ee143 f2010 lecture 10 dopant diffusion (1) predepositionee143/fa10/lectures/lec_10.pdf ·...

29
Professor N Cheung, U.C. Berkeley Lecture 10 EE143 F2010 1 Dopant Diffusion (1) Predeposition dopant gas SiO 2 SiO 2 Si dose control (2) Drive-in Turn off dopant gas or seal surface with oxide SiO 2 SiO 2 Si SiO 2 Doped Si region profile control (junction depth; concentration) Note: Predeposition by diffusion can also be replaced by a shallow implantation step.

Upload: ngohanh

Post on 25-Apr-2018

255 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: EE143 F2010 Lecture 10 Dopant Diffusion (1) Predepositionee143/fa10/lectures/Lec_10.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 10 1 Dopant Diffusion (1) Predeposition

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 F2010

1

Dopant Diffusion

(1) Predeposition dopant gas

SiO2SiO2

Si

dose control

(2) Drive-in Turn off dopant gasor seal surface with oxide

SiO2SiO2

Si

SiO2

Doped Si region

profile control(junction depth;concentration)

Note: Predeposition by diffusion can also bereplaced by a shallow implantation step.Note: Predeposition by diffusion can also bereplaced by a shallow implantation step.

Page 2: EE143 F2010 Lecture 10 Dopant Diffusion (1) Predepositionee143/fa10/lectures/Lec_10.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 10 1 Dopant Diffusion (1) Predeposition

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 F2010

2

Dopant Diffusion Sources

(a) Gas Source: AsH3, PH3, B2H6

(b) Solid SourceBN Si BN Si

B oxide +SiO2

(c) Spin-on-glass SiO2+dopant oxide

Page 3: EE143 F2010 Lecture 10 Dopant Diffusion (1) Predepositionee143/fa10/lectures/Lec_10.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 10 1 Dopant Diffusion (1) Predeposition

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 F2010

3

(d) Liquid Source.

Page 4: EE143 F2010 Lecture 10 Dopant Diffusion (1) Predepositionee143/fa10/lectures/Lec_10.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 10 1 Dopant Diffusion (1) Predeposition

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 F2010

4

Solid Solubility of Common Impurities in Si

oC

C0 (cm-3)

Page 5: EE143 F2010 Lecture 10 Dopant Diffusion (1) Predepositionee143/fa10/lectures/Lec_10.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 10 1 Dopant Diffusion (1) Predeposition

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 F2010

5

Diffusion Coefficients of Impurities in Si

10-14

10-13

10-12

B,P

As

10-6

Au

Cu

kTE

O

A

eDD

Page 6: EE143 F2010 Lecture 10 Dopant Diffusion (1) Predepositionee143/fa10/lectures/Lec_10.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 10 1 Dopant Diffusion (1) Predeposition

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 F2010

6

Temperature Dependence of D

.,/106.8

0

5

0

tabulatedareEDkelvineV

constantBoltzmankeVinenergyactivationE

eDD

A

A

kTAE

Arrhenius Relationship

Page 7: EE143 F2010 Lecture 10 Dopant Diffusion (1) Predepositionee143/fa10/lectures/Lec_10.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 10 1 Dopant Diffusion (1) Predeposition

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 F2010

7

Mathematics of Diffusion

Fick’s First Law:

sec][:

,,

2cmDconstantdiffusionD

xtxCDtxJ

J

C(x)

x

Page 8: EE143 F2010 Lecture 10 Dopant Diffusion (1) Predepositionee143/fa10/lectures/Lec_10.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 10 1 Dopant Diffusion (1) Predeposition

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 F2010

8

From the Continuity Equation

x)t,x(CD

xt)t,x(C

x)t,x(CD

xx)t,x(J

t)t,x(C

0t,xJt

t,xC

“Diffusion Equation”

Page 9: EE143 F2010 Lecture 10 Dopant Diffusion (1) Predepositionee143/fa10/lectures/Lec_10.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 10 1 Dopant Diffusion (1) Predeposition

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 F2010

9

If D is independent of C(i.e., D is independent of x).

