Page 21: Dopant Diffusion Revisited - University of California ...ee243/sp10/EE143/lectures/Lec_10.pdf · diffusivity of dopants 1) Thermal -equilibrium values of Si neutralinterstitials and

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 S06

21

...++++= =−+ DDDDD ov

...2

+

⋅+

⋅+

⋅+= =−+

ii

ii

ii

o

nn

Dnn

Dnp

DD

Do = Dio exp(-Eia / kT) <-- diffusion coefficient for diffusion vianeutral vacancies

Di+ = Do

+ exp(-Ea+/kT) <-- diffusion coefficient for diffusion via

singly positively charged vacancies

Di- = Do

- exp(-Ea-/kT) <-- diffusion coefficient for diffusion via

singly negatively charged vacancies

Di= = Do

= exp(-Ea=/kT) <-- diffusion coefficient for diffusion via

doubly negatively charged vacancies

Note that p/ni = n/ni = 1 for intrinsic (i.e. undoped) material!

Charged Vacancy Enhanced Diffusion

Page 22: Dopant Diffusion Revisited - University of California ...ee243/sp10/EE143/lectures/Lec_10.pdf · diffusivity of dopants 1) Thermal -equilibrium values of Si neutralinterstitials and

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 S06

22

Example : High Concentration Arsenic diffusion profile becomes “box-like”

Page 23: Dopant Diffusion Revisited - University of California ...ee243/sp10/EE143/lectures/Lec_10.pdf · diffusivity of dopants 1) Thermal -equilibrium values of Si neutralinterstitials and

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 S06

23

First, Check if doping concentration is > ni(T) or < ni(T)

If doping conc < ni:D= Do

Use constant diffusivity solutions(profile is erfc or half-gaussian)

If doping conc > ni:

Use D = Dv = h [ Do + D+ + D- + D= + ...](Solution requires numerical techniques)

Summary of High-Concentration Diffusion

Page 24: Dopant Diffusion Revisited - University of California ...ee243/sp10/EE143/lectures/Lec_10.pdf · diffusivity of dopants 1) Thermal -equilibrium values of Si neutralinterstitials and

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 S06

24

Oxidation Enhanced Diffusion (OED)

Field Oxide

Example:Channel-stop implant diffuses faster during field oxidation

Diffusivity is enhanced for B and P underneath a growing oxide

SiO2

SiSi[I]

Injected Si[I] interstitialsenhance dopant diffusion

Note: The dopant Sb shows retarded diffusivity during oxidation=> it diffuses primarily via the vacancy mechanism

DOED = D + ∆D ∆D ∝ [dXox / dt]n where 0.4 < n < 0.6

Page 25: Dopant Diffusion Revisited - University of California ...ee243/sp10/EE143/lectures/Lec_10.pdf · diffusivity of dopants 1) Thermal -equilibrium values of Si neutralinterstitials and

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 S06

25

Transient Enhanced Diffusion (TED)

Dopant Implantation

Sisubstrate

Implantationinduced excesspoint defects

x

C(x)

no annealing

900oC, several sec (TED)Extremely rapid diffusion due to excess point defects

Implantation createslarge number of excess Siinterstitials and vacancies.(1000X than thermal process).After several seconds of annealing, the excess point defects recombine.

900oC, several minutes(After excess point defects recombine. slower diffusion)

Page 26: Dopant Diffusion Revisited - University of California ...ee243/sp10/EE143/lectures/Lec_10.pdf · diffusivity of dopants 1) Thermal -equilibrium values of Si neutralinterstitials and

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 S06

26

•Difficult to make ultra-shallow (< 0.1µm) junctionswith implantation and annealing

Annealingtime

JunctionDepth xj

TED

Normal diffusion (with high concentration effects)

seconds

Junction Depth versus post-implantation annealing time