C x tt

D C x tx

, ,

2

2

Concentration Independent Diffusion EquationConcentration Independent Diffusion Equation

Concentration independence of D

State of the art devices use fairly high concentrations,causing variable diffusivity and other significant side-effects (transient-enhanced diffusion, for example.)

State of the art devices use fairly high concentrations,causing variable diffusivity and other significant side-effects (transient-enhanced diffusion, for example.)

Page 10: EE143 F2010 Lecture 10 Dopant Diffusion (1) Predepositionee143/fa10/lectures/Lec_10.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 10 1 Dopant Diffusion (1) Predeposition

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 F2010

10

Boundary Conditions

Initial Condition

C x t C solid solubility of thedopantC x t

C x t

:

:

,,

,

00

0 0

0

A. Predeposition Diffusion Profile

Justification:Si wafers are ~500um thick, dopingdepths of interest are typically < several um

At time =0, there is no diffused dopantin substrate

Page 11: EE143 F2010 Lecture 10 Dopant Diffusion (1) Predepositionee143/fa10/lectures/Lec_10.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 10 1 Dopant Diffusion (1) Predeposition

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 F2010

11

0

0

200

2

2

21,2

CDt

DtxerfcC

dyeCtxC Dtx

y

C0

t3>t2t2>t1

x=0x

t1

Characteristic distance for diffusion.

Surface Concentration (solid solubility limit)

Diffusion under constant surface concentration

Page 12: EE143 F2010 Lecture 10 Dopant Diffusion (1) Predepositionee143/fa10/lectures/Lec_10.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 10 1 Dopant Diffusion (1) Predeposition

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 F2010

12

erf (z) =2

0

z

e-y2 dy erfc (z) 1 - erf (z)

erf (0) = 0 erf( ) = 1 erf(- ) = - 1

erf (z) 2

z for z <<1 erfc (z) 1

e-z2

z for z >>1

d erf(z)dz = -

d erfc(z)dz =

2

e2-z

d2 erf(z)dz2 = -

4

z e2-z

0

z

erfc(y)dy = z erfc(z) +1

(1-e-z2 )

0

erfc(z)dz =1

Properties of Error Function erf(z)and Complementary Error Function erfc(z)

Page 13: EE143 F2010 Lecture 10 Dopant Diffusion (1) Predepositionee143/fa10/lectures/Lec_10.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 10 1 Dopant Diffusion (1) Predeposition

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 F2010

13

The value of erf(z) can be found in mathematical tables, as build-in functions in calculators andspread sheets. If you have a programmable calculator, this approximation is accurate to 1 part in107: erf(z) = 1 - (a1T + a2T2 +a3T 3 +a 4T4 +a5T 5) e-z2

where T = 11+P z and P = 0.3275911

a1 = 0.254829592 a2 = -0.284496736 a3 = 1.421413741 a4 = -1.453152027 a5 = 1.061405429

10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

erfc(z)exp(-z^2)

Practical Approximations of erf and erfc

Page 14: EE143 F2010 Lecture 10 Dopant Diffusion (1) Predepositionee143/fa10/lectures/Lec_10.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 10 1 Dopant Diffusion (1) Predeposition

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 F2010

14

Dtx

eDt

CoxC

tDtC

dxtxCtQ

42

2

,

0

0

[1] Predeposition dose

[2] Concentration gradient

Page 15: EE143 F2010 Lecture 10 Dopant Diffusion (1) Predepositionee143/fa10/lectures/Lec_10.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 10 1 Dopant Diffusion (1) Predeposition

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 F2010

15

B. Drive-in Profile

DtxerfcCotxC

ConditionsInitial

xC

txCConditionsBoundary

x

20,

:

0

0,:

0

x

C(x)

x=0

Predep’s (Dt)

Physical meaning of C/x =0:No diffusion flux in/out of the Sisurface. Therefore, dopant dose isconserved

Page 16: EE143 F2010 Lecture 10 Dopant Diffusion (1) Predepositionee143/fa10/lectures/Lec_10.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 10 1 Dopant Diffusion (1) Predeposition

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 F2010

16

xQtxC 0,

C(x,t=0)

x

Solution of Drive-in Profilewith Shallow Predeposition Approximation:

C x t QDt

edrive in

xDt drive in,

2

4C(x,t)

x

t1 t2

Q

C Dt predep0 2

Approximate predep profileas a delta function at x=0

Page 17: EE143 F2010 Lecture 10 Dopant Diffusion (1) Predepositionee143/fa10/lectures/Lec_10.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 10 1 Dopant Diffusion (1) Predeposition

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 F2010

17

indrive

predep

DtDtRLet

x

Approximation over-estimates conc. here

Approximationunder-estimatesconcentration here.

Goodagreement

C(x)/C0

R=1

R=0.25

Exact solutionDelta functionApproximation

How good is the (x) approximation ?

For reference onlyFor reference only

Page 18: EE143 F2010 Lecture 10 Dopant Diffusion (1) Predepositionee143/fa10/lectures/Lec_10.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 10 1 Dopant Diffusion (1) Predeposition

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 F2010

18

Summary of Predeposition + Drive-in

22

2

42

1

22

110

2

2

1

1

2 tDx

etDtDCxC

tDtD

Diffusivity at Predeposition temperature

Predeposition time

Diffusivity at Drive-in temperature

Drive-in time

*This will be the overall diffusion profile after a “shallow” predepositiondiffusion step, followed by a drive-in diffusion step.

Page 19: EE143 F2010 Lecture 10 Dopant Diffusion (1) Predepositionee143/fa10/lectures/Lec_10.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 10 1 Dopant Diffusion (1) Predeposition

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 F2010

19

PredepositionPredeposition Drive-inDrive-in

Semilog Plots of normalized Concentration versus depth

Page 20: EE143 F2010 Lecture 10 Dopant Diffusion (1) Predepositionee143/fa10/lectures/Lec_10.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 10 1 Dopant Diffusion (1) Predeposition

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 F2010

20

Note: is the implantation doseNote: is the implantation dose

Diffusion of Gaussian Implantation Profile

Page 21: EE143 F2010 Lecture 10 Dopant Diffusion (1) Predepositionee143/fa10/lectures/Lec_10.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 10 1 Dopant Diffusion (1) Predeposition

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 F2010

21

T h e e x a c t s o lu tio n s w ithCx = 0 a t x = 0 ( . i.e . n o d o p a n t lo s s th ro u g h s u r fa c e )

c a n b e c o n s tru c te d b y a d d in g a n o th e r fu ll g a u s s ia n p la c e d a t -R p [M e th o d o fIm a g e s ].

C (x , t) =

2 (R 2p + 2 D t)1 /2

[e-

(x - R p )2

2 (R 2p + 2 D t) + e

-(x + R p )2

2 (R 2p + 2 D t) ]

W e c a n s e e th a t in th e lim it (D t) 1 /2 > > R p a n d R p ,

C (x ,t) e - x 2 /4 D t

(D t)1 /2 ( th e h a lf -g a u s s ia n d r iv e - in s o lu tio n )

For reference onlyFor reference only

Diffusion of Gaussian Implantation Profile (arbitrary Rp)

Page 22: EE143 F2010 Lecture 10 Dopant Diffusion (1) Predepositionee143/fa10/lectures/Lec_10.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 10 1 Dopant Diffusion (1) Predeposition

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 F2010

22

Dopants will redistribute when subjected to various thermal cycles ofIC processing steps. If the diffusion constants at each step areindependent of dopant concentration, the diffusion equation can bewritten as:

Ct = D(t)

2Cx2

Let (t)

0

t D(t’)dt’

D(t) =t

UsingCt =

C

t

The diffusion equation becomes:C

t =

t

2Cx2 or

C =

2Cx2

The Thermal Budget

Page 23: EE143 F2010 Lecture 10 Dopant Diffusion (1) Predepositionee143/fa10/lectures/Lec_10.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 10 1 Dopant Diffusion (1) Predeposition

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 F2010

23

When we compare that to a standard diffusion equation with D being

time-independent:C

Dt =2Cx2, we can see that replacing the (Dt)

product in the standard solution by will also satisfy the time-dependent D diffusion equation.

ExampleConsider a series of high-temperature processing cycles at{temperature T1, time duration t1} ,{ temperature T2, time duration t2}, etc. The corresponding diffusion constants will be D1, D2,... . Then, = D1t1+D2t2+..... = (Dt)effective

** The sum of Dt products is sometimes referred to as the “thermalbudget” of the process. For small dimension IC devices, dopantredistribution has to be minimized and we need low thermal budgetprocesses.

Page 24: EE143 F2010 Lecture 10 Dopant Diffusion (1) Predepositionee143/fa10/lectures/Lec_10.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 10 1 Dopant Diffusion (1) Predeposition

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 F2010

24

istep

ieffective )Dt()Dt(BudgetThermal

Example

Dttotal of :

Well drive-in

and

S/D annealing

Temp (t)

time

welldrive-in

stepS/D

Annealstep

Temp (t)

time

welldrive-in

stepS/D

Annealstep

For a complete process flow, only those steps with high Dtvalues are importantFor a complete process flow, only those steps with high Dtvalues are important

Page 25: EE143 F2010 Lecture 10 Dopant Diffusion (1) Predepositionee143/fa10/lectures/Lec_10.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 10 1 Dopant Diffusion (1) Predeposition

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 F2010

25

Explicit relationship between:

No

(surface concentration) ,

xj(junction depth),

NB

(background concentration),

RS

(sheet resistance),

Once any three parameters are known, the fourth one can be determined.Once any three parameters are known, the fourth one can be determined.

p-type erfcn-type erfcp-type half-gaussiann-type half-gaussian

Irvin’s Curves

Page 26: EE143 F2010 Lecture 10 Dopant Diffusion (1) Predepositionee143/fa10/lectures/Lec_10.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 10 1 Dopant Diffusion (1) Predeposition

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 F2010

26

Approach

1) The dopant profile (erfc or half-gaussian ) can be uniquely determined if oneknows the concentration values at two depth positions.

2) We will use the concentration values No at x=0 and NB at x=xj to determine theprofile C(x). (i.e., we can determine the Dt value)

3) Once the profile C(x) is known, the sheet resistance RS can be integratednumerically from:

4) Irvin’s Curves are plots of No versus ( Rs xj ) for various NB.

jx

B dxNxCxqRs

0

1

Both NB(4-point-probe), RS (4-point probe) and xj (junction staining) can beconveniently measured experimentally but not No (requires secondary ion massspectrometry). However, these four parameters are related.

Motivation to generate the Irvin’s Curves

Page 27: EE143 F2010 Lecture 10 Dopant Diffusion (1) Predepositionee143/fa10/lectures/Lec_10.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 10 1 Dopant Diffusion (1) Predeposition

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 F2010

27

Illustrating the relationship of No, NB, xj, and RS

Page 28: EE143 F2010 Lecture 10 Dopant Diffusion (1) Predepositionee143/fa10/lectures/Lec_10.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 10 1 Dopant Diffusion (1) Predeposition

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 F2010

28

Example 1 Drive-in from line source with s atoms/cm

D2Cr2

+DrCr =

Ct

C(r, t) =s

2Dt e-r2/4Dt

Diffusion Equation in cylindrical coordinates

2-Dimensional Diffusion with constant D

Page 29: EE143 F2010 Lecture 10 Dopant Diffusion (1) Predepositionee143/fa10/lectures/Lec_10.pdf · Professor N Cheung, U.C. Berkeley EE143 F2010 Lecture 10 1 Dopant Diffusion (1) Predeposition

Professor N Cheung, U.C. Berkeley

Lecture 10EE143 F2010

29

Diffusion mask

x

y

equal-conc. contours

yj (at x=0) < xj (at y )

xj

yj

Rule of Thumb : yj ~0.7-0.8 xjRule of Thumb : yj ~0.7-0.8 xj

Example 2 : Semi-Infinite Plane Source

Two-Dimensional Drive-in Profile (cont.)

C(x,y,t) =Q

2 Dt e -x2/4Dt [ 1 + erf (

y2 Dt

) ]

where Q = predep dose in #/cm2